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Abstract

Several criteria used by physicists to quantify the ratio of signal to background in planned experiments
are compared. An equal probabilities test is proposed for the evaluation of the uncertainty in planned
search experiments. We also consider a probability of discovery as a quantity for comparison of

proposals for future search experiments.
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1 Introduction

The aim of a search experiment is to detect predicted new phenomena. Usually, the theoretical estimations of
expected mean number of signal events of a new phenom¥pa@md that of background evemd§, are known,

and we can define some value of “significance” as a characteristic of the observability of the phenomenon. Some
function of the observed number of eventga statistic) is used to draw a conclusion on observation or non-
observation of the phenomenon. The value of this statistic allows one to find the degree of confidence of the
conclusion. There exist two types of mistake: to state that a phenomenon does not exist while it actually exists

(Type | error), or to state that a phenomenon exists while it does not (Type Il error).

In this paper we compare the “signal significances” to estimate the discovery potential of a future experiment:

N,
— “significance”s; = —= [1],
g 1 N [1]
N,
— “significance”Sy; = ——— [2, 3],
J 2= N, 2

— “significance”S12 = /Ny + N, — /Ny, [4].

For this purpose we apply an equal-tailed test to study the behaviour of Type | and Type Il errors as a function
of N, and NV, in planned search experiments with specified values of the “significarites%, and Si». An

equal probabilities test is proposed to estimate the uncertainty in separation of two hypotheses on observability of
predicted phenomenon in these experiments. The hypotheses testing results obtained by Monte-Carlo calculations

are compared with the result obtained by the direct calculation of probability distributions.

2 Notations

Let us assume that the average number of signal events coming from a new phenoiigremmd(the average
number of background eventd’y) in the experiment are given. We suppose that the events have a Poisson dis-
tribution with parametersVy and N, i.e. the random variable ~ Pois(N,) describes the signal events and

the random variable ~ Pois(N,) describes the background events. Assume that we obsereednts — the
realization of the proces&¥ = ¢ + n (x is the sum of signal and background events in the experiment). Here
N, N, are non-negative real numbers ands an integer. The classical frequentist methods of testing a precise
hypothesis allow one to construct a rejection region and determine associated error probabilities for the following

“simple” hypotheses:

Hy: X ~ Pois(Ng+ Np) versusH; : X ~ Pois(Ny), wherePois(Ns+ N,) andPois(N,) have the probability
distributions

Ns + Np)*
po) = B+ N

for the case of absence of signal events in the whole population.
1

N x
e~ (Ns+No) for the case of presence, afidz) = (—bRe_(Nb)
xZ.



The probability distributiong (z) (a) andfi(x) (b) for the case oV + N, = 104 and N, = 53 ([3], Table.13,

cut 6) are shown in Fig.1. As we see, the intersection of these distributions takes place. Let us denote the threshold

(critical value) that divides the abscissa in Fig.1 into the rejection region and the area of accepted hyfgtiasis

N.,. The incorrect rejection of the null hypothedig, the Type | error (a phenomenon is taken to be absent, while
Ne,

it exists), has the probability = Z fo(x), and the incorrect acceptance®f, the Type Il error (a phenomenon
=0

is taken to be present, while it is absent), has the probaility Z f1(x). Thea andg dependences on the

value of N, for the above example are presented in Fig.2.
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Figure 1: The probability distributionf (z) (a) andf; () (b) for the case of 51 signal events and 53 background

events obtained by direct calculations of the probabilities.
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Figure 2: The dependence of Type land Type 113 errors on critical valueV,,, for the case of 51 signal events

and 53 background events.



3 Hypotheses testing

In this Section the construction of a rejection region for the statistithe number of observed events, is de-
scribed. The decision to either reject or accHptwill depend on the observed value afwhere small values of

x correspond to the rejection &fy, i.e.
if x < N, rejectHy,
if x > N,,, acceptH,.

In compliance with this test, the frequentist reports the Type | and Type Il error probabilities=ad, (X <
Ney) = Fo(Neyw) andg = P (X > Ng) =1 — Fi(N,, ), WwhereF, andFy are cumulative distribution functions

of X underH, andH1, respectively.

The Type | errorx is also called a significance level of the test. The valug & meaningful only when it is

related to the alternative hypotheéis. The dependence— S is referred to as a power function that allows one

to choose a favoured statistic for the hypothesis testing. It means that for the specified significance level we can
determine the critical valu®’.,, and find the powet — 3 of this criterion. The larger the value of- 3, the better

the statistic separates hypotheses for a specified value of

For a conventional equal-tailed téstwith a = §3, the critical valueN,, satisfies the relatiod(N.,) = 1 —

Fi(Ney).

In a similar way we can construct the rejection region, finding the critical valyes andc;., for the statistics

51 = x_—\/ﬁjjb (“significance”S1), so = x_—\/ENb (“significance”S,) andsi» = v/z — /N, (“significance”S15).

The probability distributions of statistics under consideration can be obtained in analytical form or by a Monte-
Carlo simulation of the results of a large number of experiments (see as an example [6]) for the givetvyalues
andN,. The both approaches were used in our study. The probability distributions for the d¥se-a¥, = 104

andN, = 53 events obtained as a result o simulations with random variablgsandn are shown in Fig.3.

There is no significant difference between these distributions compared with the distributions resulting from direct

calculations of the probabilities (Fig.1).

The probability distributions of statistie, for the case ofV, = 51, N, = 53 (a) and the case aV, = 0,
Ny = 53 (b) are shown in Fig.4. The behaviour of probabilitieand§ as a function of the critical value, for

the statistics; is also presented in Fig.4 (c).

We stress that the second approach allows to construct the probability distributions and, correspondingly, the
acceptance and the rejection regions for complicated statistics, taking into account the systematic errors and the

uncertainties in the estimations &%, and V.

U see for example ref. [5].
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Figure 3: The probability distributionf (z) (a) andf; () (b) for the case of 51 signal events and 53 background

events obtained by Monte Carlo simulatid®{ Monte-Carlo trials).
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Figure 4: The probability distributionf (x) (a) andf; (z) (b) for statisticss. The dependence of Type | and Type

Il errors on the critical value, (c) for the case of 51 signal events and 53 background events.



4 Equal-tailed test

What is the exact meaning of the statement that

N, N,
S =—2 =50r9 = ——- =57
! V' Ny : VN5 + N,

Tables 1 and 2 give the answer to this question. Here the valaesl 5 have been determined by applying equal-
tailed test (in this study we use the conditiongn(5 — o) anda < 3). One can see the dependencexdfor

() on the value ofN, and N,. The case ofVy, = 5 and N, = 1 for S; (Fig.5) is perhaps the most dramatic
example. Havingo deviation and rejecting the hypothedls, we are mistaken ifi.2% of the cases; if we accept

the hypothesi¢i,, we are mistaken if.0% of the cases.

n P
16 18
x, events

Figure 5: The probability distributionf (x) (I1) and f1(z) (1) of statistics; for the case of 5 signal events and 1

background events.

One can point out that the valuescoand for S; andS; converge with increasing of a number of events. It means
that, for a sufficiently large value @Y, the values ofx ands obtained by equal-tailed tests have a constant value
close to 0.0062 for botl§; andS,. The standard deviation tends to be unity both for the distribution ¢fig.6)

and for the distribution ofs, i.e. these distributions in case of laryg and N, can be approximated by a standard
Gaussian function' (0, 1) 2 for a pure background and by a Gaussian functif(s, 1) for a signal mixed with

a background. Therefore, the equal-tailed test for the normal distributions gives the criticatyvatue.5 and

a = # = 0.0062. These are the limiting values afand for the requiremen$; = 5, or Sy = 5, or S15 = 2.5.

In a similar way we can determine the Type | and Type Il errors for small valyemnd N, and predict the limiting
values of« and for a large number of events for other statements about “significa$icélable 3) or any other

estimator.

2 N{(mean,variance) is a traditional notation for normal distribution.
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Figure 6: The probability distribution (x) (a) andfi(x) (b) of statistics;. The dependence of Type | and Type

Il errors on the critical value; (c) for the case of 5000 signal events ad background events
5 Equal probabilities test

Last columnsin Tables 1, 2 and 3 contain the value of probakili#} which is a characteristic of the observability

of a phenomenon in future experiments with giv®n and N,. In particular, it is the fraction of probability
distribution f () for a statisticr that can be described by the fluctuation of the background. The valueafals

to the area of overlapping of probability distributiofigx) and f1 (x) (Fig.1). If we superimpose the distributions
fo(z) and f1(z) and choose the intersection poif, = [m(les%)]) as a critical value for the hypotheses
testing, we obtaim = o + 3. In this pointfo(Ne,) = f1(Ney) (in our case conditionsin(fo(Ney) — f1(New))

and f1(Ney) < fo(Ney) are used). It means that this kind of check can be named the equal probabilities test. The
dependences af on the number of signal events for the critefla= 5, So = 5 andS;, = 2.5 are shown in

Fig.7. Correspondingly, the dependencesvgfversusN, for these criteria are presented in Fig.8. Note that the
equal probabilities test can be applied for probability distributions with several points of intersection (Fig.9). The

relative uncertainty of the observability of a new phenomenon in future experitrismgual to%.
— R

As is seen from Tables 1, 2 and 3, the valuexaf also close to the sum ef + 3 determined by using the
equal-tailed test. Clearly, the accuracy of the determinatior by Monte-Carlo calculations depends on the
number of Monte-Carlo trials. Fig.10 shows the distribution of 40 estimations ef thg for the caseV, = 100,

N, = 500 and for thel0® Monte-Carlo trials in each estimation. The result obtained by the direct calculation of

the probability distributions is also given in the Fig.10.
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Figure 7: The dependencestobn the number of signal events for “significancés’= 5, S = 5 andS;s = 2.5.
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Figure 8: The dependences of the number of background events on the number of signal events for “significances”

S = 5, Sy = 5 andS;y = 2.5.



f(x)

Figure 9: The estimation of uncertainty in hypotheses testing for arbitrary distributions by using of equal probabil-

ities test.
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6 The probability of new physics discovery

It is also very important to determine the probability of new physics discovery in future experiment. According to
common definition (for example, [7, 8]) the new physics discovery corresponds to the case when the probability
that background can imitate signal is less tharor in terms of the probability less th&n7 - 10~7 (here of course

we neglect any possible systematic errors).

So we require that the probabili§(A) of the background fluctuations far> ng(A) is less tham\, namely

BA)= > P(Npn) <A (1)

n=ng(A)+1

The probabilityl — «(A) that the number of signal events will be bigger thatA) is equal to
l—a(A)= >  P(Ny+Nsn) @)
n=no(A)+1
It should be stressed thAtis a given number and(A) is a function ofA. Usually physicists claim the discovery
of phenomenon [7, 8] if the probability of the background fluctuation is lessihahat corresponds td 4;; =

5.7-10773). So from the equation (4) we fingh(A) and estimate the probability— a(A) that an experiment

will satisfy the discovery criterion.

As an example consider the search for standard Higgs boson with anmass110 GeV at the CMS detector.

For total luminosityL = 3 - 10*pb~1(2 - 10*pb~1) one can find [8] thatV, = 2893(1929), N, = 357(238),

N . . _ )
S = N = 6.6(5.4). Using the formulae (4, 5) foA ;s = 5.7 - 10~7 (50 discovery criterion) we find that
b

1 — a(Ags) = 0.96(0.73). It means that for total luminosity = 3 - 10*pb=1(2 - 10*pb~—1) the CMS experiment

will discover at> 50 level standard Higgs boson with a masgs = 110 GeV with a probability 96(73) percent.

7 Conclusions

In this paper the discussion on the observation of new phenomena s restricted to the testing of simple hypothesesin
the case of the predicted valuds and NV, and the observable value As is stressed in [5], the precise hypothesis
testing should not be done by forming a traditional confidence interval and simply checking whether or not the
precise hypothesis is compatible with the confidence interval. A confidence interval is usually of considerable
importance in determining where the unknown parameter is likely to be, given that the alternative hypothesis is

true, but it is not useful in determining whether or not a precise null hypothesis is true.

To compare several criteria used for the hypotheses testing, we employ as a method that allows one to construct the

rejection regions via the determination the probability distributions of these statistics by Monte-Carlo calculations,

3) The approximation of Poisson distribution by Gaussian for tails with area close to or lesa ghafor values of N, and

N, under consideration gives strong distinction in determinatioh-efa.



so direct calculations of probabilities distributions. The equal-tailed test was used to compare the criteria. An
equal probabilities test is proposed to estimate the uncertainty in separation of two hypotheses about observability
of predicted phenomenon in planned experiment. We also consider a probability of discovery as a quantity for
comparison of proposals for future search experiments. The methods were used to draw a conclusion on the

observability of some predicted phenomena [4, 9].
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Table 1: The dependence@fand determined by using the equal-tailed test/dnand N, for S; = 5; « is the

area of intersection of probability distributiorig(x) and f1 ().

N, Ny «@ 16} K

5 1 0.0620| 0.0803| 0.1423
10 4 0.0316| 0.0511| 0.0828
15 9 0.0198| 0.0415| 0.0564
20 16 | 0.0141| 0.0367| 0.0448
25 25 | 0.0162| 0.0225| 0.0383
30 36 | 0.0125| 0.0225| 0.0333
35 49 | 0.0139| 0.0164| 0.0303
40 64 | 0.0114| 0.0171| 0.0278
45 81 | 0.0124| 0.0136| 0.0260
50 100 | 0.0106| 0.0143| 0.0245
55 121 | 0.0114| 0.0120| 0.0234
60 144 0.0100| 0.0126| 0.0224
65 169 | 0.0106| 0.0109| 0.0216
70 196 | 0.0095| 0.0115| 0.0209
75 2251 0.0101| 0.0102| 0.0203
80 256 | 0.0091| 0.0107| 0.0198
85 289 | 0.0096| 0.0097| 0.0193
90 324 0.0088| 0.0101| 0.0189
95 361 | 0.0081| 0.0106| 0.0185
100 | 400 | 0.0086| 0.0097| 0.0182
150 | 900 | 0.0078| 0.0084| 0.0162
500 | 10* | 0.0068| 0.0068| 0.0136
5000 | 10° | 0.0062| 0.0065| 0.0125
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Table 2: The dependence®fandg determined by using the equal-tailed test'énand N, for S; ~ 5. Herex

is the area of intersection of probability distributiofygz) and f ().

N Ny «@ I} K

26 |1 0.519-107° | 0.102-10=* | 0.154-10~*
29 | 4 0.661-10"% | 0.764-10"* | 0.142-1073
33 |9 0.127-1072 | 0.439-1073 | 0.440- 1073
37 |16 | 0.426-107% | 0.567-1072 | 0.993-1073
41 |25 | 0.648-1072 | 0.118-1072 | 0.172-102
45 |36 | 0.929-1073 | 0.193-1072 | 0.262- 1072
50 |49 |0.133-1072 | 0.185-1072 | 0.314- 1072
55 | 64 |0.178-1072 | 0.179-102 | 0.357- 1072
100 | 300 | 0.317-10"2 | 0.428-10"2 | 0.735- 1072
150 | 750 | 0.445-1072 | 0.450- 1072 | 0.894 - 102
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Table 3: The dependence®fand determined by using equal-tailed testdp and NV, for 57 = 2, 51 = 3,
S1 =4,51 =6 andS; = 8. Herex is the area of intersection of probability distributiofig) and f1 (z)

Si Ny | B K

®

2 1 0.199 0.265 0.4634
4 0.192 0.216 0.4061

9 0.184 0.199 0.3817

CDCD-PI\)Z

16 | 0.179 0.188 0.3680
oo | 0.1587 0.1587 0.3174

4 0.0687 0.216 0.2408
9 0.0917 0.123 0.2159
12 | 16 | 0.0722 0.131 0.1952

00
3 |3 1 0.0906 0.263 0.3184
6
9

oo | oo | 0.0668 0.0668 0.1336

4 |4 1 0.0400 0.263 0.2050
8 4 0.0459 0.110 0.1406
12 | 9 0.0424 0.0735 0.1130
16 | 16 | 0.0407 0.0572 0.0977
oo | oo | 0.0228 0.0228 0.0456

6 |6 1 0.0301 0.0806 0.1008
12 | 4 0.0217 0.0217 0.0434
18 | 9 0.0089 0.0224 0.0271
24 | 16 | 0.00751 | 0.0132 0.0198
oo | oo | 0.00135 | 0.00135 | 0.0027

8 |8 1 0.0061 0.0822 0.0402
16 | 4 0.0049 0.0081 0.0131
24 | 9 0.0016 0.0052 0.00567
32 | 16 | 0.00128 | 0.00237 | 0.00331

oo | oo | 0.000032| 0.000032| 0.000064
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Discussion

Louis Lyons: Would you mind explaining how you derived the formula for “significan§eg; ?

Sergei Bityukov: Let us draw two Poisson distributions with parameteys= N, andus = N + Np. Let
N, be large enough to approximate these distributions by normal distributigps, o1) and A (i, 02), where
o1 = /pu1 andos = /2. The transformation of the distributions to standard normal distribution (see Fig.11) and

exploitation of the equalities

To — Np _ T — (Ns-f—Nb)
V' Ny VN5 + Ny

Ty =

allows one to find the pointgy, = /N, + Ny+/ N, and, correspondingly;; = +/Ns + Ny — +/Np. It allows us
to use both the language of probability and the language of standard deviations. Note that in this approximation an

equal-tailed test coincides with equal probabilities test.

N(0,1) / ‘\\ N(0,1)

Figure 11: A sketch of transformation of Poisson probability distributions to standard normal probability density

function.
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