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Abstract

Several criteria used by physicists to quantify the ratio of signal to background in planned experiments

are compared. An equal probabilities test is proposed for the evaluation of the uncertainty in planned

search experiments. We also consider a probability of discovery as a quantity for comparison of

proposals for future search experiments.
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1 Introduction

The aim of a search experiment is to detect predicted new phenomena. Usually, the theoretical estimations of

expected mean number of signal events of a new phenomenonNs and that of background eventsNb are known,

and we can define some value of “significance” as a characteristic of the observability of the phenomenon. Some

function of the observed number of eventsx (a statistic) is used to draw a conclusion on observation or non-

observation of the phenomenon. The value of this statistic allows one to find the degree of confidence of the

conclusion. There exist two types of mistake: to state that a phenomenon does not exist while it actually exists

(Type I error), or to state that a phenomenon exists while it does not (Type II error).

In this paper we compare the “signal significances” to estimate the discovery potential of a future experiment:

– “significance”S1 =
Ns√
Nb

[1],

– “significance”S2 =
Ns√

Ns + Nb

[2, 3],

– “significance”S12 =
√

Ns + Nb −
√

Nb [4].

For this purpose we apply an equal-tailed test to study the behaviour of Type I and Type II errors as a function

of Ns andNb in planned search experiments with specified values of the “significances”S1, S2 andS12. An

equal probabilities test is proposed to estimate the uncertainty in separation of two hypotheses on observability of

predicted phenomenon in these experiments. The hypotheses testing results obtained by Monte-Carlo calculations

are compared with the result obtained by the direct calculation of probability distributions.

2 Notations

Let us assume that the average number of signal events coming from a new phenomenon (Ns) and the average

number of background events (Nb) in the experiment are given. We suppose that the events have a Poisson dis-

tribution with parametersNs andNb, i.e. the random variableξ ∼ Pois(Ns) describes the signal events and

the random variableη ∼ Pois(Nb) describes the background events. Assume that we observedx events – the

realization of the processX = ξ + η (x is the sum of signal and background events in the experiment). Here

Ns, Nb are non-negative real numbers andx is an integer. The classical frequentist methods of testing a precise

hypothesis allow one to construct a rejection region and determine associated error probabilities for the following

“simple” hypotheses:

H0 : X ∼ Pois(Ns+Nb) versusH1 : X ∼ Pois(Nb), wherePois(Ns+Nb) andPois(Nb) have the probability

distributions

f0(x) =
(Ns + Nb)x

x!
e−(Ns+Nb) for the case of presence, andf1(x) =

(Nb)x

x!
e−(Nb)

for the case of absence of signal events in the whole population.
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The probability distributionsf0(x) (a) andf1(x) (b) for the case ofNs + Nb = 104 andNb = 53 ([3], Table.13,

cut 6) are shown in Fig.1. As we see, the intersection of these distributions takes place. Let us denote the threshold

(critical value) that divides the abscissa in Fig.1 into the rejection region and the area of accepted hypothesisH0 via

Nev. The incorrect rejection of the null hypothesisH0, the Type I error (a phenomenon is taken to be absent, while

it exists), has the probabilityα =
Nev∑

x=0

f0(x), and the incorrect acceptance ofH0, the Type II error (a phenomenon

is taken to be present, while it is absent), has the probabilityβ =
∞∑

x=Nev+1

f1(x). Theα andβ dependences on the

value ofNev for the above example are presented in Fig.2.

Figure 1: The probability distributionsf0(x) (a) andf1(x) (b) for the case of 51 signal events and 53 background

events obtained by direct calculations of the probabilities.

Figure 2: The dependence of Type Iα and Type IIβ errors on critical valueNev for the case of 51 signal events

and 53 background events.
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3 Hypotheses testing

In this Section the construction of a rejection region for the statisticx, the number of observed events, is de-

scribed. The decision to either reject or acceptH0 will depend on the observed value ofx, where small values of

x correspond to the rejection ofH0, i.e.

if x ≤ Nev, rejectH0,

if x > Nev, acceptH0.

In compliance with this test, the frequentist reports the Type I and Type II error probabilities asα = P0(X ≤
Nev) ≡ F0(Nev) andβ = P1(X > Nev) ≡ 1 − F1(Nev), whereF0 andF1 are cumulative distribution functions

of X underH0 andH1, respectively.

The Type I errorα is also called a significance level of the test. The value ofβ is meaningful only when it is

related to the alternative hypothesisH1. The dependence1 − β is referred to as a power function that allows one

to choose a favoured statistic for the hypothesis testing. It means that for the specified significance level we can

determine the critical valueNev and find the power1− β of this criterion. The larger the value of1− β, the better

the statistic separates hypotheses for a specified value ofα.

For a conventional equal-tailed test1) with α = β, the critical valueNev satisfies the relationF0(Nev) ≡ 1 −
F1(Nev).

In a similar way we can construct the rejection region, finding the critical valuesc1, c2 andc12, for the statistics

s1 =
x − Nb√

Nb

(“significance”S1), s2 =
x − Nb√

x
(“significance”S2) ands12 =

√
x −

√
Nb (“significance”S12).

The probability distributions of statistics under consideration can be obtained in analytical form or by a Monte-

Carlo simulation of the results of a large number of experiments (see as an example [6]) for the given valuesNs

andNb. The both approaches were used in our study. The probability distributions for the case ofNs + Nb = 104

andNb = 53 events obtained as a result of105 simulations with random variablesξ andη are shown in Fig.3.

There is no significant difference between these distributions compared with the distributions resulting from direct

calculations of the probabilities (Fig.1).

The probability distributions of statistics2 for the case ofNs = 51, Nb = 53 (a) and the case ofNs = 0,

Nb = 53 (b) are shown in Fig.4. The behaviour of probabilitiesα andβ as a function of the critical valuec2 for

the statistics2 is also presented in Fig.4 (c).

We stress that the second approach allows to construct the probability distributions and, correspondingly, the

acceptance and the rejection regions for complicated statistics, taking into account the systematic errors and the

uncertainties in the estimations ofNb andNs.

1) See for example ref. [5].
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Figure 3: The probability distributionsf0(x) (a) andf1(x) (b) for the case of 51 signal events and 53 background

events obtained by Monte Carlo simulation (105 Monte-Carlo trials).

Figure 4: The probability distributionsf0(x) (a) andf1(x) (b) for statistics2. The dependence of Type I and Type

II errors on the critical valuec2 (c) for the case of 51 signal events and 53 background events.
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4 Equal-tailed test

What is the exact meaning of the statement that

S1 =
Ns√
Nb

= 5 or S2 =
Ns√

Ns + Nb

= 5 ?

Tables 1 and 2 give the answer to this question. Here the valuesα andβ have been determined by applying equal-

tailed test (in this study we use the conditionsmin(β − α) andα ≤ β). One can see the dependence ofα (or

β) on the value ofNs andNb. The case ofNs = 5 andNb = 1 for S1 (Fig.5) is perhaps the most dramatic

example. Having5σ deviation and rejecting the hypothesisH0, we are mistaken in6.2% of the cases; if we accept

the hypothesisH0, we are mistaken in8.0% of the cases.

Figure 5: The probability distributionsf0(x) (II) and f1(x) (I) of statistics1 for the case of 5 signal events and 1

background events.

One can point out that the values ofα andβ for S1 andS2 converge with increasing of a number of events. It means

that, for a sufficiently large value ofNb, the values ofα andβ obtained by equal-tailed tests have a constant value

close to 0.0062 for bothS1 andS2. The standard deviation tends to be unity both for the distribution ofs1 (Fig.6)

and for the distribution ofs2, i.e. these distributions in case of largeNb andNs can be approximated by a standard

Gaussian functionN (0, 1) 2) for a pure background and by a Gaussian functionN (5, 1) for a signal mixed with

a background. Therefore, the equal-tailed test for the normal distributions gives the critical valuec1 = 2.5 and

α = β = 0.0062. These are the limiting values ofα andβ for the requirementS1 = 5, or S2 = 5, or S12 = 2.5.

In a similar way we can determine the Type I and Type II errors for small valuesNs andNb and predict the limiting

values ofα andβ for a large number of events for other statements about “significance”S1 (Table 3) or any other

estimator.

2) N (mean,variance) is a traditional notation for normal distribution.
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Figure 6: The probability distributionsf0(x) (a) andf1(x) (b) of statistics1. The dependence of Type I and Type

II errors on the critical valuec1 (c) for the case of 5000 signal events and106 background events

5 Equal probabilities test

Last columns in Tables 1, 2 and 3 contain the value of probabilityκ [4] which is a characteristic of the observability

of a phenomenon in future experiments with givenNs and Nb. In particular, it is the fraction of probability

distributionf0(x) for a statisticx that can be described by the fluctuation of the background. The value ofκ equals

to the area of overlapping of probability distributionsf0(x) andf1(x) (Fig.1). If we superimpose the distributions

f0(x) andf1(x) and choose the intersection point (Nev = [
Ns

ln(1 + Ns

Nb
)
]) as a critical value for the hypotheses

testing, we obtainκ ≡ α + β. In this pointf0(Nev) = f1(Nev) (in our case conditionsmin(f0(Nev) − f1(Nev))

andf1(Nev) ≤ f0(Nev) are used). It means that this kind of check can be named the equal probabilities test. The

dependences ofκ on the number of signal events for the criteriaS1 = 5, S2 = 5 andS12 = 2.5 are shown in

Fig.7. Correspondingly, the dependences ofNb versusNs for these criteria are presented in Fig.8. Note that the

equal probabilities test can be applied for probability distributions with several points of intersection (Fig.9). The

relative uncertainty of the observability of a new phenomenon in future experimentκ̃ is equal to
κ

2 − κ
.

As is seen from Tables 1, 2 and 3, the value ofκ is also close to the sum ofα + β determined by using the

equal-tailed test. Clearly, the accuracy of the determination ofκ by Monte-Carlo calculations depends on the

number of Monte-Carlo trials. Fig.10 shows the distribution of 40 estimations of theα + β for the caseNs = 100,

Nb = 500 and for the105 Monte-Carlo trials in each estimation. The result obtained by the direct calculation of

the probability distributions is also given in the Fig.10.
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Figure 7: The dependences ofκ on the number of signal events for “significances”S1 = 5, S2 = 5 andS12 = 2.5.

Figure 8: The dependences of the number of background events on the number of signal events for “significances”

S1 = 5, S2 = 5 andS12 = 2.5.
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Figure 9: The estimation of uncertainty in hypotheses testing for arbitrary distributions by using of equal probabil-

ities test.

Figure 10: The variation ofα + β in the equal-tailed hypotheses testing (Ns = 100, Nb = 500 versusNs = 0,

Nb = 500 in 40 Monte Carlo simulations of probability distributions).
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6 The probability of new physics discovery

It is also very important to determine the probability of new physics discovery in future experiment. According to

common definition (for example, [7, 8]) the new physics discovery corresponds to the case when the probability

that background can imitate signal is less than5σ or in terms of the probability less than5.7 · 10−7 (here of course

we neglect any possible systematic errors).

So we require that the probabilityβ(∆) of the background fluctuations forn > n0(∆) is less than∆, namely

β(∆) =
∞∑

n=n0(∆)+1

P (Nb, n) ≤ ∆ (1)

The probability1 − α(∆) that the number of signal events will be bigger thann0(∆) is equal to

1 − α(∆) =
∞∑

n=n0(∆)+1

P (Nb + Ns, n) (2)

It should be stressed that∆ is a given number andα(∆) is a function of∆. Usually physicists claim the discovery

of phenomenon [7, 8] if the probability of the background fluctuation is less than5σ that corresponds to∆dis =

5.7 · 10−7 3). So from the equation (4) we findn0(∆) and estimate the probability1 − α(∆) that an experiment

will satisfy the discovery criterion.

As an example consider the search for standard Higgs boson with a massmh = 110 GeV at the CMS detector.

For total luminosityL = 3 · 104pb−1(2 · 104pb−1) one can find [8] thatNb = 2893(1929), Ns = 357(238),

S1 =
Ns√
Nb

= 6.6(5.4). Using the formulae (4, 5) for∆dis = 5.7 · 10−7 (5σ discovery criterion) we find that

1 − α(∆dis) = 0.96(0.73). It means that for total luminosityL = 3 · 104pb−1(2 · 104pb−1) the CMS experiment

will discover at≥ 5σ level standard Higgs boson with a massmh = 110 GeV with a probability 96(73) percent.

7 Conclusions

In this paper the discussion on the observation of new phenomena is restricted to the testing of simple hypotheses in

the case of the predicted valuesNs andNb and the observable valuex. As is stressed in [5], the precise hypothesis

testing should not be done by forming a traditional confidence interval and simply checking whether or not the

precise hypothesis is compatible with the confidence interval. A confidence interval is usually of considerable

importance in determining where the unknown parameter is likely to be, given that the alternative hypothesis is

true, but it is not useful in determining whether or not a precise null hypothesis is true.

To compare several criteria used for the hypotheses testing, we employ as a method that allows one to construct the

rejection regions via the determination the probability distributions of these statistics by Monte-Carlo calculations,

3) The approximation of Poisson distribution by Gaussian for tails with area close to or less than∆dis for values ofNs and

Nb under consideration gives strong distinction in determination of1 − α.
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so direct calculations of probabilities distributions. The equal-tailed test was used to compare the criteria. An

equal probabilities test is proposed to estimate the uncertainty in separation of two hypotheses about observability

of predicted phenomenon in planned experiment. We also consider a probability of discovery as a quantity for

comparison of proposals for future search experiments. The methods were used to draw a conclusion on the

observability of some predicted phenomena [4, 9].
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Table 1: The dependence ofα andβ determined by using the equal-tailed test onNs andNb for S1 = 5; κ is the

area of intersection of probability distributionsf0(x) andf1(x).

Ns Nb α β κ

5 1 0.0620 0.0803 0.1423

10 4 0.0316 0.0511 0.0828

15 9 0.0198 0.0415 0.0564

20 16 0.0141 0.0367 0.0448

25 25 0.0162 0.0225 0.0383

30 36 0.0125 0.0225 0.0333

35 49 0.0139 0.0164 0.0303

40 64 0.0114 0.0171 0.0278

45 81 0.0124 0.0136 0.0260

50 100 0.0106 0.0143 0.0245

55 121 0.0114 0.0120 0.0234

60 144 0.0100 0.0126 0.0224

65 169 0.0106 0.0109 0.0216

70 196 0.0095 0.0115 0.0209

75 225 0.0101 0.0102 0.0203

80 256 0.0091 0.0107 0.0198

85 289 0.0096 0.0097 0.0193

90 324 0.0088 0.0101 0.0189

95 361 0.0081 0.0106 0.0185

100 400 0.0086 0.0097 0.0182

150 900 0.0078 0.0084 0.0162

500 104 0.0068 0.0068 0.0136

5000 106 0.0062 0.0065 0.0125
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Table 2: The dependence ofα andβ determined by using the equal-tailed test onNs andNb for S2 ≈ 5. Hereκ

is the area of intersection of probability distributionsf0(x) andf1(x).

Ns Nb α β κ

26 1 0.519 · 10−5 0.102 · 10−4 0.154 · 10−4

29 4 0.661 · 10−4 0.764 · 10−4 0.142 · 10−3

33 9 0.127 · 10−3 0.439 · 10−3 0.440 · 10−3

37 16 0.426 · 10−3 0.567 · 10−3 0.993 · 10−3

41 25 0.648 · 10−3 0.118 · 10−2 0.172 · 10−2

45 36 0.929 · 10−3 0.193 · 10−2 0.262 · 10−2

50 49 0.133 · 10−2 0.185 · 10−2 0.314 · 10−2

55 64 0.178 · 10−2 0.179 · 10−2 0.357 · 10−2

100 300 0.317 · 10−2 0.428 · 10−2 0.735 · 10−2

150 750 0.445 · 10−2 0.450 · 10−2 0.894 · 10−2
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Table 3: The dependence ofα andβ determined by using equal-tailed test onNs andNb for S1 = 2, S1 = 3,

S1 = 4, S1 = 6 andS1 = 8. Hereκ is the area of intersection of probability distributionsf0(x) andf1(x)

S1 Ns Nb α β κ

2 2 1 0.199 0.265 0.4634

4 4 0.192 0.216 0.4061

6 9 0.184 0.199 0.3817

8 16 0.179 0.188 0.3680

∞ ∞ 0.1587 0.1587 0.3174

3 3 1 0.0906 0.263 0.3184

6 4 0.0687 0.216 0.2408

9 9 0.0917 0.123 0.2159

12 16 0.0722 0.131 0.1952

∞ ∞ 0.0668 0.0668 0.1336

4 4 1 0.0400 0.263 0.2050

8 4 0.0459 0.110 0.1406

12 9 0.0424 0.0735 0.1130

16 16 0.0407 0.0572 0.0977

∞ ∞ 0.0228 0.0228 0.0456

6 6 1 0.0301 0.0806 0.1008

12 4 0.0217 0.0217 0.0434

18 9 0.0089 0.0224 0.0271

24 16 0.00751 0.0132 0.0198

∞ ∞ 0.00135 0.00135 0.0027

8 8 1 0.0061 0.0822 0.0402

16 4 0.0049 0.0081 0.0131

24 9 0.0016 0.0052 0.00567

32 16 0.00128 0.00237 0.00331

∞ ∞ 0.000032 0.000032 0.000064
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Discussion

Louis Lyons: Would you mind explaining how you derived the formula for “significance”S12 ?

Sergei Bityukov: Let us draw two Poisson distributions with parametersµ1 = Nb andµ2 = Ns + Nb. Let

Nb be large enough to approximate these distributions by normal distributionsN (µ1, σ1) andN (µ2, σ2), where

σ1 =
√

µ1 andσ2 =
√

µ2. The transformation of the distributions to standard normal distribution (see Fig.11) and

exploitation of the equalities

xt =
x0 − Nb√

Nb

= −x0 − (Ns + Nb)√
Ns + Nb

allows one to find the pointsx0 =
√

Ns + Nb

√
Nb and, correspondingly,xt =

√
Ns + Nb −

√
Nb. It allows us

to use both the language of probability and the language of standard deviations. Note that in this approximation an

equal-tailed test coincides with equal probabilities test.
f f 1

f 0

xx 0

f f

xxx -x tt

N(0,1) N(0,1)

Figure 11: A sketch of transformation of Poisson probability distributions to standard normal probability density

function.
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