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Abstract

Several criteriaused by physiciststo quantify the ratio of signal to background
in planned experiments are compared. An equal probabilities test is proposed
for the evaluation of the uncertainty in planned search experiments. This es-
timation is used for the determination of the exclusion limits in prospective
studies of searches. We also consider a probability of discovery as a quantity
for comparison of proposals for future search experiments.

1. INTRODUCTION

The aim of a search experiment is to detect an expected new phenomenon. Usually, the theoretical es-
timations of expected mean number of signal events of a new phenomenon N, and that of background
events NV, are known, and we can define some value of “significance” as a characteristic of the observ-
ability of the phenomenon. Some function of the observed number of events z (astatistic) isused to draw
a conclusion on observation or non-observation of the phenomenon. The value of this statistic allows
one to find the degree of confidence of the conclusion. There exist two types of mistake: to state that
a phenomenon does not exist while in fact it exists (Type | error), or to state that a phenomenon exists
whileit does not (Typell error).

In this paper we compare three “signal significances’ .S which are suitable to describe the discov-
ery potential of afuture experiment:

— “significance” S; = \/Nm [1,

— “significance” Sy = ﬁ [2 3],
— “dignificance” S12 = /N5 + Ny — Ny [4].

For this purpose we apply an equal-tailed test to study the behaviour of Type | and Type Il errors
as afunction of N and IV, in planned search experiments with specified values of the “significances’
S1, So and S12. An equal probabilities test is proposed to estimate the uncertainty in separation of
two hypotheses on observability of predicted phenomenon in these experiments. The hypotheses testing
results obtained by Monte-Carlo calculations are compared with the result obtained by the direct calcu-
lation of probability distributions. The equal probabilities test is used for the determination of exclusion
limitsin prospective studies of searches.

2. NOTATIONS

Let us assume that the average number of signal events coming from a new phenomenon (V,) and the
average number of background events (V) in the experiment are given. We suppose that the events have
a Poisson distribution with parameters Ny and N, i.e. the random variable £ ~ Pois(Ny) describes
the signal events and the random variable n ~ Pois(N,) describes the background events. Assume
that we observed = events — the redlization of the process X = & + n (« is the sum of signa and
background events in the experiment). Here N, N, are non-negative real numbers and x is an integer.
The classical frequentist methods of testing a precise hypothesis allow one to construct arejection region
and determine associated error probabilities for the following “simple” hypotheses:
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H():

have the probability distributions

for the case of presence, and

for the case of absence of signal eventsin the whole population.

The probability distributions fy(z) (a) and f1(x) (b) for the case of N + N, = 104 and N, = 53
([3], Table.13, cut 6) are shown in Fig. 1. Aswe see, thereis an intersection of these distributions. Let
us denote the threshold (critical value) that divides the abscissain Fig. 1 into the rejection region and the
area of accepted hypothesis Hy by N.,. The incorrect rejection of the null hypothesis Hy, the Type |
error (a phenomenon is taken to be absent, while it exists), has the probability o = Z;V;% fo(x), and the
incorrect acceptance of Hy, the Type Il error (a phenomenon is taken to be present, while it is absent),
has the probability 8 = >-22 .4 fi(x). The o and 3 dependences on the value of N, for the above

example are presented in Fig. 2.
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Fig. 1. The probability distributions fo(z) (8) and f1(z) (b) for the case of 51 signal events and 53 background events obtai ned
by direct calculations of the probabilities.

fo(z) =

X ~ Pois(Ns + Ny) versus Hj :

X ~ Pois(Ny), where Pois(Ns + Nyp,) and Pois(Ny)

x!

filz) = %6_%)

(Ns + Nb)* _(No+y)
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Type | error (a) and Type Il error (8)
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Fig. 2: The dependence of Typel « and Typell 3 errorson critical value N, for the case of 51 signal events and 53 background
events.

3. HYPOTHESESTESTING

In this Section the construction of a rejection region for the statistic x, the number of observed events,
is described. The decision to either reject or accept Hy will depend on the observed value of =, where
small values of = correspond to the rejection of Hy, i.e.

if £ < N, reject Hy,

if x > N, accept H.

In compliance with this test, the frequentist reports the Type | and Type |l error probabilities as a =
Py(X < Ngy) = Fy(New) and = Pi(X > Nep) = 1 — F1(Ney), Where Fyy and Fy are cumulative
distribution functions of X under Hy and H;, respectively.

The Type | error « is aso called a significance level of the test. The value of 5 is meaningful
only when it is related to the alternative hypothesis H;. The dependence 1 — 3 isreferred to as a power
function that allows one to choose a favoured statistic for the hypothesis testing. 1t means that for the
specified significance level we can determine the critical value N., and find the power 1 — 3 of this

criterion. The larger the value of 1 — 3, the better the statistic separates hypotheses for a specified value
of a.

For a conventional equal-tailed test 1 with a = 33, the critical value N,, satisfies the relation
Fy(Ney) =1 — F1(Ney).

In asimilar way we can construct the rejection region, finding the critical values ¢1, ¢ and c¢12,
for the statistics s; = ""‘_—\/Nﬁ: (“significance” S4), so = I‘—\/gb (“significance” S5) and s12 = /7 — VN,
(“significance” S19).

1seeeg. [5].
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The probability distributions of statistics under consideration can be obtained in analytical form
or by a Monte-Carlo simulation of alarge number of experiments (see as an example [6]) for the given
values N and N,,. Both approaches were used in our study. The probability distributions for the case of
N, + N, = 104 and N, = 53 events obtained as aresult of 10° simulations with random variables ¢ and
n are shown in Fig. 3. There is no significant difference between these distributions compared with the
distributions resulting from direct calculation of the probabilities (Fig. 1).
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Fig. 3: The probability distributions fo () (8) and f1 () (b) for the case of 51 signal events and 53 background events obtai ned
by simulation (10° Monte-Carlo trias).

The probability distributions of statistic s» for the case of Ny, = 51, N, = 53 (a) and the case of
Ns = 0, N, = 53 (b) are shown in Fig. 4. The behaviour of probahilities o and 3 as a function of the
critical value c; for the statistic s, is also presented in Fig. 4(c).

We stress that the second approach allows one to construct the probability distributions and, cor-
respondingly, the acceptance and the rejection regions for complicated statistics, taking into account the
systematic errors and the uncertaintiesin the estimations of v, and Nj.

4. EQUAL-TAILED TEST

What is the exact meaning of the statement that

51:%:5@'5’2: =57

N
vV N5+Nb

Tables 1 and 2 give the answer to this question. Here the values o and 3 have been determined
by applying equal-tailed test (in this study we use the conditions min(8 — o) and o < ). One can
see the dependence of « (or 3) on the value of Ny and N,. Thecaseof Ny = 5and N, = 1 for S;
(Fig. 5) is perhaps the most dramatic example. Having 50 deviation and rejecting the hypothesis H, we
are mistaken in 6.2% of the cases; if we accept the hypothesis H, we are mistaken in 8.0% of the cases.
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Fig. 4: The probability distributions fo(x) (&) and f1(z) (b) for statistic s». The dependence of Type | and Type Il errors on
the critical value ¢z (c) for the case of 51 signal events and 53 background events.
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Fig. 5: The probability distributions fo () (I1) and f1(z) (1) of statistic s for the case of 5 signa events and 1 background
events.

223



One can point out that the values of « and 3 for S; and S» converge when we increase the number
of events. It means that, for a sufficiently large value of NV, the values of o and 5 obtained by equal-
tailed tests have a constant value close to 0.0062 for both S; and S,. The standard deviation tends to
be unity both for the distribution of s; (Fig. 6) and for the distribution of s, i.e. these distributionsin
case of large NV, and N, can be approximated by a standard Gaussian function A/(0,1) 2 for a pure
background and by a Gaussian function A/(5,1) for a signal mixed with a background. Therefore, the
equal-tailed test for normal distributions gives the critical value c; = 2.5 and o = 8 = 0.0062. These
arethe limiting values of « and 3 for the requirement S; = 5, or Sy = 5, or S1o = 2.5.
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Fig. 6: The probability distributions fo(z) (a) and f1 () (b) of statistic s1. The dependence of Type | and Type Il errors on the
critical value ¢; (c) for the case of 5000 signal events and 10° background events.

In asimilar way we can determine the Type | and Type |l errors for small values Vs and NV, and
predict the limiting values of « and ( for alarge number of events for other statements about “signifi-
cance” Sy (Table 3) or any other estimator.

5. EQUAL PROBABILITIESTEST

The last columns in Tables 1, 2 and 3 contain the values of probability « [4] which is a characteristic
of the observability of a phenomenon in future experiments with given N and N,. In particular, it is
the fraction of probability distribution f(x) for a statistic = that can be described by the fluctuation of
the background. The value of « is equal to the area of the overlapping probability distributions fj(x)
and fi(z) (Fig. 1). If we superimpose the distributions fo(z) and fi(z) and choose the intersection

point (N,, = [Z(INW]) as a critical value for the hypotheses testing, we obtain x = « + 5. In this
n N_b

point fo(Ney) = f1(Ney) (inour case conditions min( fo(Ney) — f1(Ney)) @ad f1(Ney) < fo(Ney) are
used). Hence this kind of check can be called an equal probabilitiestest. If x equalsto 1 a phenomenon
will never be found in the experiment, if x equalsto 0 the first measurement with probability one hasto

2 \/(mean,variance) is a traditional notation for normal distribution.
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answer the question about presence or absence of new phenomenon (this case is not realized for Poisson
distribution). The dependences of x on the number of signal events for the criteria S; = 5, So = 5 and
S12 = 2.5 are shown in Fig. 7. Correspondingly, the dependences of N, versus N, for these criteria are
presented in Fig. 8.
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Fig. 7: The dependences of x on the number of signal eventsfor “significances’ S; = 5, S = 5 and S12 = 2.5.
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Note that the equal probabilitiestest can be applied for probability distributions with several points
of intersection (Fig. 9). The relative uncertainty of the observability of a new phenomenon in a future

experiment  isequal to 5.

f(x)

o)

1,0 \

\ 1)

Fig. 9: The estimation of uncertainty in hypotheses testing for arbitrary distributions by using of equal probabilities test.

Asisseen from Tables 1, 2 and 3, the value of & is also close to the sum of o + 3 determined by
using the equal-tailed test. Clearly, the accuracy of the determination of x by Monte-Carlo calculations
depends on the number of trials made. Fig. 10 shows the distribution of 40 estimations of the o + 3 for
the case N, = 100, N;, = 500 and for the 10° Monte-Carlo trialsin each estimation. The result obtained
by the direct calculation of the probahility distributionsis also given in the Fig. 10.
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Fig. 10: The variation of o 4+ 3 in the equal-tailed hypotheses testing (Vs = 100, N, = 500 versus Ns = 0, N, = 500 in 40
Monte-Carlo simulations of probability distributions).
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6. ESTIMATION OF EXCLUSION LIMITSON NEW PHYSICS

Suppose we know the background cross section o, and we want to obtain bound on signal cross section
os which depends on some parameters (masses of new particles, coupling constants, ...) and describes
some new physics beyond standard model. We have to compare two Poisson distributions with and
without new physics. The results of Section 5 are trivially generalized to the case of the estimation of
exclusion limits on signal cross section and, hence, on parameters (masses, coupling constants, ...) of
new physics.

Consider at first the case when the Gaussian distributions approach the Poisson distributions
(N > 1). Asit has been mentioned in Section 5 the common area of probability distributions with
background events and with background plus signal eventsis the probability that " new physics’ can not
be described by the ” standard physics’. For instance, when we require the probability that " new physics’
can be described by the " standard physics’ is more or equal 10% (i.e. Si2 islarger than 1.64) it means
that the formula

VN, + N, — /N, < 1.64 (1)

gives us90% exclusion limit on the average number of signal events N,. In general case when werequire
the probability that "new physics’ can be described by the " standard physics’ is more or equal to e the
formula

VN, F N, - VN, < S(e) 2

allows us to obtain 1 — ¢ exclusion limit on signal cross section. Here S(¢) is determined by the 3,
i.e. we suppose that e = . It should be stressed that in fact the requirement that "new physics’ with
the probability more or equal to e can be described by the ”standard physics’ is our definition of the
exclusion limit as (1 — ¢) probability for signal cross section. From the last formula we find that

S2(e) ap
0s < 7 +25(e) T ©)

Here N, = 0, L, Ny = o,L, where L isintegrated luminosity.

For the case of not large values of NV, and N, we have to compare the Poisson distributions directly
and the corresponding method has been formulated in Section 5.

In refs[7, 8] different methods to derive exclusion limits in future experiments have been sug-
gested. Asis seen from Fig. 11 the essential differences in values of the exclusion limits take place.
L et us compare these methods by the use of the equal probabilities test. In order to estimate the various
approaches of the exclusion limit determination we suppose that new physics exists, i.e. the value N;
equals to one of the exclusion limits from Fig. 11 and the value IV, equals to the corresponding value of
expected background. Then we apply the equal probability test to find critical value N,,, for hypotheses
testing in future measurements. Here a zero hypothesis is the statement that new physics exists and an
aternative hypothesisis the statement that new physicsis absent. After calculation of the Typel error o
(the probability that the number of observed events will be equal or less than the critical value N.,,) and
the Typell error 3 (the probability that the number of observed eventswill be more than the critical value
N, in the case of the absence of new physics) we can compare the methods. In Table 4 the result of the
comparison is shown. Asis seen from this Table the " Typical experiment” approach [8] gives too small
values of exclusion limit. The difference in the 90% CL definition is the main reason of the difference
between our result and the exclusion limit from ref. [7]. We require that ¢ = . Inref [7] the criterion

for determination exclusion limits: g < A and ﬁ < eisused, i.e. the experiment will observe with

Notethat S(1%) = 2.57, §(2%) = 2.33, S(5%) = 1.96 and S(10%) = 1.64
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probability at least 1 — A at most a number of events such that the limit obtained at the 1 — e confidence
level excludes the corresponding signal 4.

—
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Fig. 11: Estimations of the 90% CL upper limit on the signal in a future experiment as a function of the expected background.
The method proposed in ref. [8] gives the values of exclusion limit closeto ” Typical experiment” approach.

7. THE PROBABILITY OF NEW PHYSICSDISCOVERY

It is also very important to determine the probability of new physics discovery in future experiment.
According to common definition (for example,[9, 10]) the new physics discovery correspondsto the case
when the probability that background can imitate signal islessthan 50 or in terms of the probability less
than 5.7 - 10~7 (here of course we neglect any possible systematic errors).

So we require that the probability 5(A) of the background fluctuations for n > ny(A) islessthan
A, namely

o

BA)= > P(Nyn)<A €)

n=ng(A)+1
The probability 1 — «(A) that the number of signal events will be bigger than ny(A) isequal to

1—a(A)= > P(Ny+Njn) (5)
n=no(A)+1

It should be stressed that A is a given number and a(A) is afunction of A. Usually physicists
claim the discovery of phenomenon [9, 10] if the probability of the background fluctuation is less than
50 that corresponds to Ay, = 5.7 - 1077 °. So from the equation (4) we find ny(A) and estimate the
probability 1 — a(A) that an experiment will satisfy the discovery criterion.

4If we define e asnormalized s (¢ = & = 57—) we have the result close to ref. [7], i.e., for example, x = 0.17 corresponds
toe = 0.0929.

5The approximation of Poisson distribution by Gaussian for tails with area close to or less than Ag;. for values of N, and
Ny under consideration gives strong distinction in determination of 1 — «.
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As an example consider the search for standard Higgs boson with a mass m;, = 110 GeV a
the CMS detector. For total luminosity L = 3 - 10*pb=1(2 - 10*pb~1) one can find [10] that N, =
2893(1929), Ny = 357(238), S1 = fm = 6.6(5.4). Using the formulae (4, 5) for Ag;s = 5.7 - 1077
(5o discovery criterion) we find that 1 — a(Ags) = 0.96(0.73). It means that for total luminosity
L = 3-10*b~1(2 - 10*pb~ 1) the CMS experiment will discover at > 50 level standard Higgs boson

withamassm;, = 110 GeV with aprobability 96(73) percent.

8. CONCLUSION

In this paper the discussion on the observation of new phenomena is restricted to the testing of simple
hypotheses in the case of predicted values N, and NV, and an observable value z. Asis stressed in [5],
the precise hypothesis testing should not be done by forming atraditional confidence interval and simply
checking whether or not the precise hypothesis is compatible with the confidence interval. A confidence
interval is usually of considerable importance in determining where the unknown parameter is likely to
be, given that the alternative hypothesisistrue, but it is not useful in determining whether or not a precise
null hypothesisistrue.

To compare several criteria used for the hypotheses testing, we employ both a method that allows
oneto construct the rejection regions via the determination the probability distributions of these statistics
by Monte-Carlo calculations and direct calculations of probabilities distributions. An equal-tailed test
was used to compare the criteria. An equal probabilities test is proposed to estimate the uncertainty
in separating two hypotheses about observability of predicted phenomenon in a planned experiment.
This estimation is used for determination of exclusion limits in prospective studies of searches. The
method has been used to draw a conclusion on the observability of some predicted phenomena[4]. We
also considered a probahility of discovery as a quantity for comparison of proposals for future search
experiments.
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Table 1: The dependence of o and 3 determined by using the equal-tailed test on N, and N, for S1 = 5; « is the area of
intersection of probability distributions fo(z) and f1 (z).

Ny Ny | « I} K

5 1 0.0620 | 0.0803 | 0.1423
10 4 0.0316 | 0.0511 | 0.0828
15 9 0.0198 | 0.0415 | 0.0564
20 16 | 0.0141 | 0.0367 | 0.0448
25 25 | 0.0162 | 0.0225 | 0.0383
30 36 | 0.0125 | 0.0225 | 0.0333
35 49 | 0.0139 | 0.0164 | 0.0303
40 64 | 0.0114 | 0.0171 | 0.0278
45 81 | 0.0124 | 0.0136 | 0.0260
50 100 | 0.0106 | 0.0143 | 0.0245
55 121 | 0.0114 | 0.0120 | 0.0234
60 144 | 0.0100 | 0.0126 | 0.0224
65 169 | 0.0106 | 0.0109 | 0.0216
70 196 | 0.0095 | 0.0115 | 0.0209
75 225 | 0.0101 | 0.0102 | 0.0203
80 256 | 0.0091 | 0.0107 | 0.0198
85 289 | 0.0096 | 0.0097 | 0.0193
20 324 | 0.0088 | 0.0101 | 0.0189
95 361 | 0.0081 | 0.0106 | 0.0185
100 | 400 | 0.0086 | 0.0097 | 0.0182
150 | 900 | 0.0078 | 0.0084 | 0.0162
500 | 10* | 0.0068 | 0.0068 | 0.0136
5000 | 10% | 0.0062 | 0.0065 | 0.0125

Table 2: The dependence of « and 3 determined by using the equal-tailed test on N, and N, for Sz = 5. Here « isthe area of
intersection of probability distributions fo(z) and fi ().

N, | N,

26 |1 0.519-107° | 0.102-10 % [ 0.154- 10 *
4
9

29 0.661-107% | 0.764-10~* | 0.142- 1073
33 0.127-1072 | 0.439-1073 | 0.440- 1073
37 |16 | 0.426-1073 | 0.567-1073 | 0.993 - 1073
41 |25 | 0.648-1073 | 0.118-1072 | 0.172 - 1072
45 |36 |0.929-1073 | 0.193-1072 | 0.262 - 1072
50 |49 |0.133-1072|0.185-1072 | 0.314- 1072
55 |64 |0.178-1072 | 0.179-1072 | 0.357 - 1072
100 | 300 | 0.317-1072 | 0.428 - 1072 | 0.735- 102
150 | 750 | 0.445-1072 | 0.450- 1072 | 0.894 - 102
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Table 3: The dependence of o and 3 determined by using equal-tailed test on N and N, for S1 = 2,51 = 3,51 =4,51 =6
and S1 = 8. Here k isthe area of intersection of probability distributions fo(z) and fi (z).

S1 | Ny | Ny | « I} K

2 |2 1 | 0199 0.265 0.4634
4 |4 |0.192 0.216 0.4061
6 9 |0184 0.199 0.3817
8 16 | 0.179 0.188 0.3680
oo | oo | 0.1587 0.1587 0.3174

3 |3 1 | 0.0906 0.263 0.3184
6 |4 | 0.0687 0.216 0.2408
9 9 | 0.0917 0.123 0.2159
12 | 16 | 0.0722 0.131 0.1952
oo | oo | 0.0668 0.0668 0.1336

4 14 1 | 0.0400 0.263 0.2050
8 0.0459 0.110 0.1406
12 |9 | 0.0424 0.0735 0.1130
16 | 16 | 0.0407 0.0572 0.0977
oo | oo | 0.0228 0.0228 0.0456

6 |6 1 | 0.0301 0.0806 0.1008
12 0.0217 0.0217 0.0434
18 | 9 | 0.0089 0.0224 0.0271
24 | 16 | 0.00751 | 0.0132 0.0198
oo | oo | 000135 | 0.00135 | 0.0027

8 |8 1 | 0.0061 0.0822 0.0402
16 | 4 | 0.0049 0.0081 0.0131
24 | 9 | 0.0016 0.0052 0.00567
32 | 16 | 0.00128 | 0.00237 | 0.00331
oo | oo | 0.000032 | 0.000032 | 0.000064

Table 4: The comparison of the different approaches to determination of the exclusion limits. The « and 3 are the Type | and
Type |l errorsfor the equal probability test. The x equals to the sum of « and 3.

this paper ref.  [7] ref.  [§]

Ny N « 15} K N « 15} K| Ng « 15} K
1| 602 008 002 010| 445 009 0.08 0.17|330 020 008 0.28
2| 725 005 005 010 550 013 005 018 |39 016 014 0.30
3| 832 007 003 010| 640 0.09 008 018|440 014 018 032
4| 920 005 005 010| 725 013 005 018|480 023 011 034
511006 007 003 010| 790 010 0.07 017|520 020 013 034
61067 006 004 010| 841 0.09 008 018|550 019 015 034
711137 005 005 010| 9.00 0.08 0.10 018|590 0.17 017 034
8| 1202 007 003 010| 970 010 0.06 017|610 017 018 0.35
91251 006 0.04 0101016 0.09 007 017|640 016 020 0.36

10| 13.04 005 0.05 0100|1050 0.09 008 0.17|6.70 022 0.14 0.36
11| 1362 004 0.06 0.10| 1080 0.08 009 018|690 021 015 0.36
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APPENDIX

Let ustry to generalize approach of the Section 5 to case when we have measurements.

We want to test the hypotheses: ko : X ~ Pois(Ns + Np) versus hy : X ~ Pois(N,). Denote
Ny vias, N viab and the area of overlapping of probability distributions f, and f; viax(s|b). Assume
that the result of experiment is = and we make decision about observation of Phenomenon in the case

of two simple hypotheses. Also we may construct “a posteriori” probabilities of hypotheses hy and hy
independent of decision . If likelihood functionsare Ly = L(x|hg) and Ly = L(z|h1) then
P(hylz) = LOEFOLI and P(hy|z) = L0L+1L1.
It means that we associate for any pair of b and s > 0 the probability P(s|z,b) = P(ho|z).
In case of unpredicted value of s we must consider hypotheses
Hy: s>0versusHy : s=0
and we can determine " a posteriori” (“mean”) uncertainty of hypothesis H,
k(Hplz,b) = [;° P(s|z,b)r(s|b)ds.
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Discussion after talk of Serguei Bityukov. Chairman: Wilbur Venus,

L. Lyons
Could you explain the motivation for your test statistic /S + B — VB ?

S. Bityukov

The reason is that when we approximate the Poisson by Gaussian we analytically calculate the
area of overlapping probability density for pure background and probability density for background plus
signal. After that we derive thisformula.

For example, let us draw two Poisson distributions with parameters y; = N, and pus = Ng +
N,. Let N, be large enough to approximate these distributions by normal distributions A/(u1, 1) and
N(us,09), where oy = Vi1 and og = | /ji2. The transformation of the distributions to standard normal
distribution (see Figure) and exploitation of the equalities

zo — Ny w0 — (Ns+ Np)
vV Ny VN + Ny

alows one to find the points g = /Ns + Ny+/ Ny, and, correspondingly, ; = /Ns + Ny — v/ Np. It
allows us to use both the language of probability and the language of standard deviations. Note that in
this approximation an equal-tailed test coincides with equal probabilities test.

Tt =

N(O.2) NNE

Fig. 12: A sketch of transformation of Poisson probability distributions to standard normal probability density function.

H. Prosper

Just apoint of clarification. Inyour definition of x whichisequal to o+ 3, inthe a + g3 thereisthe
number of events observed. How do you determine that or how do you get rid of the fact that you do not
know the number of events observed. In your method, o and § are the sums of the Poisson distribution,
but in the sum you start at some humber and you go from N+1 to infinity; what determinesthe N in those
sums?
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S. Bityukov

We use an equal probahilities test to determine the uncertainty in future hypothesis testing about
observability of the new phenomenon, which the planned experiment has before measurements (in the
case of predicted numbers of signal and background events).

R. Cousins

Somebody did tell me about this paper, and the way they explained it to me it sounded very
interesting. The ideawas. Suppose you have atheory that predicts a certain amount of signal, and from
your apparatus you predict how much background you're going to see, so atypical proposal will say:
“For this much running we'll get a 3 sigma effect”, but you’'re not taking into account the fact that your
signal and background will fluctuate. As | understand it, this formula allows you to tell the program
committee what the chance is you'll actually make the discovery of the signal the theory predicts, taking
into account the fact that your experiment’s going to be chosen from an ensemble of experiments, and
you don't know which data you're going to get. So if the formula does that, then that's a really nice
formula

L. Lyons

Yes, some five sigmas are better than other five sigmas.

235



