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Abstract

Detector alignment is an essential step in the track reconstruction and analysis process. Alignment
with tracks is one possible strategy to estimate positions and orientations of components of a track
detector. We present a method for the estimation of alignment constants during track reconstruction,
in parallel with the usual track parameters. The formalism is related to the standard Kalman Filter
and uses annealing in order to avoid suboptimal solutions. The algorithm has been implemented in
the Object oriented Reconstruction for Cms Analysis (ORCA) framework and has been tested with a
simulated test-beam like setup for silicon detectors.



1 Introduction
Alignment of tracking detectors is an essential step in the task of track reconstruction. Without proper alignment
it is impossible to reach the ultimate position and momentum resolution. Besides finding the alignment of the
tracking detectors it is also important to constantly monitor the alignment and to update the alignment constants
whenever required.

In the CMS Tracker, this task is particularly challenging because of the large number of independent silicon sensors,
about 20000, and their high resolution, between 10 and 40 microns. To exploit fully the resolution of the tracker
the sensors must be aligned to a precision significantly better than their intrinsic resolution. This precision can only
be achieved in an alignment procedure based on charged tracks, since the expected precision from the mechanical
mounting and laser beam alignment is significantly worse than the intrinsic sensor resolutions.

The large number of alignment parameters implies a very large number of tracks needed to align the tracker. Even
at nominal LHC luminosity and the expected trigger rate of the order of 10 Hz for high Pt muons the time to
accumulate the necessary statistics is of the order of a week. It is therefore important to make efficient use of the
track information in the alignment algorithm.

In this note we present a unified framework for the simultaneous unbiased estimation of the alignment parameters
of several detectors, which uses fully the track information. The method is a straightforward extension of the
standard Kalman Filter [1]. Since the dimension of the parameter space can be large the occasional convergence
to local minima cannot be excluded. We will present below strong empirical evidence that this actually occurs.
We solve this problem by introducing annealing, i.e. by gradually turning on the weights of the observations in
the course of the estimation process. The resulting algorithm closely resembles the Deterministic Annealing Filter
invented for robust track reconstruction in the presence of noise and ambiguities [2].

For the sake of simplicity we have studied the proposed alignment procedure using a simple track and detector
model, neglecting material effects and pattern recognition issues. It should be stressed, however, that the method
is completely general and can be applied with any kind of track and detector model.

2 Formalism
The problem of aligning a track detector can be stated in the following generic way. The observation m recorded
by the detector depends both on the vector of track parameters (track state) p of the track crossing the detector
and on the vector of alignment parameters (alignment state) a. The alignment state may contain both shifts and
rotations. The dependence can be written down in a generalized measurement equation:

m = f(p, a) + ε

where ε is the vector of measurement errors. The covariance matrix V of ε is assumed to be known.

The function f may be linear or non-linear in either argument. In the presence of rotations in the alignment state,
f is non-linear in a. While the track parameters p are different from event to event, the alignment parameters a of
a detector are common for all tracks. In the linear approximation the measurement equation can be written as:

m = c + Hp + Da + ε,

where H and D are the Jacobians:

H =
∂f

∂p
(p0, a0)

D =
∂f

∂a
(p0, a0).

We now assume that there is a predicted track state p0 along with its covariance matrix C0, as well as a predicted
alignment state a0 along with its covariance matrix E0. The recipe for updating both the track state and the
alignment state can be derived in a manner which is analogous to the derivation of the standard Kalman Filter. The
resulting update formulas are:

a1 = a0 + E0D
TW [m− f(p0, a0)]

E1 = E0 −E0D
TWDE0
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for the alignment state plus covariance matrix, and

p1 = p0 + C0H
TW [m− f(p0, a0)]

C1 = C0 −C0H
TWHC0

for the track state plus covariance matrix. The following auxiliary matrix needs to be computed:

W =
[

V + HC0H
T + DE0D

T
]−1

Note that the update formulas for the track and alignment parameters decouple into two separate ones. We will
refer to this again in section 5. In a similar way it is also possible to decouple the estimation of shift and rotation
parameters, although this is tantamount to neglecting the correlations between the two (see Appendix).

Information about a is accumulated continually, increasing after each track. In addition, at each step in the align-
ment procedure the full covariance matrix E of a is known, which can be used as a criterion for stopping the
alignment procedure. The convergence of a clearly depends on the precision of its starting value. It can be taken
from mechanical measurements, from laser beam alignment, or from a previous alignment with tracks.

Smoothing is done in the usual way, by running two filters in opposite directions and combining the results on
each detector surface. Both in the forward and in the backward filter the alignment states are not updated, but the
knowledge of the current alignment state is used for the update of the track state vector (see above). The alignment
parameters are updated in the smoothing step, which combines the predictions from the forward and the backward
filter with the measurements. This means that at each update of a both the full information about the track and the
current alignment of all other detectors enter into the update.

The predicted alignment states contain the current knowledge of the alignment parameters, based on the tracks al-
ready processed. The predicted track states, on the other hand, are based on the observations form the current track
only, but depend also on the current alignment. As long as the alignment parameters are not known to sufficient
precision the predicted track states are therefore biased, especially if several detectors are aligned simultaneously.
As a consequence, it may happen that alignment parameters converge to a suboptimal solution (local minimum) of
the alignment problem. This can be prevented by introducing annealing in a manner similar to the Deterministic
Annealing Filter developed for robust track reconstruction [2]. This means that the observations in all detectors to
be aligned are downweighted by a large factor in the beginning. This factor is then gradually decreased, until it
reaches 1 after a prescribed number of tracks. Below we shall present strong empirical evidence that this annealing
procedure solves entirely the problem of convergence to local minima.

3 OO design and implementation for a test-beam like setup
The object oriented design for the implementation of the track and alignment reconstruction is strongly related to
the existing implementation of the track reconstruction environment for the CMS Tracker in ORCA [3]. Wherever
possible, existing classes (e.g. the RecHit) are used directly, or provided base class interfaces are implemented
(e.g. the DetLayer or the DetUnit). Therefore the alignment specific algorithms are isolated in specific classes for
the minimization (fitter, smoother), similar to the way it is done in track reconstruction only for the CMS Tracker.

3.1 Overview

The task of track reconstruction (with or without alignment) can be split in four major components:

• a tracker geometry

• an alignment geometry

• tracker hits and detector readout

• a track reconstructor

This global layout (modularity) allows that one can change the track reconstructor while keeping the geometry the
same or vice versa. Alternatively, one might want to study a given geometry first with simulated hits and then
switch to real test beam data, only by changing the way hits are produced.
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Tracker

+detUnits()
+detLayers()
+add(DetUnit*)
+add(DetLayer*)

TBTracker
-vector<DetUnit*>
-vector<DetLayer*>
+detUnits()
+detLayers()
+add(DetUnit*)
+add(DetLayer*)

SpecificTBTracker

+constructGeometry()

DetUnit

DetLayer

Det

CompositeDet

TBDetLayer

StripDet

SiStripDet

1...n

1...m

creates detectors

creates layers

Figure 1: Object model of the Tracker Geometry. The TBTracker class implements the interface of the abstract
base class Tracker and keeps control of the whole geometry. A SpecificTBTracker reads configuration files and
constructs DetLayers and DetUnits which are then added to the TBTracker.

3.2 Tracker geometry

A common base class Tracker defines an interface for accessing specific tracker geometries (CMS or test beam)
in a unique way. The requirement of a tracker geometry is to provide access to its sub-components, enabling the
reconstruction of tracks. Therefore the Tracker base class interface prescribes a method that allows the access to
the DetLayers. A second method allows the access to all sensitive volumes in a tracker — the DetUnits. In the
case of a test beam a DetUnit most likely represents also the surface of a DetLayer. The object model with its basic
components can be seen in Figure 1.

3.3 Alignment geometry

The geometrical structure used for track finding (Tracker geometry) is different from the geometrical structure for
aligning components. An alignment geometry has to provide access to the specific alignment structures and, in the
case of a demand, act on the current Tracker geometry by moving and rotating parts. This mechanism can be used
for both aligning and misaligning, if one wants to introduce misalignment into an existing Tracker geometry.

In the case of our simple test beam example the alignment components coincide with the ones used in the track
reconstruction — each DetUnit has its associated AlignableDetUnit and thus can be aligned. The current Align-
mentStates (AlignmentParameters and AlignmentErrors) are stored within the AlignableDetUnit. In addition, the
alignment geometry has to know about the reference detectors and the alignable detectors (see Figure 2).

3.4 Tracker hits and detector readout

Each DetUnit is connected to a detector readout. It reads out the Digis (digi = signal of one strip or pixel) of a
detector event by event. These Digis are then used by a Clusterizer in order to create the RecHits — the fundamental
measurements needed by the track reconstruction. However, when simulating tracks one does not have a “real”
readout and one needs to simulate the detector response. In ORCA this is done by a Digitizer which creates Digis
from the information it gets from simulated hits (the SimHits) and thus fills the readout. In addition, the readouts
have to be reset at the beginning of each event, cleaning up the Digis and SimHits from the previous event. In our
simulation experiment we use a HitPopulatorFromGun in order to create SimHits (see Figure 3).
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TBAlignableTracker
-vector<TBAlignableDetUnit*>
+misalign()
+restore()
+associatedAlignable(const DetUnit*)
+isReference(const DetUnit*): bool

SpecificTBAlignableTracker
-TBReferenceDetTable*
+isReference(const DetUnit*): bool
+referenceTable()

TBAlignableDetUnit
-TBAligningSimDetUnit*
-AlignmentState
+updateAlignmentState(...)
+alignmentState()
+aligningSimDet()

AlignableDetUnit
-DetUnit*
+move(const GlobalVector&)

1...n

Alignable

+move(const GlobalVector&)
+rotateAroundGlobalZ(phi:float)

DetUnit
 friend class AlignableDetUnit
-move(const GlobalVector&)
-rotate(const TkRotation&)

1...1

Figure 2: Object model of the alignment geometry. In the case of our test beam like setup the alignment geometry
is simple, as the structure of the track reconstruction geometry matches the structure of the alignment geometry.

TransientROU

+check()
+lazyUpDate(G3EventProxy*)
+newEvent()

TkReadOutUnit
-vector<ReadoutType*>
+lazyUpDate(G3EventProxy*)
+connect()
#clear()

DetReadOutUnit

+check()

HitPopulatorFromGun
-ParticleGun
-PSimHitGenerator
+collection(): vector<PSimHit>

ParticleGun
-Particle
+fire()

PSimHitGenerator
-const UnidirectionalPropagator*
-const DetUnitFinder*
-...
-createPSimHit(...)
+collection(...): vector<PSimHit>

Figure 3: Class collaboration diagram for the detector readout and the HitPopulatorFromGun. In the case of a
simulation, the Digis (signal per strip) of a detector have to be created from a detector response simulation. This is
done by a Digitizer, which creates Digis based on the information provided by SimHits.
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TrackFinder

+reco(vector<RecTrack>&)
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-TrajectoryBuilder*
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+fit(...)

KFAlignmentSmoother
-const UnidirectionalPropagator*
-const AlignmentUpdator*
-const Updator*
+smooth(...)

AlignmentGeometryUpdator

+updateGeometry()
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TBAlignmentGeometryUpdator

+updateGeometry()
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Figure 4: Object model of the track reconstructor. The most important components are the SeedGenerator and the
TrajectoryBuilder.

3.5 Track reconstructor with alignment

It is required to reconstruct tracks on the base of the available RecHits taking into account misalignment of detec-
tors. Therefore the reconstruction of tracks together with the estimation of alignment parameters is performed by
a dedicated high level object. The track reconstructor contains a track SeedGenerator and a TrajectoryBuilder with
alignment. The SeedGenerator creates initial starting values for potential track candidates, e.g. by combining pairs
of RecHits. The AlignmentTrajectoryBuilder creates a Trajectory starting from a seed and estimates both track
and alignment parameters. An overview is given in Figure 4.

4 Results of a simulation experiment
We have tested and verified the algorithm in a simulation experiment. The setup is a somewhat simplified model
of a typical test beam configuration.

4.1 The detector model

We have used a layout with five consecutive pairs of x-y silicon strip detectors along the global z-(beam-)axis.
Each detector has a pitch of 60 µm and a strip length of 6 cm. The RecHits are gaussian smeared SimHits with
a standard deviation corresponding to the pitch of the detectors (pitch/

√
12). The observation along the strip is

always set to 0 in the local frame of the detector (center of the strip); its standard deviation is set to the strip length
divided by

√
12.

The first and the last pair of detectors define the reference frame, assuming that their true positions and orientations
are known. The three intermediate pairs of detectors are misaligned (see Figure 5).

4.2 Global and local frame

The global coordinate system or frame has been chosen such that the global z-axis points into the direction of the
beam (see Figure 5). The definition of the local coordinate frame is shown in Figure 6. The origin of the local
frame is set in the middle of the detector volume, at half-width, half-length and half-depth of the detector. The
local z-axis is perpendicular to the detector surface, with the strips sitting on the positive z-side. The local x- and
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Figure 5: Layout of the simulated test beam tracker. The layout consists of five consecutive pairs of x-y strip
detector planes with 4 cm distance between pairs and 1 mm distance within a pair. The strip detectors have 1000
strips each, with a pitch of 60 µm (= 6 cm total width of the detector) and a strip length of 6 cm. The first pair at
z = 0.9 cm/1 cm and the last pair at z = 16.9 cm/17 cm define the reference frame with respect to which the three
inner pairs are misaligned in the simulation and then aligned in the reconstruction. The particle beam is generated
at z = 0 and distributed uniformly over the surface.

xx

zz

yy

Figure 6: Definition of the local coordinate frame for a strip detector.

y-axis are both parallel to the detector surface, with local x being perpendicular to the strips, local y parallel to the
strips.

In the case of our simulation experiment, global and local z coincide.

4.3 Track simulation and track model

The beam is generated at z = 0 covering the full 6 cm×6 cm area of sensitive detector volumes. Positively charged
muons with a momentum of 100 GeV are simulated. The beam direction is defined by two angles, θ and φ, where

tan θ =
pT

pz

and tan φ =
py

px

θ has been generated in the range 0 < θ < 0.014 in order to avoid tracks being perfectly parallel with z, and φ has
been generated in the range 0 ≤ φ < 2 π.

In the absence of a magnetic field the track model is very simple. We have used the following set of track parameters
for a fixed z:

p =









tx
ty
x
y









, with tx =
dx

dz
=

px

pz

= tan θ cosφ, ty =
dy

dz
=

py

pz

= tan θ sin φ
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Track propagation from z = z1 to z = z2 is then described by a simple matrix:

p|z=z2
=









1 0 0 0
0 1 0 0

z2 − z1 0 1 0
0 z2 − z1 0 1









p|z=z1

4.4 The misalignment model

Misalignment can be seen as the difference between the assumed ideal position and orientation of a given detector
with respect to its true parameters in global space. Therefore each transformation from the local detector coordinate
system into global space and vice versa has errors if the assumed ideal parameters are not the true ones. We
introduce misalignment by moving and rotating the detector planes before we shoot particles, and we restore the
assumed ideal (but now wrong) positions and rotations before we start reconstructing tracks. While the local
position of a hit on a detector stays unchanged (the strip of the hit does not change), its global position will be
wrong as the transformation from the local to the global frame is wrong. The task of the alignment procedure to
estimate the relative offset and rotation with respect to the assumed position and rotation.

Out of the six possible alignment parameters — three shifts and three rotations — we simulate and estimate two
shifts and one rotation in the plane of the detector (2-dimensional space), those three being the ones to which track
reconstruction is most sensitive. Figure 7 illustrates the two shifts and the rotation. The transformation of a point
m(x, y) → m′(x′, y′) from the global frame into the global misaligned frame is therefore:

m′(x′, y′) = R(∆φ)(m(x, y) − sglobal)

= R(∆φ)

(

m(x, y) −
(

∆x
∆y

))

with

sglobal =

(

∆x
∆y

)

being the shift in ∆x, ∆y and R(∆φ) a small rotation around z.

The following ranges for the shifts ∆x and ∆y and the rotation ∆φ in the global frame have been chosen for the
simulation:

shift in global x-direction: −0.2 cm < ∆x < 0.2 cm
shift in global y-direction: −0.2 cm < ∆y < 0.2 cm
rotation around global z-axis: −0.02 rad < ∆φ < 0.02 rad

For each run the alignment parameters are randomly generated assuming a flat distribution in the above ranges.

It should be noted that instead of estimating (∆x, ∆y, ∆φ) directly we have chosen a slightly different set of
alignment parameters:

a =





∆x′

∆y′

∆φ



 , with
(

∆x′

∆y′

)

= R(∆φ)

(

∆x
∆y

)

xx

zz

yy

∆φ

∆∆yy
∆∆xx

  − 0.2 ≤ ∆y ≤ 0.2 cm

− 0.02 ≤ ∆φ ≤ 0.02 rad
zz

  − 0.2 ≤ ∆xx  ≤ 0.2 cm

Figure 7: Illustration of shifting and rotating the planes for misalignment.
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where we estimate the shift rotated by ∆φ rather than the simulated global shift. In the following we refer to

s′ =

(

∆x′

∆y′

)

as the global rotated shift. The reason for this choice will be explained after the derivation of the Jacobians.

The measurement model can then be formulated in the most general way:

mlocal = f(p, a) + ε

= T(φ)global→localR(∆φ) [Ppglobal − sglobal] + ε

= R(∆φ)Pplocal −T(φ)s′ + ε

where m is the observation (hit) in the local frame, p is the track state (pglobal in the global and plocal in the
local frame), s′ is the global rotated shift, and ε is the measurement error in the local frame. We will use the last
expression of our measurement equation for deriving the essential Jacobians.

With our choice of track parameters, the matrix P is a simple projection:

P =

(

0 0 1 0
0 0 0 1

)

T is the transformation from the global to the “ideal” local frame; in our case it is either the identity or a rotation
by 90 degrees around the global z-axis. R is a small rotation around the z-axis in addition to the “ideal” one:

R =

(

cos(∆φ) sin(∆φ)
− sin(∆φ) cos(∆φ)

)

4.5 The estimation procedure

For the estimation procedure we assume that the assignment of hits to tracks has already been done.

Track fitting is performed by a Kalman Filter plus smoother in order to get optimal predicted track states p0 in all
detectors. The current state a0 of the alignment parameters in all detectors is used in the fit of the track. Note that
the alignment parameters are estimated independently in all detectors. In order to avoid cluttering the notation the
index to the detector is dropped.

Using the misalignment model described above, the derivative matrices H and D can be computed without diffi-
culty in any particular detector:

H =
∂f

∂p
(p0, a0) = RP

D =
∂f

∂a
(p0, a0) = (−T | R′Pp0)

where R′ ist the derivative of the current rotation matrix:

R′ =

(

− sin(∆φ0) cos(∆φ0)
− cos(∆φ0) − sin(∆φ0)

)

and p0 is the predicted track state in the local system.

It can be seen that the third column of D depends on the rotation angle ∆φ, thus making the equation non-linear in
∆φ. By choosing the rotated global shifts ∆x′, ∆y′ as alignment parameters, we avoid that also the other elements
of D depend on ∆φ. In order to simplify the notation the rotated global shifts will henceforth be denoted by ∆x
and ∆y.

From this we compute the matrix W, using the current annealing factor α(k) which depends on the current track
number k:

W =
[

α(k)V + HC0H
T + DE0D

T
]

−1

The update of the track state and of the alignment state then proceeds as described in section 2.
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We have investigated three annealing schedules:

Schedule α(1) α(n) α(k)

A 1 1 1

B 10000 10000 10000

C 10000 1 10000
n−k

n−1

Schedule A is the standard Kalman Filter, schedule B is a Kalman Filter which effectively uses only the predictions
of the tracks from the reference detectors, and schedule C is a Deterministic Annealing Filter [2] with a geometric
cooling schedule. In all cases the initial values of the alignment parameters have been taken to be zero with
sufficiently large errors.

4.6 Sensitivity and convergence of alignment parameters

Not all alignment parameters can be reliably determined as not all of the observations are equally affected by
shifting and rotating the detector. The sensitivity of the alignment parameters with respect to the observations is
given by the matrix E0D

TW. The last factor W is dominated by the information content of the observations.
Therefore in a detector measuring only x a shift ∆y in y cannot be estimated very reliably because the sensitivity
is dominated by the information content of the y-measurement. In our case this information content is smaller by
a factor of 1 million [square of (length /pitch)] than the information content of the x-measurement. It should be
noted, however, that this effect is irrelevant in track reconstruction as long as the y-coordinate of the prediction is
sufficiently precise so that the precision of the x-coordinate is not spoiled by the rotation correction.

The different sensitivities of the alignment parameters are clearly visible if their evolution is plotted as a function
of the number of tracks. As an example, Figure 8 shows the development of ∆x, ∆y, and ∆φ in an x-detector, for
a run with 2000 tracks. The behaviour depends on the annealing schedule. Convergence of ∆x is satisfactory with
all schedules, although with schedule B it is somewhat slower. Estimates of ∆y are biased with all schedules. The
differences between the three schedules can be seen most clearly in the convergence of ∆φ. Schedule A converges
very quickly, but is off by about 0.2 mrad. Schedule B converges much more slowly and is off by 0.4 mrad after
2000 tracks. Schedule C is clearly the best, being off by less than 20 µrad after 2000 tracks in this particular run.

4.7 Precision of the estimated alignment parameters

Due to statistical fluctuations a single run cannot determine the absolute performance of a single schedule. To
this end we have generated 2000 runs with random misalignment configurations and performing alignment over
2000 tracks for each run, which means that a total amount of 4 million tracks is generated and reconstructed per
annealing schedule. The resulting histograms of residuals for schedule C are shown in Figure 9.

Figure 10 shows the standard deviations of the residuals (estimated alignment parameters minus true ones) for all
annealing schedules. The shifts are shown only for the precise coordinates (∆x in x-detectors, ∆y in y-detectors).
Schedule A suffers from occasional convergence to local minima, whereas schedule B only uses information from
the reference detectors. Schedule C (annealing) gives the best results in all cases. With runs of 2000 tracks each,
the standard deviations of the shifts are about 0.6 µm, and the standard deviations of the rotations angles are below
50 µrad.

Finally, we have checked whether the computed errors on the alignment parameters correspond to the actual spread
around the true values. The resulting histograms of standardized residuals (pulls) for schedule C are shown in
Figure 11.

Figure 12 shows the standard deviations of the pulls for all annealing schedules. With schedule C, the standard
deviations are indeed reasonably close to 1, whereas they are far too large with schedule A and far too small with
schedule B. The mean values are compatible with 0 in all cases.
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Figure 8: Development of estimated alignment parameters as a function of the track number for an x-detector.
While convergence of ∆x (shift in precise coordinate, scale in micron) is satisfactory for all three schedules, there
is no convergence for ∆y (shift in unprecise coordinate, scale in mm). The convergence of ∆φ (scale in mrad) is
best for schedule C.

11



∆x (cm)

0

50

100

150

200

250

-0.5 0 0.5
x 10

-3

Entries
Mean
RMS

           2000
-0.4350E-06
 0.6329E-04

  32.92    /    39
Constant   125.7   3.457
Mean -0.6588E-06  0.1420E-05
Sigma  0.6249E-04  0.9828E-06

∆y (cm)

0

20

40

60

80

100

120

140

-0.5 0 0.5

Entries
Mean
RMS

           2000
 0.4620E-02

 0.1169

∆φ (rad)

0

50

100

150

200

250

-0.2 0 0.2
x 10

-3

Entries
Mean
RMS

           2000
-0.4440E-06
 0.3856E-04

  21.63    /    37
Constant   123.6   3.491
Mean -0.2937E-06  0.8766E-06
Sigma  0.3840E-04  0.6636E-06

Figure 9: Residual histograms of the three alignment parameters for an x-detector and for annealing schedule C.
As one can see, the shift along the unprecise coordinate cannot be estimated reliably.
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Figure 10: Standard deviation of the residuals (estimated alignment parameters minus true ones). Left hand side:
shift in precise coordinate, right hand side: angle of rotation. The scale of the residuals of the shifts is in micron.
The shifts are of the order of about 0.6 µm for schedule C, and 1.5–2 µm for schedule A and B. The scale of
the residuals of the rotation angle ∆φ is tenths of a millirad. Schedule C achieves resolutions of about 50 µrad,
schedule A about 100 µrad and schedule B about 450 µrad.
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Figure 11: Pull histograms of the three alignment parameters for an x-detector and for annealing schedule C. The
standard deviation of the pulls is reasonably close to 1 for the shift ∆x and for the rotation ∆φ, whereas it is too
large for the shift in ∆y.
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Figure 12: Standard deviation of the standardized residuals (pulls). Left hand side: shift in precise coordinate, right
hand side: angle of rotation. Only in the case of schedule C the calculated errors of the reconstructed alignment
parameters correspond reasonably good to the actual spread around the true values. In the case of schedule A these
errors are too small, in the case of schedule B they are too big.
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4.8 Track reconstruction after alignment

In order to quantify the quality of the different alignment strategies, we generate for each misalignment configu-
ration 2500 tracks, out of which we use the first 2000 tracks for estimating the alignment parameters. Then we
“freeze” the current alignment state and continue for the last 500 tracks where we only estimate the track param-
eters. For each annealing schedule we do this with 1000 different random misalignment configurations, resulting
in a total amount of 2.5 million simulated tracks out of which 0.5 million reconstructed tracks are used for track
analysis.

4.8.1 Resolution of the track parameters

For the resolution in the four track parameters (tx, ty, x, y)T we obtain the following results:

Schedule x [µm] y [µm] dx/dz × 10−4 dy/dz × 10−4

no misalignment 14.45 ± 0.01 14.56 ± 0.01 1.372 ± 0.001 1.372 ± 0.001

A 14.55 ± 0.01 14.64 ± 0.01 1.37 ± 0.001 1.371 ± 0.001

B 16.13 ± 0.02 16.19 ± 0.02 1.448 ± 0.001 1.444 ± 0.001

C 14.45 ± 0.01 14.59 ± 0.01 1.37 ± 0.001 1.371 ± 0.001

Although alignment schedule C achieves best results for the estimation of the alignment parameters, this does
not translate into a significantly better track parameter resolution compared with results from alignment schedule
A. In both cases the parameter resolutions are equivalent to the ones achieved without misaligning the detectors.
The differences in track position resolution between schedules A (Kalman Filter) and C (Deterministic Annealing
Filter) are less than one tenth of a micron in favour of schedule C, and there is no difference at all in direction
resolution. Track parameter resolution after strategy B is about 10% worse compared to the resolution obtained
without misalignment (or strategy A and C). An example of two resolution distributions of the x coordinate is
given in Figure 13.
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Figure 13: Histograms of the position resolution x after track reconstruction without initial misalignment of de-
tectors (left) and track reconstruction after alignment with annealing schedule C (right). As can be seen, full track
parameter resolution is achieved with schedule C.

4.8.2 Pulls of the track parameters

For the standard deviations of the pulls of the four track parameters (tx, ty, x, y)T we obtain the following results:

Schedule x y dx/dz dy/dz

no misalignment 1 ± 0.001 1 ± 0.001 1.002 ± 0.001 1.001 ± 0.001

A 1.007 ± 0.001 1.006 ± 0.001 1 ± 0.001 1.001 ± 0.001

B 1.009 ± 0.001 1.016 ± 0.002 1.001 ± 0.001 1.002 ± 0.001

C 1 ± 0.001 1.002 ± 0.001 1 ± 0.001 1.001 ± 0.001
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In all cases, the calculated errors of the reconstructed track parameters are compatible with the actual spread around
the true values. The pull distributions are mean-value free with a standard deviation of 1 in all cases. The bad error
estimation of alignment parameters for alignment schedules A and B seem to have almost no effect on the error
estimation of the track parameters. Examples of two pull distributions of the x coordinate is given in Figure 14.
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Figure 14: Histograms of the pulls of the x position coordinate after track reconstruction without initial misalign-
ment (left picture) and alignment schedule C. The histograms are mean-value free and the standard deviations are
exactly 1 in both cases.

5 Summary and Conclusion
We can summarize the results in the following way:

• We have presented a method for the simultaneous estimation of alignment parameters of several detectors
with respect to a set of reference detectors in parallel to track reconstruction. The reference detectors are
needed in order to fix the reference frame with respect to which the other detectors are aligned. This method
(“alignment with tracks”) has been formulated in the Kalman Filter formalism which is already known for
track reconstruction.

• We have investigated three different alignment strategies (annealing schedules). We have concluded from a
simulation experiment that a Kalman Filter with annealing (schedule C) gives quantitatively and qualitatively
the best results for the estimation of the alignment parameters. The necessary number of tracks and the
annealing schedule can be taylored to the specific properties of the setup.

• Differences in track reconstruction after using alignment schedule A or C are negligible. In both cases the
precision of track reconstruction is as good as for a perfectly aligned tracker. The performance of alignment
schedule B can be expected to get worse with a more realistic track model using multiple scattering.

• The algorithms have been implemented and tested in ORCA for a test-beam like setup. The formulation of
alignment reconstruction in the Filter formalism has made it easy to implement the algorithms in the existing
logic and framework for track reconstruction in ORCA. In fact, this was one of our main motivations to
formulate “alignment with tracks” in the Kalman Filter formalism for track reconstruction.

We therefore conclude that:

• Simultaneous estimation of track and alignment parameters with the Kalman Filter is possible.

• The method can be used with any kind of track model, provided that the magnetic field is known to sufficient
precision. The result is a kind of “local” alignment, giving positions and orientations of a set of detector
elements with respect to a fixed set of reference detectors.

• The algorithms have been verified in a simple and fully controlled simulation environment. This can be
considered as a small but essential step towards an application in a realistic environment, e.g. for the CMS
Tracker. Global alignment of the CMS Tracker is of course much more complex, requiring relative alignment
of detector elements which are never crossed by one and the same track. In addition, the effects of wrong
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hit-to-track assignment and material effects on the convergence of the alignment parameters have to be
investigated. This, however, is beyond the scope of this note.

• In our simulation experiment alignments with methods A and C are both precise enough to achive full
(intrinsic) resolution in track parameters.

• The decoupling of the update formulas into one update for track parameters and one for alignment parameters
has additional advantages. They can be used together or separately in the following way:

– One can update both track and alignment parameters and still have a fully valid track with consistent
error estimates after smoothing.

– For a certain number of tracks one does only update the alignment parameters without using the track
for further analysis after smoothing (standard alignment procedure).

– After alignment over a certain number of tracks one freezes the current alignment states. For the
following track reconstruction one uses the generalized update formulas derived in section 2 in order
to take into account properly results from the preceding alignment. This is an alternative way of taking
into account results from the alignment, without moving hits or detectors “by hand”. The shifts and
rotations will enter statistically correctly via the alignment parameters in the update of the track state.

Appendix: Addendum to the Formalism
In the case of the estimation of all six alignment parameters — three shifts and three rotations — it might be of
advantage to separate explicitly the shifts s and the rotations r in the linear approximation:

m = f(p, s, r) + ε

In the linear approximation m can be expressed as

m = c + Hp + As + Br + ε

with

H =
∂f

∂p
(p0, s0, r0)

A =
∂f

∂s
(p0, s0, r0)

B =
∂f

∂r
(p0, s0, r0)

With cov(p0) = C0, cov(s0) = S0 and cov(r0) = U0 and

W =
[

V + HC0H
T + AS0A

T + BU0B
T
]−1

the update formulas are:

a) for the track parameters p:

p1 = p0 + C0H
TW [m− f(p0, s0, r0)]

C1 = C0 −C0H
TWHC0

b) for the shifts s:

s1 = s0 + S0A
TW [m− f(p0, s0, r0)]

S1 = S0 − S0A
TWAS0

c) for the rotations r:

r1 = r0 + U0B
TW [m− f(p0, s0, r0)]

U1 = U0 −U0B
TWBU0
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