
Available on CMS information server CMS NOTE 1999/028

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note
28 April 1999

APV logic simulations

N. Marinelli

Imperial College, London, UK

Abstract

The amount of data in the CMS inner tracker system at the LHC interaction rate is so large that it
cannot be read out at each bunch crossing. A pipeline memory is then needed to store the data at
the front–end level until a Level 1 Trigger accept signal marks the interesting data which will then be
read out. Due to the random arrival of triggers with a maximum average rate of 100kHz a queue may
develop in the pipeline which in the end can become full and cause errors. Some triggers must then
be vetoed.

In the present version of the chip to be used in the Tracker read–out, the APV6, the memory (storage,
marking of interesting data, read–out and clearing) is governed by a very complex embedded logic:
precise predictions concerning the inefficiency due to vetoing the triggers can be done only by means
of computer simulation.

This document is mainly intended to give an extensive description of the logic and to present the
results obtained by running an updated version of the simulation.

A further generation of the chip, the APV25 (based on silicon submicron technology) is under de-
velopment: its digital logic will be simplified with respect to the APV6. Results on the efficiency
expected from the APV25 are also shown.

1 Introduction
The APV6 front–end chip is equipped with 128 analogue channels, each of which contains a preamplifier–shaper
stage (CR–RC) with a peaking time of 50 ns followed by a pipeline memory 160 locations deep where the data can
be written at the LHC 40 MHz rate so that the memory always contains a record of the most recent beam crossing
the chip has sensed.

Writing and reading of data in the pipeline are governed by two pointers, WRITE and READ, which circulate in
the pipeline jumping from cell to cell clocked by the LHC 40 MHz clock. The two pointers are separated in time
by a Level 1 Trigger Latency, so that the READ pointer always falls in the cell where data have been written a
Latency before. If a L1 Accept occurs the cell corresponding to the READ pointer value is marked as interesting.

The addresses of interesting cells are stored in a FIFO memory 18 locations deep: data from these cells will be
read out asynchronously in the order the triggers were received.

Data read–out can be performed in two different modes: “peak mode” and “deconvolution mode”. In peak mode
only the peak value of the signal coming from the preamplifier–shaper is sampled in the pipeline, so only one cell
per event is needed.

In deconvolution mode, where the complex APV logic comes in, the signal from the preamplifier–shaper is sampled
(see Fig. 1) off the peak. The three samples are combined by the APSP (Analogue Pulse Signal Processing)
deconvolution filter which performs a weighted sum obtaining a signal with a peaking time of 25 ns [1].

-10

0

10

20

30

40

0 25 50 75 100 125 150 175 200

ns

P
ul

se
 H

ei
gh

t (
A

rb
itr

ar
y

un
its

)

1 2

3

Figure 1: The three samples stored in the pipeline for deconvolution.

After the data have been processed by the APSP they are read out through a 20 MHz multiplexer, so that two APV6
can be read via one analogue link with an external 40 MHz multiplexer.

Since the total time required to perform the read–out of one event is 7µs and the maximum average trigger rate
foreseen at CMS is 100 kHz with Poisson fluctuations, at some point the pipeline, or the FIFO, can become full
causing an error condition with consequent loss of data. Such a condition is recoverable only by resetting the chip.

The occurrence of such failures must be avoided. The possibility of vetoing those triggers which could cause an
error condition by simulating the chip in real time with an FPGA has been already considered and accepted in
the past [2]. Such a state machine simulation would indeed provide exact knowledge about the current state of
the pipeline and FIFO. The other possible strategy would be monitoring the state of the chips by using an APV6
external to the system. Unfortunately the diagnostic which can be performed in this way is not satisfactory, since
no information about the state of the FIFO can be obtained nor information about which location the data should
have been stored.

Vetoing the triggers leads of course to some inefficiency but it is certainly the best strategy to be adopted, in order
to avoid dead time and loss of data due to the reset.

It is then mandatory to make a good estimate of the magnitude of such inefficiency; due to the complex logic

2

embedded in the APV6, this information is obtainable only by modelling the logic with a computer program.

2 APV6 pipeline logic

Increment TR Increment WT

Is
the cell

already full

?

Is
the clock

cycle multiple
of 70 ?

Was it the last
sample in the
event ?

Read the first
address from

the FIFO if any

Did it occur

ready to be cleared

Jump to
next empty

cell

Yes

No

Yes

No

No

Yes

Is
the pair of

trigger pointer
Yes Clear the

pair of cells

No

Has a trigger been
accepted during the

previous clock cycle ?

in an even cell

Mark the cell
and the next

one

Store in FIFO
the 1st address

of the pair

Has a trigger been

in an even cell
?

?

Mark the cell
corresponding

to the present
value of TR

Store in FIFO
the address

Store in FIFO
the 3rd address

Is

?

a L1A now
there Is the TR

pointer
located in
an even
cell ?

No

No

Yes Yes

No

Yes Yes
Mark the
cell and
the next

one

Store in FIFO
the 1st address

of the pair

Store in FIFO
the address

Mark the

cellNo

No

already full

Is
the cell

?

Jump to
next empty

cell
Yes

No

Yes Yes

No

of cells

Store in FIFO
the 2nd address
of previous pair

cells before the

?

to be cleared
marked as ready

accepted two clock
cycles before ?

Mark the cell
corresponding to

stored the cycle
before (if any) as

the FIFO address

Did it occur

Figure 2: Flow chart of the APV6 logic. WT= write pointer, TR= trigger (read) pointer.

The flow chart shown in Fig. 2 is an attempt to describe in a schematic but complete way the logic the APV6
follows to write data in pipeline locations, mark the interesting cells, perform the read–out and finally clear the

3

cells which have been read out, so that new data can be stored.

The best way to read the flow chart is starting from a Level 1 Accept signal (bottom left hand side of the picture).

The WRITE and READ (or TRIGGER) pointers move in the pipeline every bunch crossing: to preserve the correct
latency full cells are skipped by both the pointers.

On the occurrence of a L1 accept signal, cells are marked as interesting for later read–out: to reduce the amount
of circuitry on the chip, cells are marked in pairs, so a single event takes four cells, one of which doesn’t contain
data. The behaviour of the chip is slightly different depending on where the READ pointer is located (even or odd
cell) when the L1 accept occurs, as can be seen from Fig. 3, so that from two to three clock cycles are needed to
complete the marking and three clock cycles to store the addresses of the marked cells.

O

E O E O E O E

X

O E O E O E

X OXa)

b)

L1

Read pointer

O

X XX

Figure 3: Marking of cells in pairs. L1 accept occurs: a) in an even cell, b) in an odd cell.

Every 1.75µs the chip checks if there are data waiting to be read out: if yes, the first address stored in the FIFO is
read out. Reading the content of the corresponding cell takes 1.75µs. After the readout of the three samples have
been completed (5.25µs), the APSP operation takes another 1.75µs to perform the deconvolution. Therefore each
event is read out in a total time of 7µs. If further cells are waiting to be read out another readout cycle begins
immediately after. If no more cells are waiting to be read out, the chip reverts to checking every 1.75µs.

Once the cells have been read out they are ready to be cleared: cells are cleared in pairs but this only happens when
the READ pointer is located in the empty cell immediately on the right of a ready-to-be-cleared pair of cells. This
action, needed in order to preserve the correct latency, has the following consequence: if two consecutive triggers
(see next paragraph) are received, the cells belonging to the first event will be cleared only after the second event
has been cleared. This happens because only in this way can the READ pointer be directly after the cells belonging
to the first event (see Fig. 4).

Cells being cleared

1 2 3

1 2 3

4 5 6

54 6

a)

b)

Cells waiting to be read

Cells waiting to be cleared

Figure 4: Adjacent events stored in the pipeline. Cells are numbered in the order they have been marked: a) Cells
1,2 from the first event will be cleared as soon as the Read pointer will, on the next cycle, be on their right; b)
Cells 1,2,3 from the first event are ready to be cleared but they will wait until the second event will be read out and
cleared.

This explains why bursts of consecutive triggers can fill the pipeline even if only one event is waiting to be read

4

out. This is why the behaviour of the APV6 running in deconvolution mode is not predictable without support of
a simulation.

As already pointed out in the past [2], triggers coming less than three bunch crossings apart must be vetoed for
two reasons: conceptually, if the chip is operated in deconvolution mode two consecutive triggers would mean
overwriting data; also the chip has been designed to sense two consecutive triggers like a ’11’ signal on the trigger
line and two triggers two bunch crossing apart like a ’101’ signal. These signals have respectively the meaning
of a ’calibrate pulse request’ and ’reset signal’. So ’consecutive’ triggers must always be intended to be at least 3
bunch crossings apart.

The pipeline is 160 locations deep, but its effective depth is 160 minus the latency value. Up to a latency of 132
bunch crossings, up to 6 events can be stored in the pipeline, the number being limited by the number of FIFO
locations. At higher latency the number of events is limited by the number of cells available.

The information concerning the address of the third cell (sample) is contained in the APV6 output data stream(Fig. 5).
This allows to confirm the operation of the logic and, in the final system, to verify early that the synchronization
has not been lost. Eight bits, after the digital header, are used to encode the address (Gray code).

Figure 5: APV6 output data stream.

3 Simulation and related checks
The logic described in the previous sections has been encoded in the C language, updating the original simula-
tion [2]. From the comparison between the simulated results and the behaviour of the chip in the laboratory, the
new simulation appears to reproduce correctly the behaviour of the real APV6.

A very simple experimental setup has been used as a first attempt. A programmable multi–channel pulse generator,
SEQSI (SEQuencer for Silicon Investigation) [3] has been used to trigger an APV6 with a short sequence of
random triggers (100 kHz average rate). The APV output data streams have been observed on an oscilloscope and
the addresses of samples have been inferred from the digital header.

The same sequence of about 50 random triggers has been used as input for the simulation program and a compar-
ison between the addresses (real and simulated) of the marked cells has then been made. With the old simulation
no agreement was found even with such a short sequence of triggers: the simulation could reproduce only the ad-
dresses of the first few events. The problem has now been solved and with the revised simulation the agreement is
very good: the simulation predicts correctly the whole sequence of addresses produced by the chip and it predicts
an error (due to FIFO full) exactly when the chip experiences it (this error can be detected by means of the internal
watchdog logic which switches low the 3rd bit in the digital header of the data frame).

The main improvement introduced in the new simulation is related to the timing used to read out and clear the cells.
Indeed in the old version cells were marked as ready to be cleared as soon as their addresses were read out from
the FIFO, without taking into account that the actual reading time needed for the electronics to read the content of
each cell is 1.75µs. This implied a too fast clearing of the pipeline and as a consequence the chip inefficiency was
underestimated.

The time until the occurrence of a failure has been measured as a function of the mean L1 trigger rate and assuming
a L1 latency of 130 bunch crossings, by counting the number of clock cycles (25 ns) between a reset and a failure.

5

At each failure the APV6 must be reset and the counting loop restarted. The distributions showed in Fig. 6 have
been obtained by observing 10K failures each.

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000
x 10

2

Number of clock cycles until failure

100 kHz
90 kHz
80 kHz
70 kHz

Figure 6: APV6 failure rate.

The distribution obtained at the average L1 trigger rate of 100kHz shows a fast rise at low values of the time
followed by an exponential decay which can be fit with the following function (see also Fig. 7):

f(x) = p1 e−x/p2

[
1− e−(x/p3)

2
]

(1)

Since each entry in the histogram is determined on the basis of an initially empty chip (indeed after each failure
the chip must be reset), the shape of the distribution can be given the following statistical meaning: starting from
the empty state, the chip takes some time to reach situation in which its memory has an “average occupancy”. Not
surprisingly this time is comparable to (and longer than) the average time of arrival of 6 triggers (6×400 clocks
= 60 µs), 6 being the buffer length. Once the average state has been reached, the probability for the chip to fail
becomes time-independent or, in other words, it is totally uncorrelated with the fact that the chip has been reset,
being only related to the random occurrence of a bad sequence of triggers, where “bad” means with respect to
the “average” condition of the memory. The decay constant of the exponential (p2=85080±1003 from the fit,
corresponding to 2.13±0.03 ms) can then be interpreted as the “average lifetime” of the chip before failing.

The fit has been performed also at 90 and 80 kHz, finding respectively decay constant 178240±3453 clocks
(4.45±0.09 ms) and 434030± 27925 clocks (10.7±0.7 ms).

4 Trigger veto: inefficiency
The fraction of data lost by vetoing triggers which otherwise would cause an error condition can then be estimated.
By means of the simulation the number of full cells in the pipeline and in the FIFO is known at each time so it
is relatively easy to determine when a trigger must be discarded. An FPGA will simulate the APV in real time in

6

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000
x 10

2

Number of clock cycles until failure

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

Figure 7: Rate of failures at 100 kHz. The smooth curve on the plot is the function [1], the value of the parameters
obtained from the fit being p1 = 117± 2, p2 = 85081± 1003, p3 = 2710± 188, withχ2/d.o.f=0.88. The plot on the
right upper corner shows a zoomed view of the rise.

the real system, so that an inhibit signal can be sent back to the global L1 trigger or locally to the unit (Front End
Controller) which distributes the L1 signals to the front–end.

The new results are shown in Fig. 8 as a function of the mean trigger rate. At 100 kHz and for a latency of 128
bunch crossings the new estimate of the inefficiency is about one order of magnitude larger than was believed
before (0.8% instead of about 0.08%) and it is now larger than the loss (0.5%) due to the inhibition of triggers in
the two bunch crossings following each trigger. At larger latencies the fraction of data lost reaches values of the
order of1.5%. This implies an increase of the CMS L1 latency would incur a significant penalty. By using the old
simulation it was envisaged that, by reducing the buffer depth to 5 events, a Latency of 136 bunch crossings could
be afforded [5] with an acceptable loss of data (about0.5% at 100 kHz). This of course is no longer the case. The
results obtained with the revised simulation definitely tend to discourage this option.

5 Expectations from the APV25
The most appealing feature of devices built with the 0.25µm process is their intrinsic high radiation hardness,
which is mandatory, as is well known, in the CMS Tracker environment. The first prototype of APV25 is now
under way.

The APV25 is basically structured as the APV6 but includes some new features in each of its stages [4]. In
particular the size of the cells forming the pipeline are significantly smaller (now 35×13µm2) allowing saving of
space to allocate circuitry.

The space saving is then partially used to make a longer FIFO (from 18 to 32 locations) and a longer pipeline
(from 160 to 192 cells). On the other hand the cell pairing in the pipeline can be avoided. This constitutes a
major improvment from the logic point of view, since the cells can be marked one by one so that each event takes

7

10
-4

10
-3

10
-2

70 80 90 100

Loss due to two bx
 veto after each trigger

Latency = 126
Latency = 128
Latency = 130
Latency = 134

Trigger rate (kHz)

F
ra

ct
io

n
of

 lo
st

 tr
ig

ge
rs

Figure 8: Fractional loss of events caused by vetoing triggers which would cause a memory overflow. The line on
the plot represents the loss due to the rejection of triggers coming less than 3 bunch crossings apart.

three cells instead of four. They are also cleared individually, implying a drastic simplification of the logic and
consequently of its description.

Within the new configuration, the maximum number of event which can be queued at all times is 10, the number
being limited, of course, by the number of locations available in the FIFO for writing 3 addresses per event. With
the pipeline 192 cells deep, 10 events can be stored up to a L1 latency of about 160 bunch crossings.

The simplified logic has been encoded in a C++ code and the results obtained confirm the expectations: the proba-
bility of failing because of full FIFO or full pipeline should be much lower and as a consequence, the inefficiency
caused by vetoing triggers (following a real state machine emulation) is very low.

As in the APV6 case, the behaviour of the chip has been studied as a function of the mean L1 trigger rate and
latency. At 100 kHz and with a latency of 130 bunch crossings the estimated average time until a failure is about
40ms.

If the state machine simulation is exploited to veto the triggers which would cause the failures, the loss of data is
independent of the latency up to a value of about 146 bunch crossings since up to that value the limiting factor is
the length of the FIFO and not the number of cells available in the pipeline. At higher values of the latency, the
number of cells available in the pipeline (192 minus the latency) decreases and becomes critical. In the range of
latencies where the APV6 can operate the loss measured in the APV25 is of course remarkably lower, as can be
seen in Fig. 9. The results shown have been obtained on the basis of 100K triggers sent to the chip, corresponding
to a running time of 1 sec.

At lower trigger rates, the situation is of course even better: at 90kHz the fraction of triggers vetoed is 4×10−5

(100K sent in 1.1 sec) and at 80 kHz, it has been necessary to run the simulation for a longer time (∼351K triggers
in 4.4 sec) to veto a trigger.

6 Future plans
The very simple experimental setup used to perform the comparison between the APV6 results and the simulation
did not allow 1) feeding the real chip with long sequences of triggers, 2) working in a systematic way by acquiring
more statistics.

It is indeed very important to understand what happens with longer sequences: the simulation simply implements
the logic in the chip and the major timing features, but the real chip could, in the long term, show other subtle

8

10
-4

10
-3

125 130 135 140 145 150 155 160

L1 latency (bx)

F
ra

ct
io

n
of

 lo
st

 tr
ig

ge
rs

Figure 9: APV25: Fraction of triggers lost if a veto based on state machine emulation is applied as a function of
L1 latency, at 100kHz average trigger rate.

features which are not implemented and that could be hard to implement, at least in the relatively simple C code
available now. As an example, the time the pointers, especially the Read pointer, take to skip full cells, could be
non–negligible if there are too many full cells to be skipped at one time. Another very interesting check could be
testing the agreement between the simulation and the chip when triggers are vetoed. Indeed after having checked
that the simulation reproduces the failures of the chip correctly, the next step is to see if they still agree after a veto.
In such a test the veto would be simply performed by not sending that particular trigger which in the simulation
causes the error.

Therefore the next big step to be taken is to build in the lab a full acquisition chain making use of the new PMC
FED version [6]: data coming from a continuously running APV6 will be collected by the FED, analysed off-line
and compared with the result coming from the simulation.

The final goal is to implement the logic in a Field Programmable Gate Array which will run in real time syn-
chronous with all the APV chips in system. Not only can the FPGA be used to determine, on an event–by–event
basis, when vetoing a trigger is needed, but it represents the main tool to monitor the global synchronization of
the chips in the tracker system. To achieve both these purposes, an APV simulator could be located on each of
the Front End Controller modules: trigger signals are indeed distributed from the TTC system via the FEC to the
front–end. Therefore if a trigger needs to be vetoed, the FEC is the best place to perform this action. An intercom-
munication between FECs and the Front End Drivers must also be planned to allow information from the FPGA
running the APV6 simulation to be sent to the FEDs to cross check the state of cells in the real chips.

7 Conclusions
An improved C++ code simulating the APV6 logic, predicts higher fractions of data lost when vetoing triggers
to avoid buffer overflow. At 100 kHz and with a Level 1 Trigger latency of 128 bunch crossings the inefficiency
foreseen now is0.8%. The new figure is still acceptable if the latency is kept within 130 bunch crossings.

Further checks will be performed on the existing simulation before producing a new one suitable to be downloaded
in an FPGA real time state machine simulation.

At the same time a first study of the behaviour of the next generation of the chip, the APV25, has been performed. A
longer pipeline gives more freedom to choose the value of the L1 latency and the different hardware implementation
of the pipeline, without paired cells, gives the optimal condition of marking and clearing cells. The overall result
is an object which appears to be much more stable and efficient.

9

Acknowledgment
I would like to thank G. Hall, B. Macevoy and M. Raymond at Imperial College and to M. French and L. Jones at
Rutherford Appleton Laboratory for the useful discussions we had about the subject.

References
[1] “The deconvolution method of fast pulse shaping at hadron collider”, S. Gadomski et al.,

Nucl.Instrum.Meth.A320:217-227,1992;
“A novel technique for fast pulse shaping using a slow amplifier at LHC”, S. Gadomskiet al.,
Nucl.Instrum.Meth.A326:112-119,1993

[2] “APV6 pipeline emulations”, M. Millmore, CMS Note 1997/045.

[3] “SEQSI user’s manual”, M. Morrissey (RAL)

[4] “0.25 µ m APV Development Status”, M. French, talk given at the CMS Electronics Meeting, 01/02/1999.

[5] ”APV6 pipeline emulation”, N. Marinelli, talk given at the CMS Electronics Meeting, 29/04/1998.

[6] CMS Front End Driver User’s Manual, http://hepnts1.rl.ac.uk/CMSfed/Default.htm.

10

