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Abstract
Several criteriaused by physicists to quantify theratio of signal to background
in planned experiments are compared. An equal probabilities test is proposed
for the evaluation of the uncertainty in planned search experiments. This es-
timation is used for the determination of the exclusion limits in prospective
studies of searches. We also consider a probability of discovery as a quantity
for comparison of proposals for futuresearch experiments.

1. INTRODUCTION

The aim of a search experiment is to detect an expected new phenomenon. Usually, the theoretical es-
timations of expected mean number of signal events of a new phenomenon

���
and that of background

events
���

are known, and we can define some value of “significance” as a characteristic of the observ-
ability of thephenomenon. Somefunction of theobserved number of events � (astatistic) isused to draw
a conclusion on observation or non-observation of the phenomenon. The value of this statistic allows
one to find the degree of confidence of the conclusion. There exist two types of mistake: to state that
a phenomenon does not exist while in fact it exists (Type I error), or to state that a phenomenon exists
while it does not (Type II error).

In thispaper wecompare three “signal significances” � which aresuitable to describe thediscov-
ery potential of a futureexperiment:

– “significance” ���
	 �
�� �
� [1],

– “significance” ����	 � �� �
�����
� [2, 3],

– “significance” � � ��	�� � �
� � ��� � � � [4].

For this purpose we apply an equal-tailed test to study the behaviour of Type I and Type II errors
as a function of

� �
and
���

in planned search experiments with specified values of the “significances”
������� � and ��� � . An equal probabilities test is proposed to estimate the uncertainty in separation of
two hypotheses on observability of predicted phenomenon in these experiments. The hypotheses testing
results obtained by Monte-Carlo calculations are compared with the result obtained by the direct calcu-
lation of probability distributions. The equal probabilities test is used for the determination of exclusion
limits in prospectivestudies of searches.

2. NOTATIONS

Let us assume that the average number of signal events coming from a new phenomenon (
� �

) and the
averagenumber of background events (

���
) in theexperiment aregiven. Wesupposethat theeventshave

a Poisson distribution with parameters
� �

and
� �

, i.e. the random variable � �"!�#%$%&(' � �*) describes
the signal events and the random variable +,�-!�#%$�&.' ��� ) describes the background events. Assume
that we observed � events – the realization of the process / 	0� � + (� is the sum of signal and
background events in the experiment). Here

� �
,
���

are non-negative real numbers and � is an integer.
Theclassical frequentist methodsof testing aprecisehypothesisallow oneto construct arejection region
and determineassociated error probabilities for the following “simple” hypotheses:
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13254 /6�7!�#%$%&.' � �
� ��� ) versus
1 � 4 /6�7!�#%$%&(' ��� ) , where !8#9$�&.' � �:� ��� ) and !�#%$�&.' ��� )

have theprobability distributions

; 2 '<� ) 	 '
��� � ��� )>=
��? @

ACB �
�����
�ED
for thecaseof presence, and ; � '<� ) 	 '

��� )>=
�F?G@

ACB �
�ED
for thecaseof absenceof signal events in thewholepopulation.

Theprobability distributions
; 2 'H� ) (a) and

; ��'<� ) (b) for thecaseof
��� � ��� 	�IKJML and

��� 	�NPO
([3], Table.13, cut 6) are shown in Fig. 1. As we see, there is an intersection of these distributions. Let
usdenote the threshold (critical value) that divides theabscissa in Fig. 1 into therejection region and the
area of accepted hypothesis

132
by
��QSR

. The incorrect rejection of the null hypothesis
1T2

, the Type I
error (aphenomenon is taken to beabsent, while it exists), has theprobability UV	 �
WYX=KZ 2 ; 2 'H� ) , and the
incorrect acceptance of

1T2
, the Type II error (a phenomenon is taken to be present, while it is absent),

has the probability [\	 ]=PZ �
WYXM� �
; �M'H� ) . The U and [ dependences on the value of

� Q�R
for the above

examplearepresented in Fig. 2.

Fig. 1: Theprobability distributions ^`_badc�e (a) and ^MfSagc�e (b) for thecaseof 51 signal eventsand 53 background eventsobtained

by direct calculations of theprobabilities.
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Fig. 2: Thedependenceof TypeI h and TypeII i errorson critical value j WHX for thecaseof 51 signal eventsand 53 background

events.

3. HYPOTHESES TESTING

In this Section the construction of a rejection region for the statistic � , the number of observed events,
is described. The decision to either reject or accept

1T2
will depend on the observed value of � , where

small values of � correspond to the rejection of
1T2

, i.e.

if �lk � QSR , reject
1 2

,

if �lm ��QSR , accept
1T2

.

In compliance with this test, the frequentist reports the Type I and Type II error probabilities as U,	
! 2 '</nk ��QSR )3oqp 2 ' ��QSR ) and [r	q! � 'H/nm ��QSR )To I �sp � ' ��Q�R ) , where

p 2
and
p � are cumulative

distribution functions of / under
1 2

and
1 � , respectively.

The Type I error U is also called a significance level of the test. The value of [ is meaningful
only when it is related to the alternative hypothesis

1 � . The dependence I � [ is referred to as a power
function that allows one to choose a favoured statistic for the hypothesis testing. It means that for the
specified significance level we can determine the critical value

��QSR
and find the power I � [ of this

criterion. The larger the value of I � [ , the better the statistic separates hypotheses for a specified value
of U .

For a conventional equal-tailed test 1 with Uq	"[ , the critical value
� QSR

satisfies the relationp 2 ' ��QSR )to I �up � ' ��QSR ) .
In a similar way we can construct the rejection region, finding the critical values vw� , v � and vw� � ,

for the statistics & � 	 = A � �� �
� (“significance” � � ), &%�5	 = A � �� = (“significance” ��� ) and & � �5	 � � � � ���
(“significance” �x� � ).

1Seee.g. [5].
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The probability distributions of statistics under consideration can be obtained in analytical form
or by a Monte-Carlo simulation of a large number of experiments (see as an example [6]) for the given
values

� �
and
� �

. Both approaches were used in our study. The probability distributions for the case of��� � ��� 	�IPJ�L and
��� 	yNKO eventsobtained asaresult of IPJMz simulationswith random variables � and

+ are shown in Fig. 3. There is no significant difference between these distributions compared with the
distributions resulting from direct calculation of theprobabilities (Fig. 1).

Fig. 3: Theprobability distributions ^`_badc�e (a) and ^MfSagc�e (b) for thecaseof 51 signal eventsand 53 background eventsobtained

by simulation ( {E|K} Monte-Carlo trials).

The probability distributions of statistic & � for the case of
��� 	~NPI , ��� 	~NKO (a) and the case of� � 	�J , � � 	�NPO (b) are shown in Fig. 4. The behaviour of probabilities U and [ as a function of the

critical value v � for thestatistic & � is also presented in Fig. 4(c).

We stress that the second approach allows one to construct the probability distributions and, cor-
respondingly, the acceptance and the rejection regions for complicated statistics, taking into account the
systematic errors and theuncertainties in theestimations of

� �
and
� �

.

4. EQUAL-TAILED TEST

What is theexact meaning of thestatement that

���
	 �
�� �
� 	�N or � � 	 �
�� �
�����
� 	yN ?

Tables 1 and 2 give the answer to this question. Here the values U and [ have been determined
by applying equal-tailed test (in this study we use the conditions ��$E�t'<[ � U ) and Urk�[ ). One can
see the dependence of U (or [ ) on the value of

� �
and
���

. The case of
� � 	�N and

��� 	�I for � �
(Fig. 5) isperhaps themost dramatic example. Having NK� deviation and rejecting thehypothesis

1T2
, we

aremistaken in �P���P� of thecases; if weaccept thehypothesis
132

, wearemistaken in �P��JP� of thecases.
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Fig. 4: The probability distributions ^`_badc�e (a) and ^MfEadc�e (b) for statistic �`� . The dependence of Type I and Type II errors on

thecritical value �w� (c) for thecaseof 51 signal events and 53 background events.

Fig. 5: The probability distributions ^`_`agc�e (II) and ^MfSagc�e (I) of statistic �%f for the case of 5 signal events and 1 background

events.
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Onecan point out that thevaluesof U and [ for � � and ��� convergewhen weincreasethenumber
of events. It means that, for a sufficiently large value of

���
, the values of U and [ obtained by equal-

tailed tests have a constant value close to 0.0062 for both � � and ��� . The standard deviation tends to
be unity both for the distribution of &(� (Fig. 6) and for the distribution of & � , i.e. these distributions in
case of large

� �
and
� �

can be approximated by a standard Gaussian function ��'`JK��I ) 2 for a pure
background and by a Gaussian function �s'bNP��I ) for a signal mixed with a background. Therefore, the
equal-tailed test for normal distributions gives the critical value v � 	��K��N and U 	�[s	�JP��JPJK�P� . These
are the limiting valuesof U and [ for the requirement ���:	�N , or � � 	�N , or �x� � 	y�K��N .

Fig. 6: Theprobability distributions ^b_`adc�e (a) and ^�fSadc�e (b) of statistic �%f . Thedependenceof Type I and Type II errorson the

critical value �*f (c) for thecaseof 5000 signal events and {E|K� background events.

In a similar way we can determine the Type I and Type II errors for small values
� �

and
� �

and
predict the limiting values of U and [ for a large number of events for other statements about “signifi-
cance” � � (Table3) or any other estimator.

5. EQUAL PROBABILITIES TEST

The last columns in Tables 1, 2 and 3 contain the values of probability � [4] which is a characteristic
of the observability of a phenomenon in future experiments with given

���
and
���

. In particular, it is
the fraction of probability distribution

; 2 'H� ) for a statistic � that can be described by the fluctuation of
the background. The value of � is equal to the area of the overlapping probability distributions

; 2 '<� )
and
; � '<� ) (Fig. 1). If we superimpose the distributions

; 2 'H� ) and
; � 'H� ) and choose the intersection

point (
� QSR 	�� �
���� B � �
� �� � D

�
) as a critical value for the hypotheses testing, we obtain � o U � [ . In this

point
; 2 ' ��QSR ) 	 ; � ' ��QSR ) (in our caseconditions ��$E�t' ; 2 ' ��Q�R )�� ; � ' ��QSR )`) and

; � ' ��QSR ) k ; 2 ' ��QSR ) are
used). Hence this kind of check can be called an equal probabilities test. If � equals to I a phenomenon
will never be found in the experiment, if � equals to J the first measurement with probability one has to

2� (mean,variance) is a traditional notation for normal distribution.
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answer thequestion about presenceor absenceof new phenomenon (thiscase isnot realized for Poisson
distribution). The dependences of � on the number of signal events for the criteria ����	,NK� � � 	,N and
� � �¡	,�P��N are shown in Fig. 7. Correspondingly, the dependences of

� �
versus

� �
for these criteria are

presented in Fig. 8.

Fig. 7: Thedependences of ¢ on thenumber of signal events for “significances” £¤f�¥§¦M¨©£ª�x¥«¦ and £�fH�C¥«¬w­®¦ .

Fig. 8: Thedependencesof thenumber of backgroundeventson thenumber of signal eventsfor “significances” £¤f�¥«¦w¨¤£ª�C¥«¦
and £¤f<�C¥«¬M­¯¦ .
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Notethat theequal probabilitiestest can beapplied for probability distributionswith several points
of intersection (Fig. 9). The relative uncertainty of the observability of a new phenomenon in a future
experiment °� is equal to ±� A ± .

f(x)

x

f  (x)1

f  (x)
²
1

f  (x)
²
0
³

Fig. 9: Theestimation of uncertainty in hypotheses testing for arbitrary distributions by using of equal probabilities test.

As is seen from Tables 1, 2 and 3, the value of � is also close to the sum of U � [ determined by
using the equal-tailed test. Clearly, the accuracy of the determination of � by Monte-Carlo calculations
depends on the number of trials made. Fig. 10 shows the distribution of 40 estimations of the U � [ for
thecase

��� 	�IPJKJ , ��� 	�NKJPJ and for the IKJwz Monte-Carlo trials in each estimation. Theresult obtained
by thedirect calculation of theprobability distributions is also given in theFig. 10.

Fig. 10: The variation of h¡´8i in the equal-tailed hypotheses testing (j � ¥µ{E|�| , j � ¥µ¦E|�| versus j � ¥¶| , j � ¥µ¦E|�| in 40

Monte-Carlo simulations of probability distributions).
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6. ESTIMATION OF EXCLUSION LIMITS ON NEW PHYSICS

Suppose we know the background cross section � � and we want to obtain bound on signal cross section
� � which depends on some parameters (masses of new particles, coupling constants, ...) and describes
some new physics beyond standard model. We have to compare two Poisson distributions with and
without new physics. The results of Section 5 are trivially generalized to the case of the estimation of
exclusion limits on signal cross section and, hence, on parameters (masses, coupling constants, ...) of
new physics.

Consider at first the case when the Gaussian distributions approach the Poisson distributions
(
����· I ). As it has been mentioned in Section 5 the common area of probability distributions with

background events and with background plus signal events is the probability that ”new physics” can not
bedescribed by the”standard physics” . For instance, when werequiretheprobability that ”new physics”
can be described by the ”standard physics” is more or equal IPJK� (i.e. � � � is larger than 1.64) it means
that the formula

��� � � �
� ��� k�IP���ML (1)

givesus ¸KJP� exclusion limit on theaveragenumber of signal events
���

. In general casewhen werequire
the probability that ”new physics” can be described by the ”standard physics” is more or equal to ¹ the
formula

��� � � �
� ��� k��t'`¹ ) (2)

allows us to obtain I � ¹ exclusion limit on signal cross section. Here �t'b¹ ) is determined by the � 3,
i.e. we suppose that ¹¡	º� . It should be stressed that in fact the requirement that ”new physics” with
the probability more or equal to ¹ can be described by the ”standard physics” is our definition of the
exclusion limit as '`I � ¹ ) probability for signal cross section. From the last formulawefind that

� � k �
� 'b¹ )» � �P�t'b¹ ) �

�
»l� (3)

Here
��� 	y� �M» � � � 	�� � » , whereL is integrated luminosity.

For thecaseof not largevaluesof
���

and
���

wehaveto comparethePoisson distributionsdirectly
and thecorresponding method has been formulated in Section 5.

In refs.[7, 8] different methods to derive exclusion limits in future experiments have been sug-
gested. As is seen from Fig. 11 the essential differences in values of the exclusion limits take place.
Let us compare these methods by the use of the equal probabilities test. In order to estimate the various
approaches of the exclusion limit determination we suppose that new physics exists, i.e. the value

� �
equals to one of the exclusion limits from Fig. 11 and the value

���
equals to the corresponding value of

expected background. Then we apply the equal probability test to find critical value
��QSR

for hypotheses
testing in future measurements. Here a zero hypothesis is the statement that new physics exists and an
alternative hypothesis is the statement that new physics is absent. After calculation of the Type I error U
(the probability that the number of observed events will be equal or less than the critical value

��QSR
) and

theTypeII error [ (theprobability that thenumber of observed eventswill bemorethan thecritical value��QSR
in thecaseof theabsenceof new physics) wecan compare themethods. In Table4 the result of the

comparison is shown. As is seen from this Table the ”Typical experiment” approach [8] gives too small
values of exclusion limit. The difference in the 90% CL definition is the main reason of the difference
between our result and the exclusion limit from ref. [7]. We require that ¹T	�� . In ref [7] the criterion
for determination exclusion limits: [s¼¾½ and ¿� A¤À ¼Á¹ is used, i.e. the experiment will observe with

3Note that £�aÂ{�Ã
eÄ¥«¬M­¯¦�Å , £ÆaÂ¬�Ã
eÆ¥«¬M­¯Ç�Ç , £�aÂ¦�Ã
eÄ¥«{M­®ÈMÉ and £�aÂ{E|KÃ
eÄ¥«{M­®ÉSÊ

227



     

probability at least I � ½ at most anumber of eventssuch that the limit obtained at the I � ¹ confidence
level excludes thecorresponding signal 4.

Fig. 11: Estimations of the 90% CL upper limit on the signal in a future experiment as a function of the expected background.

Themethod proposed in ref. [8] gives thevalues of exclusion limit close to ”Typical experiment” approach.

7. THE PROBABILITY OF NEW PHYSICS DISCOVERY

It is also very important to determine the probability of new physics discovery in future experiment.
According to common definition (for example,[9, 10]) thenew physicsdiscovery correspondsto thecase
when theprobability that background can imitatesignal is less than NK� or in termsof theprobability less
than NP��ËÍÌKIPJ ACÎ (hereof courseweneglect any possiblesystematic errors).

So werequire that theprobability [Ï'b½ ) of thebackground fluctuations for �ÐmÑ� 2 'b½ ) is less than
½ , namely

[:'b½ ) 	 ]
� Z � _ B¯Ò DY� �

!�' ��� �Ó� ) k�½ (4)

Theprobability I � UF'b½ ) that thenumber of signal eventswill bebigger than � 2 'b½ ) is equal to

I � U�'b½ ) 	 ]
� Z � _ B¯Ò DÔ� �

!�' ��� � ��� �Ó� ) (5)

It should be stressed that ½ is a given number and UF'`½ ) is a function of ½ . Usually physicists
claim the discovery of phenomenon [9, 10] if the probability of the background fluctuation is less than
NP� that corresponds to ½�Õ9Ö � 	qNK��Ë�Ì�IPJ ACÎ 5. So from the equation (4) we find � 2 'b½ ) and estimate the
probability I � UF'`½ ) that an experiment will satisfy thediscovery criterion.

4If wedefine × asnormalized ¢ (×F¥lØ¢ ¥ Ù�SÚ Ù ) wehave the result close to ref. [7], i.e., for example, ¢ ¥�|P­¯{�Å corresponds
to ×F¥�|P­ |KÈ�¬�È .

5The approximation of Poisson distribution by Gaussian for tails with area close to or less than Û
Ü>Ý � for values of j � andj � under consideration gives strong distinction in determination of {�Þ3h .
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As an example consider the search for standard Higgs boson with a mass �§ß�	àIKIPJâá @
ã

at
the CMS detector. For total luminosity

» 	àO¡Ì�IKJwä�å©æ A � '`�¡Ì�IKJwä�å©æ A � ) one can find [10] that
��� 	

�P�K¸POK'`IK¸P�K¸ ) � � � 	�OPNKËP'b�POP� ) , � � 	 � �� �
� 	��K���P'bNP� L
)
. Using the formulae (4, 5) for ½ Õ9Ö � 	�NK��Ë�ÌçIPJ ACÎ

( NP� discovery criterion) we find that I � UF'`½�Õ`Ö � ) 	èJP��¸K�P'bJP��ËPO ) . It means that for total luminosity» 	qO3Ì�IKJ ä å©æ A � 'b�3Ì�IKJ ä å©æ A � ) the CMS experiment will discover at éºNK� level standard Higgs boson
with amass �§ß,	6IPIKJ�á @

ã
with aprobability 96(73) percent.

8. CONCLUSION

In this paper the discussion on the observation of new phenomena is restricted to the testing of simple
hypotheses in the case of predicted values

���
and
���

and an observable value � . As is stressed in [5],
theprecisehypothesis testing should not bedoneby forming atraditional confidence interval and simply
checking whether or not theprecisehypothesis iscompatiblewith theconfidence interval. A confidence
interval is usually of considerable importance in determining where the unknown parameter is likely to
be, given that thealternativehypothesis is true, but it isnot useful in determining whether or not aprecise
null hypothesis is true.

To compare several criteria used for the hypotheses testing, we employ both a method that allows
oneto construct therejection regionsviathedetermination theprobability distributionsof thesestatistics
by Monte-Carlo calculations and direct calculations of probabilities distributions. An equal-tailed test
was used to compare the criteria. An equal probabilities test is proposed to estimate the uncertainty
in separating two hypotheses about observability of predicted phenomenon in a planned experiment.
This estimation is used for determination of exclusion limits in prospective studies of searches. The
method has been used to draw a conclusion on the observability of some predicted phenomena [4]. We
also considered a probability of discovery as a quantity for comparison of proposals for future search
experiments.
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Table 1: The dependence of h and i determined by using the equal-tailed test on j � and j � for £¤f ¥\¦ ; ¢ is the area of

intersection of probability distributions ^ _ adc�e and ^ f agc�e .
��� ��� U [ �
5 1 0.0620 0.0803 0.1423
10 4 0.0316 0.0511 0.0828
15 9 0.0198 0.0415 0.0564
20 16 0.0141 0.0367 0.0448
25 25 0.0162 0.0225 0.0383
30 36 0.0125 0.0225 0.0333
35 49 0.0139 0.0164 0.0303
40 64 0.0114 0.0171 0.0278
45 81 0.0124 0.0136 0.0260
50 100 0.0106 0.0143 0.0245
55 121 0.0114 0.0120 0.0234
60 144 0.0100 0.0126 0.0224
65 169 0.0106 0.0109 0.0216
70 196 0.0095 0.0115 0.0209
75 225 0.0101 0.0102 0.0203
80 256 0.0091 0.0107 0.0198
85 289 0.0096 0.0097 0.0193
90 324 0.0088 0.0101 0.0189
95 361 0.0081 0.0106 0.0185
100 400 0.0086 0.0097 0.0182
150 900 0.0078 0.0084 0.0162
500 IPJ ä 0.0068 0.0068 0.0136
5000 IPJwð 0.0062 0.0065 0.0125

Table 2: The dependence of h and i determined by using the equal-tailed test on j � and j � for £ç�xñ«¦ . Here ¢ is the area of

intersection of probability distributions ^`_badc�e and ^MfSagc�e .
� � � � U [ �
26 1 JP��NKIP¸ÍÌKIPJ A z JP��IPJK�ÍÌKIPJ A ä JP��IPN�L¡ÌPIKJ A ä
29 4 JP���K�PIÍÌKIPJ A ä JP��ËP��L¡ÌKIPJ A ä JP��IMLÄ�ÍÌPIKJ Açò
33 9 JP��IK�PËÍÌKIPJ A¤ò JP� L©OK¸ÍÌKIPJ A¤ò JP� LPLÄJÍÌPIKJ Açò
37 16 JP� LÄ�P�ÍÌKIPJ A¤ò JP��NP�KËÍÌKIPJ A¤ò JP��¸P¸KOÍÌPIKJ Açò
41 25 JP����L©�ÍÌKIPJ A¤ò JP��IPIK�ÍÌKIPJ A � JP��IPËK�ÍÌPIKJ A �
45 36 JP��¸K�P¸ÍÌKIPJ A¤ò JP��IP¸KOÍÌKIPJ A � JP���P�K�ÍÌPIKJ A �
50 49 JP��IKOPOÍÌKIPJ A � JP��IP�KNÍÌKIPJ A � JP��OPI�L¡ÌPIKJ A �
55 64 JP��IKËP�ÍÌKIPJ A � JP��IPËK¸ÍÌKIPJ A � JP��OPNKËÍÌPIKJ A �
100 300 JP��OKIPËÍÌKIPJ A � JP� L©�K�ÍÌKIPJ A � JP��ËPOKNÍÌPIKJ A �
150 750 JP� LKL©NÍÌKIPJ A � JP� L©NKJÍÌKIPJ A � JP���P¸�L¡ÌPIKJ A �
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Table3: Thedependenceof h and i determined by using equal-tailed test on j � and j � for £¤f�¥§¬ , £¤fó¥«Ç , £�f�¥�Ê , £¤f�¥«É
and £ f ¥§ô . Here ¢ is theareaof intersection of probability distributions ^ _ adc�e and ^ f agc�e .

��� ��� ��� U [ �
2 2 1 0.199 0.265 0.4634

4 4 0.192 0.216 0.4061
6 9 0.184 0.199 0.3817
8 16 0.179 0.188 0.3680õ õ 0.1587 0.1587 0.3174

3 3 1 0.0906 0.263 0.3184
6 4 0.0687 0.216 0.2408
9 9 0.0917 0.123 0.2159
12 16 0.0722 0.131 0.1952õ õ 0.0668 0.0668 0.1336

4 4 1 0.0400 0.263 0.2050
8 4 0.0459 0.110 0.1406
12 9 0.0424 0.0735 0.1130
16 16 0.0407 0.0572 0.0977õ õ 0.0228 0.0228 0.0456

6 6 1 0.0301 0.0806 0.1008
12 4 0.0217 0.0217 0.0434
18 9 0.0089 0.0224 0.0271
24 16 0.00751 0.0132 0.0198õ õ 0.00135 0.00135 0.0027

8 8 1 0.0061 0.0822 0.0402
16 4 0.0049 0.0081 0.0131
24 9 0.0016 0.0052 0.00567
32 16 0.00128 0.00237 0.00331õ õ 0.000032 0.000032 0.000064

Table 4: The comparison of the different approaches to determination of the exclusion limits. The h and i are the Type I and

Type II errors for theequal probability test. The ¢ equals to thesum of h and i .

this paper ref. [7] ref. [8]� � � � U [ � � � U [ � � � U [ �
1 6.02 0.08 0.02 0.10 4.45 0.09 0.08 0.17 3.30 0.20 0.08 0.28
2 7.25 0.05 0.05 0.10 5.50 0.13 0.05 0.18 3.90 0.16 0.14 0.30
3 8.32 0.07 0.03 0.10 6.40 0.09 0.08 0.18 4.40 0.14 0.18 0.32
4 9.20 0.05 0.05 0.10 7.25 0.13 0.05 0.18 4.80 0.23 0.11 0.34
5 10.06 0.07 0.03 0.10 7.90 0.10 0.07 0.17 5.20 0.20 0.13 0.34
6 10.67 0.06 0.04 0.10 8.41 0.09 0.08 0.18 5.50 0.19 0.15 0.34
7 11.37 0.05 0.05 0.10 9.00 0.08 0.10 0.18 5.90 0.17 0.17 0.34
8 12.02 0.07 0.03 0.10 9.70 0.10 0.06 0.17 6.10 0.17 0.18 0.35
9 12.51 0.06 0.04 0.10 10.16 0.09 0.07 0.17 6.40 0.16 0.20 0.36

10 13.04 0.05 0.05 0.10 10.50 0.09 0.08 0.17 6.70 0.22 0.14 0.36
11 13.62 0.04 0.06 0.10 10.80 0.08 0.09 0.18 6.90 0.21 0.15 0.36
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APPENDIX

Let us try to generalizeapproach of theSection 5 to casewhen wehavemeasurements.

We want to test the hypotheses: ö 2 4 /÷�,!�#%$�&.' ��� � ��� ) versus ö�� 4 /÷�r!8#9$�&.' ��� ) . Denote� �
via & , � � via æ and the area of overlapping of probability distributions

; 2
and
; � via �Ä'`&�ø æ ) . Assume

that the result of experiment is � and we make decision about observation of Phenomenon in the case
of two simple hypotheses. Also we may construct “a posteriori” probabilities of hypotheses ö 2 and ö �
independent of decision . If likelihood functions are

» 2 	 » '<� ø ö 2 ) and
» �
	 » '<� ø ö�� ) then

!8'bö 2 ø � ) 	 ù _ù _ � ù f and !�'bö � ø � ) 	 ù fù _ � ù f .
It means that weassociate for any pair of æ and &�myJ theprobability !�'`&�ø �F��æ ) 	y!�'bö 2 ø � ) .

In caseof unpredicted valueof & wemust consider hypotheses132�4 &�m�J versus
1 � 4 &�	�J

and wecan determine ”aposteriori” (“mean”) uncertainty of hypothesis
132

�©' 1 2 ø �F��æ ) 	 ]2 !�'b&�ø �F��æ ) �©'b&�ø æ )bú & .

233



    

Discussion after talk of Serguei Bityukov. Chairman: Wilbur Venus.

L. Lyons

Could you explain themotivation for your test statistic � � �uûü� � û ?

S. Bityukov

The reason is that when we approximate the Poisson by Gaussian we analytically calculate the
areaof overlapping probability density for purebackground and probability density for background plus
signal. After that wederive this formula.

For example, let us draw two Poisson distributions with parameters ý
��	 ��� and ý � 	 ��� ����
. Let

���
be large enough to approximate these distributions by normal distributions � (ý � ��� � ) and

� (ý � �w� � ), where �©� 	 � ýÏ� and � � 	 � ý � . The transformation of the distributions to standard normal
distribution (seeFigure) and exploitation of theequalities

��þÿ	 �
2 � ���
� ��� 	 � �

2 � ' � �
� ��� )
� ��� � ���

allows one to find the points � 2 	 � � �
� ��� � ��� and, correspondingly, ��þ�	 � � �
� ��� � � ��� . It
allows us to use both the language of probability and the language of standard deviations. Note that in
this approximation an equal-tailed test coincides with equal probabilities test.

f
� f 1

f
�

0
�

xx 0
�

f f

xxx� -x t
�

t
�

N(0,1)
�

N(0,1)
�

Fig. 12: A sketch of transformation of Poisson probability distributions to standard normal probability density function.

H. Prosper

Just apoint of clarification. In your definition of � which isequal to U � [ , in the U � [ there is the
number of eventsobserved. How do you determine that or how do you get rid of the fact that you do not
know the number of events observed. In your method, U and [ are the sums of the Poisson distribution,
but in thesum you start at somenumber and you go from N+1 to infinity; what determinestheN in those
sums?
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S. Bityukov

We use an equal probabilities test to determine the uncertainty in future hypothesis testing about
observability of the new phenomenon, which the planned experiment has before measurements (in the
caseof predicted numbers of signal and background events).

R. Cousins

Somebody did tell me about this paper, and the way they explained it to me it sounded very
interesting. The idea was: Suppose you have a theory that predicts a certain amount of signal, and from
your apparatus you predict how much background you’re going to see, so a typical proposal will say:
“For this much running we’ ll get a 3 sigma effect” , but you’re not taking into account the fact that your
signal and background will fluctuate. As I understand it, this formula allows you to tell the program
committeewhat thechance isyou’ ll actually make thediscovery of thesignal the theory predicts, taking
into account the fact that your experiment’s going to be chosen from an ensemble of experiments, and
you don’t know which data you’re going to get. So if the formula does that, then that’s a really nice
formula.

L. Lyons

Yes, somefivesigmas arebetter than other fivesigmas.
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