
J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

Published by Institute of Physics Publishing for SISSA/ISAS

Received: November 24, 2003

Accepted: February 23, 2004

SHERPA 1.α, a proof-of-concept version

Tanju Gleisberg,a Stefan Höche,a Frank Krauss,ab Andreas Schälicke,a Steffen

Schumanna and Jan-Christopher Wintera

aInstitut für Theoretische Physik, TU Dresden

01062 Dresden, Germany
bTheory Division, CERN

CH-1211 Geneva 23, Switzerland

E-mail: tanju@theory.phy.tu-dresden.de, hoeche@theory.phy.tu-dresden.de,

krauss@theory.phy.tu-dresden.de, dreas@theory.phy.tu-dresden.de,

steffen@theory.phy.tu-dresden.de, winter@theory.phy.tu-dresden.de

Abstract: The new multipurpose event-generation framework SHERPA, acronym for

Simulation for High-Energy Reactions of PArticles, is presented. It is entirely written in

the object-oriented programming language C++. In its current form, it is able to com-

pletely simulate electron-positron and unresolved photon-photon collisions at high energies.

Also, fully hadronic collisions, such as, e.g., proton-anti-proton, proton-proton, or resolved

photon-photon reactions, can be described.

Keywords: LEP HERA and SLC Physics, QCD, Phenomenological Models, Hadronic

Colliders.

c© SISSA/ISAS 2004 http://jhep.sissa.it/archive/papers/jhep022004056/jhep022004056.pdf

mailto:tanju@theory.phy.tu-dresden.de
mailto:hoeche@theory.phy.tu-dresden.de
mailto:krauss@theory.phy.tu-dresden.de
mailto:dreas@theory.phy.tu-dresden.de
mailto:steffen@theory.phy.tu-dresden.de
mailto:winter@theory.phy.tu-dresden.de
http://jhep.sissa.it/stdsearch?keywords=LEP_HERA_and_SLC_Physics+QCD+Phenomenological_Models+Hadronic_Colliders
http://jhep.sissa.it/stdsearch?keywords=LEP_HERA_and_SLC_Physics+QCD+Phenomenological_Models+Hadronic_Colliders

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

Contents

1. Introduction 1

2. Overall event-generation framework 4

3. Tools for event generation 7

4. Physics set-up 9

5. Matrix elements and phase space integration 12

6. Decays of unstable particles 15

7. Multiple interactions 16

8. The interface to fragmentation 17

9. Hadronisation & soft physics aspects 19

10. Summary and outlook 21

1. Introduction

To a large amount, modern particle physics centres around accelerator experiments, where

high-energetic particles are brought to collision. With rising energies, these interactions

become more and more violent, leading to an increasing number of particles being pro-

duced. To confront the resulting experimental data with theoretical models, a systematic

understanding of such multi-particle production processes is of paramount importance. A

full, quantum-mechanically correct, treatment is, at the moment, out of reach. There are

two reasons for this.

First of all, there only is a limited understanding of the non-perturbative phase of QCD,

or, in other words, of how colourless hadrons are built from the coloured quarks and gluons.

This is especially true for phenomena such as hadronisation or for questions related to the

impact of the partonic substructure of the colliding hadrons on the pattern of multiple

interactions. In all such cases, phenomenological models for the transition from hadrons

to partons or vice versa have to be applied with parameters to be fitted. This clearly puts

a constraint on a conceptual understanding of high-energy particle production processes.

On the other hand, even considering the, in principle, well-understood perturbative phase

of scattering processes alone, there are limits on our technical abilities to calculate all

amplitudes that contribute to a given process. This is due to the fact that even at the

– 1 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

tree-level the number of Feynman diagrams grows factorially with the number of particles

involved. Moreover, at higher orders of the perturbative evolution new difficulties arise,

which are connected for instance with the evaluation of multi-leg loop integrals.

These shortcomings necessitate other solutions, such as simulation programs. These

event generators decompose the full scattering process into a sequence of different stages,

which are usually characterised by different energy scales. The past and current success

of event generators, like Pythia [1] or Herwig [2], in describing a full wealth of various

data justifies this decomposition intrinsic to all such programs. As a by-product, the

decomposition of events into distinguishable, more or less independent phases opens a

path to test the underlying assumptions on the dynamics of particle interactions at the

corresponding scales. These assumptions, in turn, can be modified and new models can

be included on all scales. This property turns event generators into the perfect tool to

bridge the gap between experimental data and theoretical predictions. It renders them

indispensable for the analyses and planning of current and future experiments.

To meet the new challenges posed by the new experiments, for instance Tevatron

at Fermilab and especially LHC at CERN, the traditional event generators Pythia and

Herwig, so far programmed in Fortran, are currently being re-written in the modern,

object-oriented programming language C++. Their new versions will be called Pythia7 [3]

and Herwig++ [4], respectively. The decision to re-write them from scratch is based on two

reasons.

First, new features and models concerning the simulation of particle physics at the

shifting energy frontier need to be included. In fact this still is an on-going issue also for

the Fortran versions (see for instance [5, 6]).

Furthermore, and maybe more importantly, there is a wide-spread belief that the old

Fortran codes cannot easily be maintained or extended. On top of that, the software

paradigm of the new experiments has already shifted to object-orientation, more specif-

ically, to C++ as programming language. On the other hand, by the virtue of being de-

composed into nearly independent phases, the simulation of high-energy particle reactions

lends itself to modularisation and, thus, to an object-oriented programming style. In this

respect it is also natural to further disentangle management and physics issues in event

generation. In fact, both Pythia7 and Herwig++ will fully rely on the same management

structure, called ThePEG [7]. It includes items such as the event record, mathematical func-

tions, management functionalities, etc.. Using this common event-generation framework,

Pythia7 and Herwig++ will just provide their respective, different modules for physics

simulation, for instance the implementations of their hadronisation models.

In addition to these two re-writes of their older, Fortran-based counterparts, in the

past few years a new event generator, called SHERPA, acronym for Simulation for High-

Energy Reactions of PArticles, has been developed independently. From the beginning, it

entirely has been written in C++, mainly due to the same reasons already named above. A

number of paradigms have been the guiding principles in the construction of this code:

1. Modularity: SHERPA only provides the framework for event generation. The physics is-

sues related to the various phases of event generation are handled by specific, physics-

– 2 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

oriented modules. These modules, however, rely on a number of service modules that

incorporate basic organisational, mathematical or physics tools, or information con-

cerning the physics environment.

2. Separation of interface and implementation: Within SHERPA, the specific physics

modules are interfaced through corresponding (handler) classes, which are sufficiently

abstract to support an easy inclusion of other modules with similar tasks.

3. Bottom-to-top approach: Before the interfaces (abstract handlers) are implemented,

the corresponding physics module has been programmed and tested. This is especially

true for modules like AMEGIC++ [8], providing a full-fledged matrix-element generator

for the evaluation of multi-particle production cross sections, or APACIC++ [9], hosting

a parton shower module. In general, these modules can be used as stand-alone codes.

They also can be implemented into other event-generation frameworks with minor

modifications only, as long as some of the underlying mathematical and physics tools

are supplemented as well.

The goal of this publication is to give a brief status report of SHERPA’s first α-version.

It already incorporates enough functionality to make SHERPA a useful tool for a number of

physics applications.

The outline of this paper is as follows: in section 2 the overall generation framework

is briefly introduced. This basically amounts to a discussion of how the framework and

its physics modules are initialised, and how these modules are handed over to the actual

event generation. Then, in the next two sections, sections 3 and 4, general tools for event

generation, including for instance the event record, are presented as well as those modules

that specify the physics environment (such as the physics model, beam spectra, or parton

distribution functions), in which the simulation is performed. In the following, the imple-

mentation of some of the event phases reflecting different physics features will be briefly

highlighted. The discussion is commenced with describing the inclusion of hard matrix

elements for jet production etc. (section 5) and for heavy-particle decays such as, e.g.,

top-quark decays, (section 6) into SHERPA. Matrix elements are also needed for the sim-

ulation of multiple hard parton interactions in hadronic collisions. Hence, in section 7 a

brief outlook will be given on how SHERPA will describe such phenomena. In all cases men-

tioned above, the matrix elements may give rise to configurations of jets to be fragmented

by the subsequent parton shower. A salient feature of SHERPA is the implementation of

an algorithm, which merges matrix elements and parton showers respecting the next-to

leading logarithmic accuracy of the parton shower (for details on this algorithm, see [10]).

In section 8, questions related to the inclusion of this algorithm and the interplay with

the parton shower inside the SHERPA framework are discussed. The quick tour through the

event phases will be finished in section 9 with a discussion of issues related to soft QCD,

e.g. hadronisation, beam jets, etc.. Finally, in section 10, conclusions will be drawn and a

further outlook will be given.

– 3 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

2. Overall event-generation framework

In SHERPA, the various tasks related to event generation are encapsulated in a number

of specific modules. From a structural point of view, the set-up of the event-generation

framework condenses into the problem to define the rules for the interplay of these modules

and to implement them. The flexibility to do so is increased by a separation of the interfaces

defining this interplay from the specific modules — the implementations of physics tasks.1

How this is realized within SHERPA can be exemplified by the hard matrix elements.

There are two implementations, which can be used to generate hard partonic subpro-

cesses. One of them is restricted to a list of analytically known 2 → 2 processes, the other

one is the multipurpose parton-level generator AMEGIC++. However different they are, in

the framework of event generation they have to calculate total cross sections for the hard

subprocesses and they must provide single weighted or unweighted events. In SHERPA, these

functionalities of both modules are accessible through an interface, the Matrix Element -

Handler. It naturally lives up to the intrinsic differences in these physics implementations.

Without knowing any details about the realization of hard matrix elements in the mod-

ules, they can be plugged anywhere into the event-generation framework by means of this

abstract handler class. To add another module concerned with hard partonic subprocesses,

on the level of SHERPA one would just have to extend the corresponding methods of the

Matrix Element Handler accordingly. This reflects a typical object-oriented design prin-

ciple.

In general, such abstract handler classes encapsulate the specific physics imple-

mentations and are used to interface them with each other. Further examples that

have been implemented so far include the Beam Spectra Handler, the ISR Handler,

the Hard Decay Handler, the Shower Handler, the Beam Remnant Handler and the

Fragmentation Handler. They will be described in the forthcoming sections.

In many cases the underlying physics modules will require some initialisation before

they can be used during event generation. Again, this can be exemplified by the hard

matrix elements. In this case the initialisation basically consists of tasks like the set-up of

matrix elements and phase-space integrators, and of the evaluation of total cross sections.

They define the relative contributions of individual sub-processes in the overall composition

of the hard process part inside the events. It is clear that such tasks have to be performed

in an initialisation phase of an event-generation run. During this phase, SHERPA initialises

the various physics modules selected by the user through the abstract handlers responsible

for them. The specific set-up of a selected module will depend on external, run-specific

parameters, which are read-in from corresponding data files and managed by the same

1Of course, this abstraction is to some extent limited by a kind of linguistic problem: in the implemen-

tation of the physics tasks, a choice has to be made on the terms in which the tasks are formulated. As

a simple example consider four-momenta, clearly a basic ingredient of event generators. In ThePEG, the

choice has been made to represent them as five-vectors, where the fifth component denotes the mass related

to the four-momentum; in contrast, in SHERPA the representation is in terms of plain four-vectors. To use

ThePEG modules within SHERPA requires a translation, which in SHERPA would be performed through the

interface classes. The objects defining the terms in which physics tasks are implemented inside SHERPA are

accumulated in a namespace ATOOLS, cf. section 3. Clearly, all other modules rely on these definitions.

– 4 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � �
� � � � � �
� � � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

! ! ! !
! ! ! !
! ! ! !
! ! ! !" " " " "

" " " " "
" " " " "
" " " " "
" " " " "

#
#
#
#
#

$ $ $ $ $
$ $ $ $ $
$ $ $ $ $
$ $ $ $ $

% % % % %
% % % % %
% % % % %
% % % % %

& & & & &
& & & & &
& & & & &
& & & & &
& & & & &

' ' ' ' '
' ' ' ' '
' ' ' ' '
' ' ' ' '
' ' ' ' '

(((((
(((((
(((((

)))))
)))))
)))))

* * * * *
* * * * *
* * * * *
* * * * *

+ + + + +
+ + + + +
+ + + + +
+ + + + +

, , , , ,
, , , , ,
, , , , ,
, , , , ,

- - - - -
- - - - -
- - - - -
- - - - -

. . . .
. . . .
. . . .
. . . .
. . . .

/ / / /
/ / / /
/ / / /
/ / / /
/ / / /

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

2 2
2 2
2 2
2 2
2 2

3 3
3 3
3 3
3 3
3 3

4 4
4 4
4 4
4 4
4 4
4 4

5 5
5 5
5 5
5 5
5 5
5 56 6 6

6 6 6
6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7
7 7 7
7 7 7

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

9 9 9 9
9 9 9 9
9 9 9 9
9 9 9 9
9 9 9 9 : : : : :

: : : : :
: : : : :
: : : : :
: : : : :

; ; ; ;
; ; ; ;
; ; ; ;
; ; ; ;
; ; ; ;

< < < <
< < < <
< < < <
< < < <
< < < <

= = =
= = =
= = =
= = =
= = =

> > > >
> > > >
> > > >
> > > >
> > > >
> > > >

? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

@ @ @ @
@ @ @ @
@ @ @ @
@ @ @ @
@ @ @ @

A A A A
A A A A
A A A A
A A A A
A A A A

Figure 1: Pictorial representation of the event record. In the left picture, a hadron-hadron collision

is exhibited. Clearly, apart from the hard signal subprocess followed by hard decays of two heavy

unstable particles, it also contains two more hard parton interactions, all of them shown as thick

blobs. The partons are dressed with secondary radiation as well, before the parton ensemble is

transformed into primary hadrons which then decay further. On the right this is translated into

the language of Blobs. Here, each hard matrix-element Blob (red) is equipped with merging Blobs

(green) in the initial and final state which define initial conditions for the parton shower. All extra

partons emitted during the shower evolution are combined in individual shower Blobs (blue). In

the hadronisation Blobs (magenta) colour singlet chains formed by incoming partons are translated

into primary hadrons which might decay further. Each such hadron decay is represented by an

extra Blob.

handler class. The initialisation sequence of these handlers and their physics modules is

organised by a SHERPA-internal Initialization Handler, which also owns the pointers

to the handlers. To add new handlers for completely new physics features, therefore,

necessitates to modify and extend this Initialization Handler.

Having initialised the interfaces to the physics modules, the SHERPA framework is

ready for event generation. As already stated before, the individual events are decom-

posed into separate phases. This decomposition is reflected by SHERPA’s program struc-

ture in the following way: an Event Handler object manages the generation of one single

event by having a list of various Event Phase Handlers acting on the expanding event

record. This process of event generation is formulated in terms of particles connecting

generalised vertices, coined blobs. These Blobs in turn reflect the space-time structure

of the event, each of them has a list of incoming and outgoing particles. In other words,

the blobs are the nodes, the particles are the connecting lines of a network. For a pic-

torial example, confronting a simple hadron-hadron event with its representation through

Blobs, cf. figure 1. An event thus can be represented as a list of Blobs, which in turn

– 5 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

forms SHERPA’s event record.2 The Event Phase Handlers act on this list, by either mod-

ifying the Blobs themselves or by adding new Blobs or by subtracting unwanted ones.

For event generation, the list of Event Phase Handlers is tried on the list of Blobs until

no more action is possible, i.e. until none of the individual Event Phase Handlers finds

an active Blob it can deal with. To illustrate this, consider the following simple exam-

ple:

• First of all, a yet unspecified blob of the type “Signal Process” is added to the so

far empty Blob list. Iterating with the list of Event Phase Handlers the Signal -

Processes phase deals with the single unspecified active Blob, inserting a number

of incoming and outgoing partons through the Matrix Element Handler.

• In the next iteration of the Event Phase Handlers, the Jet Evolution phase steps

over this Blob and adds parton showers to it. To this end, some “ME PS Interface”

Blobs are added as well as some Blobs for the initial- and final-state parton shower,

signified by the types “IS Shower” and “FS Shower”, respectively. Assuming that

an e+e− annihilation into hadrons is simulated, the “IS Shower” Blobs have one

incoming and one outgoing electron each, and, maybe, some outgoing photons as

well. The “Signal Process” as well as the “ME PS Interface” Blobs are switched to

passive by this phase.

• The Hadronisation phase selects out the shower Blobs for the transition of partons

into hadrons. First the Beam Remnant Handler has to fill “Beam Remnant” and

“Bunch” Blobs. In the toy example, both, however, have a simple structure with

one incoming and one outgoing electron each. Now, the Fragmentation Handler

comes into play, adding more blobs of the type “Fragmentation” with a number of

incoming partons and a number of outgoing primary hadrons. All Blobs apart from

the “Fragmentation” ones would be switched to passive now, leaving the outgoing

primary hadrons to be decayed. These decays would be represented by more Blobs

of the type “Hadron Decay”.

The structure elucidated above allows for nearly arbitrary mixtures in the composition of

an event. For example, through the action of the Jet Evolution phase the parton shower

could in principle alternate with a sequence of hard decays on the parton level, or it could

even be invoked in the decay of a heavy hadron.

In figure 2 the Event Phase Handlers implemented so far and their connections to

various interfaces are exhibited.

2SHERPA also provides methods to translate its event record into two other formats, namely into the

common-block structure of HepEvt used, e.g. by the Fortran-based event generators, and into HepMC [11], a

C++-based event record. In fact SHERPA’s event record resembles to some extent the latter one: Blobs of the

former play the role of the GenVertex of the latter, and Particle and GenParticle are similar. This makes

the translation between these formats a pretty simple task. Other formats, like for instance the LesHouches

agreement [12] for the output of parton-level events generated through matrix elements are straightforward

to add.

– 6 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

Event_Phase_Handler

Hadronization

Hadron_Decay_Handler

Fragmentation_Handler

Beam_Remnant_Handler

Shower_Handler

Hard_Decay_Handler

MI_Handler

Matrix_Element_Handler

ISR_Handler

Beam_Spectra_Handler

Multiple_Interactions

Hard_Decays

Jet_Evolution

Hadron_Decays

Event_HandlerInitialization_Handler

Sherpa

Signal_Processes

owns pointer employs object inherited

Figure 2: The Event Phase Handlers and their interfaces, all of which are implemented up to

now in SHERPA.

3. Tools for event generation

In SHERPA, the basic infrastructure for event generation, which is used by other modules,

is centralised in a separate package, called ATOOLS. It contains management, mathematics,

and physics tools.

The organisational tools include, among others, classes to read-in input data, and to

provide parameters and objects that must be globally accessible. During the initialisation

of the SHERPA environment this data-container class is instantiated as a global object,

which is filled and accessed by the other modules in due course. Therefore, if a potential

user wants to include more objects that are needed in very separate corners of the total

framework, he or she would have to include these objects into this class Run Parameters.

Of course, the corresponding access methods have to be provided there as well. SHERPA

offers the possibility to specify a large amount of parameters for a run without recompiling.

To enhance the transparency of the read-in procedure and to contribute to its intuitive

understanding, the variables might be contained in different, user-specified data files in the

following fashion:

KEYWORD = Value .

Within the code, default values can be given for the parameters connected to the keywords.

An example defining, e.g. the physics model, and declaring the Standard Model as the

– 7 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

default choice, reads:

Data_Read dataread(path,file);

std::string model = dataread.GetValue("MODEL",std::string("SM"));

In its instantiation, the dataread-object is given the path and the file name for the read-in

procedure.

A second group provides mathematical service classes, including:

• a representation of three- and four-vectors;

• a class for real or complex matrices;

• a representation of Lorentz-transformations (boosts and rotations);

• abstract definitions of functions or grids which can be integrated or inverted;

• a class for simple histograms and operations on them;

• the random number generator.

This group of objects defines the mathematical terms in which SHERPA generates events.

The basic physics terms are also part of the ATOOLS package and cover a wide range

of applications. In the following, some of the corresponding basic classes will be briefly

described:

• Particles are described by some, in principle, unchangeable characteristics: their

quantum numbers, their mass and width, etc.. All these properties are contained

in a Flavour object. Within SHERPA, also pseudo-flavours, for instance “jet”, are

available. Hence, a Flavour object might serve as a container for other Flavours. In

SHERPA the particles and their properties are collected in two data files, Particle.dat

and Hadron.dat. A typical line in these files looks like:

kf Mass Width 3*e Y SU(3) 2*Spin maj on stbl m on Name

1 .01 .0 -1 -1 1 1 0 1 1 0 d

Apart from the mass, width and spin, the electrical charge, the third component of

the weak iso-spin, and the ability to participate in strong interactions are defined.

In addition, for fermions, the user should provide information whether a specific

Flavour describes Majorana particles or not. Also, information has to be provided,

whether individual particles should be included at all, whether they are stable or not,

and whether their mass should be taken into account in matrix-element calculations.3

Finally, the particles’ names should be defined as well in a form that will show up in

the event record.

3It should be mentioned here that this mass enters in the phase space and in the propagators. For the

Yukawa couplings these masses, if switched on, serve as default value, but can be overwritten during the

initialisation of the physics models.

– 8 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

• In some cases, the user might wish to have, e.g., the matrix-element generator(s) to

calculate the width of a Flavour, thus overwriting the one given in Particle.dat.

To this end, another data file, by default called Decays.dat, might be read-in. Then,

for the corresponding particles, decay tables are constructed and evaluated. They

are implemented as Decay Table objects.

• The particles, which finally show up in the generated event, are represented through

a class Particle. In addition to the data objects specifying its properties, the

Particles are characterised by their four-momenta, by the vertices (Blobs) in which

they are created or end, and by the flow of quantum numbers associated with them,

such as colour.

In addition to the classes outlined above, the ATOOLS package includes classes which define

some physics observables or which can be used to select events. These Selector classes

are also needed for the integration over the phase space of the final state in hard subpro-

cesses. One of them is providing a definition of jets according to the k⊥- (or Durham-)

algorithm [13] in various collision types. It is of special importance for the SHERPA package,

since it is used for the merging procedure of matrix elements and the parton shower, an

unique feature of SHERPA.4

4. Physics set-up

In this section those packages are presented that define the overall physics set-up. Clearly,

this contains the specification of the physics model, in which cross sections are calculated

or events are generated. Such a physics model defines the set of particles in it as well

as most of their properties, including their mutual interactions. Equally important is a

declaration of which type of process is discussed. Basically this amounts to a definition

of incoming beams and their structures, both in terms of their respective energy spread

and in terms of their eventual partonic substructure, which can be parametrised by parton

distribution functions. In the following, therefore, the packages MODEL, BEAM, and PDF are

briefly introduced. Within SHERPA they define the physics model, the structure of the

incoming beams and the eventual inner structure of the colliding particles, respectively.

The package MODEL encapsulates abstract structures to specify arbitrary parameter

sets of physical models, e.g. coupling constants, Yukawa masses, decay widths, etc.. For

a certain physical model, for instance the Standard Model or its minimal supersymmetric

extension, all parameters are represented by a Model object derived from the abstract base

class Model Base. This base class and its explicit instances mainly serve as containers and

handle the input and the access to the parameters. The main ingredients of this class are

lists of four standard parameter types:

• ScalarNumber for integer constants,

4In fact, recently first attempts into this direction within the framework of Pythia and Herwig have

been reported [14]. The main difference with respect to SHERPA, however, is that in SHERPA the merging is

achieved in one package for all types of processes.

– 9 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

• ScalarConstant for floating point (double precision) constants,

• ScalarFunction for real single-parameter functions, derived from the abstract class

ATOOLS::Function Base, and

• ComplexMatrix for a matrix of complex floating point (double precision) constants.

Examples of parameters, which could be contained in the lists, are the number of extra

dimensions, α in the Thomson limit, the running strong coupling constant αs, and the

CKM-matrix, respectively. Each parameter is mapped on a name string, which is used for

all references on the parameter. A code example for the insertion of such a pair of name

and parameter into the list of scalar constants reads

p_constants->insert(std::make_pair(std::string("ALPHAQED(0)"),

1./137.03599976));

To access parameters, the class Model Base defines a function for each parameter type, for

instance the constant "ALPHAQED(0)" can be re-obtained through a call of

ScalarConstant("ALPHAQED(0)");

There are two typical situations for setting the parameters of a certain model. First,

they can be simply read-in from a file, which by default is called Model.dat. As a sec-

ond possibility, Model Base is equipped with a pointer to a Spectrum Generator Base

object. This object provides an abstract interface to external spectrum generators with

methods to read-in input parameters, to deduce the particle spectrum and to calculate

the other parameters of this model. So far, interfaces to the Fortran codes Hdecay [15]

and Isajet [16] have been constructed. They are instances of the abstract base class

Spectrum Generator Base and they are called Hdecay Fortran Interface and Isajet -

Fortran Interface, respectively. To include more of these generators, a user would have

to derive such an interface class and provide methods to read-in the input parameter set, to

calculate the other parameters and to modify the particle spectrum accordingly. It should

be noted that for the inclusion of new particles, also the class Flavour would have to be

extended correspondingly.5

Within SHERPA the original beams of a specific collider are treated in two different

stages in order to extract the partonic initial states for the hard interactions. In the

first step, the incoming beams at a certain energy, the nominal energy of the collider,

are transfered into bunches of interacting particles, which have an energy distribution,

and whose momenta are distributed collinearly w.r.t. the original beams. Two options

are currently implemented: the beams can either be monochromatic, and therefore need

no extra treatment, or, for the case of an electron collider, Laser backscattering off the

electrons is supported. This mode leads to photon bunches with a certain energy and

polarisation distribution. In a second step, possible substructures of the bunch particles

5Using the new accord on a generic interface structure for spectrum generators, [17], the task to inherit

new instances of the Spectrum Generator Base will be substantially alleviated.

– 10 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

are taken into account, as well as ordinary initial state radiation. This task is achieved by

means of parton distribution functions (PDFs) or simple structure functions for the case

of electron ISR.

As an illustrative example, consider the case of resolved photon interactions at an

electron collider. As stated above, by Laser backscattering the incoming electrons can

be “transformed” into photons distributed in energy and polarisation depending on the

parameters chosen for the incoming electron beam and the Laser. This corresponds to the

first step. In the second step, these photons have a partonic substructure described by an

appropriate photon PDF defining the probability to find a certain parton flavour at the

scale Q2 and the energy fraction x inside the photon.

The first stage is hosted in the module BEAM, housing all classes that are employed to

generate beam spectra. The handler class to access different beam-manipulation strate-

gies is Beam Spectra Handler. Before coming into full effect during integration or event

generation, this handler initialises a suitable treatment (Beam Bases) for both beams and

uses them to generate corresponding weights, i.e. energy distributions. At the moment,

all outgoing bunch particles are still collinear to the incoming beams, but this is going to

change in the future, by adding transversal boosts to the kinematics. Up to now two types

of Beam Bases are supported: Monochromatic beams, and the generation of photon beams

via Laser Backscattering. For the latter one the parametrisation of [18] is supplied in

addition to a simple theoretical ansatz. To flatten out the peaks in the energy distribution

of the produced photons, additional phase-space mappings have been introduced, which

are located in the module PHASIC++ and come to action as further channels in a multi-

channel phase-space sampling [19] also implemented there. For more details, cf. section 5.

To implement any new beam treatment, such as, e.g., Beamstrahlung, a corresponding

instance of the class Beam Base has to be provided. In addition, the construction of extra

phase-space mappings might become mandatory.

The second stage, i.e. the handling of initial state radiation or partonic substructures,

is located in the PDF module. The handler class steering the selection of PDFs or structure

functions of bunch particles is the PDF Handler, instantiating a suitable PDF Base object

and returning a pointer to it. So far, a structure function for electrons (that can handle

charged leptons in general), a photon PDF and various proton structure functions are

available. The list of proton PDFs covers: a C++ version of MRST99 [20],6 the Fortran

CTEQ6 PDF [21], and the set of LHAPDFs [22]. The two Fortran pieces are encapsulated

by the two classes CTEQ6 Fortran Interface and LHAPDF Fortran Interface. For the

case of photon bunches, the only structure function implemented is the GRV (LO) parton

density [23], again framed by a C++ class, GRVph Fortran Interface. Having selected and

initialised all required PDFs the PDF Base objects are handed over to the ISR Handler via

pointers to two ISR Base objects. If no ISR treatment is necessary for a beam the ISR Base

is instantiated as an Intact object, else a Structure Function object is instantiated,

which possesses a pointer to the corresponding PDF Base. At first glance this construction

looks quite over-engineered, however, it allows for a straightforward implementation of

6The mentioned C++ version has been written by Jeppe Andersen.

– 11 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

possible multi-parton structure functions, which one would possibly like to use to correctly

account for multiple interactions. To efficiently sample initial state radiation or parton

distributions, and similar to the beam treatment, qualified phase-space mappings have been

constructed, taking into account the peak structure of the corresponding distributions. It

is also worth noting that the PDFs are handed over to the Shower Handler in order to

facilitate the backward evolution of initial-state parton showers, see section 8.

5. Matrix elements and phase space integration

In the SHERPA framework, hard matrix elements occur in different phases of event gener-

ation, i.e. in the generation of the (hardest) signal process, in the decay of heavy unsta-

ble particles, or during the simulation of multiple parton interactions. This is reflected

by the appearance of different Event Phase Handlers during event generation. In fact,

event generation starts with an empty list of blobs. The first blob to be filled by the

Signal Processes event phase is, obviously, for the partonic signal process. This event

phase, like the other ones, such as Hard Decays and Multiple Interactions, owns a

pointer to an appropriate handler for the matrix elements.

As briefly mentioned before, SHERPA currently incorporates two modules concerned

with matrix elements for hard partonic subprocesses. These modules are interfaced through

the Matrix Element Handler, which in turn possesses public methods for the set-up of

the calculation framework (physics model, beam spectra, PDFs, construction of suitable,

process- and framework-dependent integration channels), for the evaluation of total cross

sections, and for the generation of single events. These tasks as well as some management

issues (number and flavour of partons, etc.) look very similar on an abstract level, and in

fact, the corresponding methods just call their counterparts in the specific matrix element

realisation. There is one difference, however, in these modules. The analytically known 2 →

2 processes incorporated in the module EXTRA XS provide the colour structure of individual

parton configurations through specific methods. SetColours defines this structure in terms

of the external four-momenta, whereas Colours returns the colour structure. In AMEGIC++

things are not so easy. In fact, in SHERPA the colour structure of an n-parton configuration is

reconstructed by backward clustering, which is guided by the individual Feynman diagrams,

cf. section 8. This algorithm allows, in principle, to reconstruct colour flows for any multi-

parton configuration in a leading-log large-Nc scheme for any parton level generator. The

only ingredient that has to be delivered by the parton-level generators is a representation

of Feynman diagrams in terms of binary trees. Therefore, AMEGIC++ provides methods to

access the amplitudes. This difference is also reflected in the Matrix Element Handler. It

allows to either directly access the class responsible for the hard 2 → 2 subprocesses in the

case of EXTRA XS or to extract individual Feynman diagrams from AMEGIC++.

The library EXTRA XS supplies a list of simple 2 → 2 processes at leading order and

their analytically known differential cross sections. Thus it allows for a fast evaluation

of such processes. At present it includes all 2 → 2 QCD and Drell-Yan processes with

massless partons. Furthermore, it is employed for the determination of the initial colour

configuration for the parton shower during event generation. When AMEGIC++ is used as

signal generator, this applies after an appropriate backward clustering, cf. section 8.

– 12 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

Within EXTRA XS each process object is inherited from the base class XS Base, which

contains the basic ingredients for a 2 → 2 signal generator. This amounts to methods

providing the particle types, the total and differential cross section of the process, and to

methods that allow the generation of single parton-level events and the determination of

their colour structure. In the set-up of such an XS Base the overall physics model, the

beam spectra and the ISR strategy have to be handed over as well. The latter information

is employed to select adequate initial state channels for the phase-space integration (see

below). Since only 2 → 2 processes are taken into account within EXTRA XS, its final

state part boils down to simple hard wired S-, T- and U-channel integrators. According to

its specific purpose, an XS Base object may either correspond to a single 2 → 2 process

represented by an instance of the class Single XS or to a set of processes represented by the

container class XS Group. However, if a user wants to set up his own process, he or she has to

derive it from Single XS and to define all its process-specific properties, such as the colour

structure of the particles involved, the differential cross section or the final state channels.

The overall interface from EXTRA XS to the SHERPA framework is the special XS Group called

Simple XSecs, which can be accessed through the Matrix Element Handler and serves as

a signal generator. This class also contains methods to read-in user-defined run-specific

subprocesses and to select and initialise the corresponding XS Bases.

AMEGIC++ is SHERPA’s preferred multipurpose matrix-element generator concerned with

the production and evaluation of matrix elements for hard processes in particle collisions at

the tree-level. A manual for the current version 2.0 is in preparation, superseding an older

one, [8]. This new version now also covers the full Minimal Supersymmetric Standard

Model (MSSM) [24, 25] and the ADD model [26] of large extra dimensions; for details

concerning the implementation of the latter one, see [27].

In its instantiation, AMEGIC++ is equipped with pointers to a Model Base object, to a

Beam Spectra Handler and to an ISR Handler object. The first one supplies all coupling

constants and model specific parameters that allow AMEGIC++ to construct a list of all

available Feynman rules, i.e. vertices, for the chosen physical model. They are represented

through objects of the type Single Vertex, which possess pointers to a Lorentz Function

and a Color Function object accounting for the intrinsic Lorentz and SU(3) colour struc-

ture of the vertex. This is nicely exemplified by the triple gluon vertex:

Kabbala kcpl0 = -g3;

Kabbala kcpl1 = kcpl0;

for (short int i=0;i<3;i++)

vertex[vanz].in[i] = Flavour(kf::gluon);

vertex[vanz].cpl[0] = kcpl0.Value();

vertex[vanz].cpl[1] = kcpl1.Value();

vertex[vanz].cpl[2] = 0.;

vertex[vanz].cpl[3] = 0.;

vertex[vanz].Str = (kcpl0*PR+kcpl1*PL).String();

– 13 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

vertex[vanz].ncf = 1;

vertex[vanz].Color = new Color_Function(cf::F);

vertex[vanz].Color->SetParticleArg(0,2,1);

vertex[vanz].Color->SetStringArg(’0’,’2’,’1’);

vertex[vanz].nlf = 1;

vertex[vanz].Lorentz = new Lorentz_Function(lf::Gauge3);

vertex[vanz].Lorentz->SetParticleArg(0,1,2);

vertex[vanz].on = 1;

vanz++;

To extend AMEGIC++ and incorporate new interaction models, a potential user would

just have to derive a corresponding class from the Interaction Model Base class and to

fill it with suitable vertices.

Having specified a process or a group of processes to be evaluated, AMEGIC++ then

constructs all Feynman diagrams by matching the set of vertices onto topologies generated

beforehand. These amplitudes are translated into helicity amplitudes, which are subject

of various manipulations, all aiming at a reduction of the calculational cost of the en-

tire computation. As a further step AMEGIC++ analyses all individual Feynman diagrams

and, according to their phase-space singularities, it automatically generates appropriate

phase-space mappings for the integration over the final state. For more details on the

multi-channel integration, see below. The integration channels as well as the helicity am-

plitudes are stored as library files that have to be compiled once and are linked to the main

program. The by far most convincing features of the AMEGIC++ module are its robustness

and flexibility. The package offers the evaluation of arbitrary processes7 in the Standard

Model, and in two of its extensions, the MSSM and the ADD model.

The tools for phase-space integrations, i.e. simple integration channels, building blocks

for complex phase-space mappings and the full set of multi-channel integration [19] rou-

tines are hosted in the package PHASIC++. It is used by AMEGIC++ as well as by the

simple matrix elements located in the EXTRA XS package. If needed, it can be adjusted

in a straightforward fashion for usage by any other matrix element generator. The only

thing, one would have to do, is to provide information about or to directly construct

the channels for the final state part. Both strategies are realized by EXTRA XS and by

AMEGIC++, respectively. In the latter case, the class responsible for the construction of the

full final-state multi-channel integrator is the Phase Space Generator, individual channels

are constructed by the Channel Generator through a mapping of the Feynman diagrams

onto the Channel Elements supplemented by PHASIC++.

Apart from the matrix-element-specific final-state channels, during the phase-space

integration one might have to sample over all initial-state configurations. Within SHERPA

initial states on the parton level are constructed from the incoming beams in two steps.

7AMEGIC++ has proved to work for up to six final state particles [28].

– 14 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

First, the beam particles might be transformed into other particles (such as electrons into

photons through Laser backscattering) or may experience some smearing (such as electrons

through Beamstrahlung). The resulting particles, which may or may not have an energy

distribution, might have a resolved partonic substructure parametrised by PDFs or they

might experience additional initial state radiation, which can also be parametrised by a

PDF-like structure. To guarantee optimal integration performance, one has to analyse the

emerging energy distributions in each of the two steps and flatten them out. This results in

up to two more multi-channel mappings, one for the beam centre-of-mass system, and one

for the parton-level centre-of-mass system. Both systems currently are defined through the

boost relative to their ancestors and by their respective centre-of-mass energy squared. In

the near future, also transversal boosts of the subsystems will be included. This, however,

is a straightforward extension of existing code.

6. Decays of unstable particles

Decays of heavy unstable particles during the generation of an event are treated by a spe-

cific Event Phase Handler called Hard Decays. This handler owns, not surprisingly, an

interface to matrix elements responsible for the description of such decays on the parton

level. Again, this interface, the Hard Decay Handler, is separated from the physics imple-

mentation, namely the matrix elements. Currently, only the matrix elements of AMEGIC++

are accessible through this interface.

At the moment, heavy unstable particles are produced by hard matrix elements only,

i.e. through the actions of the following event phases: Signal Processes, Hard Processes

and Multiple Interactions. While processing each of these phases, it is checked whether

unstable particles emerge. If this is the case, their respective decay channel and the ef-

fective mass of this decay are determined. The decay channel is selected by invoking the

Hard Decay Handler, which provides a mapping of particles to decay tables and the cor-

responding matrix elements for each decay channel. Hence, a pointer to this interface is

a member of all the event phases above. The effective mass is distributed according to a

Breit-Wigner function, the method for this resides in the Particle object itself. Fixing the

decay channel before the mass is determined ensures that the correct, initialised branching

ratios are recovered. In principle, this also allows for using tree-level decay kinematics as

supplemented by, e.g., AMEGIC++ together with higher order branching ratios.8 After all

masses are fixed, the four-momenta of all particles emerging in the corresponding hard

subprocess (all particles leaving the blob) are shifted to their new mass-shell accordingly.

This induces some minimal modifications of the energy-momentum relations of the particles

and might affect the mutual respective angles. However, the four-momentum of the total

system stays fixed. Eventually, after some jet evolution took place, the unstable particles

are decayed, maybe giving rise to more unstable particles or new jets and, thus, triggering

more actions of the Hard Decays or Jet Evolution phase.

8Such a procedure might seem somewhat inconsistent. However, using loop-corrections for, say, two-

body decays, basically amounts to a specific choice of scale of the coupling constant(s) involved. In this

sense, inconsistencies are due to different choices of scale, which could be fixed and compensated for in the

corresponding vertices.

– 15 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

At the moment, the procedure outlined above is being implemented and tested. In its

current, minimal form two issues have not been tackled:

• In principle, attaching secondary radiation to hard decays leads to multi-scale parton

showers [29], which act in the following way: In a first step the parton shower evolves

the parton configuration down to scales comparable to the width of the decaying

particles. Then, these particles decay, eventually starting an initial and a final state

parton shower, which have to be matched with the preceeding one. Finally, the

emerging parton ensemble is evolved down to the next decay or the infrared scale.

An implementation of this procedure is straightforward in the SHERPA framework.

• Furthermore, spin correlations in the fashion of [30] should be added. The underlying

idea is as follows. When decays of heavy unstable particles are treated in the way

outlined above, implicitly some narrow width approximation has been used. In fact,

this inherent assumption only allows to cut the propagators of the unstable particles.9

Under the narrow width approximation, one can decompose the propagator into a

sum over physical polarisation states. The polarisations of a number of outgoing

particles produced in one interaction, however, are correlated, and this correlation

propagates to a correlation in the kinematical distribution of the decay products.

7. Multiple interactions

Multiple interactions are handled within the SHERPA framework by the Event Phase -

Handler called Multiple Interactions. Given a Blob list, which already contains the

signal process, it adds one by one hard 2 → 2 subprocesses, according to an ordering in the

transverse momentum p⊥ of the outgoing particles. The initial conditions for this sequence

of parton interactions are determined by the signal process. However, it might happen that

the signal process contains more than two outgoing particles and, thus, the definition of p⊥
is ambiguous. Then, the backward clustering already employed to create an interface from

the signal process to the parton shower (see section 8) defines the corresponding 2 → 2

process. The sequence of further partonic 2 → 2 interactions results in new Blobs, each

of which experiences its own shower evolution through the action of the Jet Evolution

event phase.

To create the additional hard subprocesses, the Multiple Interactions phase em-

ploys a MI Handler, the interface to the new module AMISIC++. This module is concerned

with the generation of hard underlying events similar to how this is simulated in Pythia [31].

There, the hard underlying event is assumed to be a mostly incoherent sum of individual

scattering processes. Right now, AMISIC++ is restricted to hard QCD processes and there-

fore employs the library of EXTRA XS, (see section 5). To account for a fast performance,

however, AMISIC++ does neither evaluate matrix elements on-line nor uses a veto algorithm

9In other words, if the decaying particles’ width becomes large, all processes, i.e. also the “continuum”

or background, contributing to the same final state have to be taken into account.

– 16 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

as proposed in [31]. Instead it pre-calculates and tabulates the appropriate differential cross

sections and stores them to disk in the initialisation phase. This data may then also serve

for future runs.

It should be noted here that AMISIC++ is in the process of full implementation and of

careful tests only. Furthermore, the description of the soft underlying event is still lacking

in Multiple Interactions.

8. The interface to fragmentation

Having produced a number of partons in hard subprocesses — either the signal process,

hard particle decays, or multiple hard partonic interactions — these coloured objects have

to be transformed into colourless hadrons. The gap between the varying scales of these

hard interactions and some universal scale connected to hadronisation is bridged by parton

showers. Invoking the parton shower fills in further parton radiation and guarantees the

universality of the scale, where the phenomenological hadronisation model sets in, and of

its parameters.

Within the SHERPA framework, such additional emission in general happens during an

event phase called Jet Evolution. This event phase adds blobs describing radiation of

secondary partons to the list of blobs constituting the event. To this end, all parton con-

figurations in blobs for signal processes, hard decays, or for multiple parton interactions

have to be analysed and modified by parton showers. The Jet Evolution, thus, owns

pointers to all corresponding Matrix Element Handlers for the definition of colour con-

figurations and other starting conditions of the parton shower and to a Shower Handler.

This object provides public methods that allow to initialise and perform showers and to

insert the resulting shower blobs into the event record. In principle, one can think of using

different shower realisations, for instance a dipole cascade as in Ariadne [32], an angular

ordered shower as in Herwig [2, 33], or a virtuality ordered shower as in Pythia [1]. So far,

in SHERPA a virtuality-ordered shower has been implemented through a separate module

called APACIC++ [9]. This module also includes the functionality needed for the merging of

parton showers and matrix elements in the fashion of [10], i.e. a veto on jets at the parton

level. The implementation of other approaches that model multiple emission of secondary

partons will not substantially change the interface Shower Handler.

From the brief description above, it is clear that the matrix elements and the par-

ton showers might act on different objects. In the case realized so far, i.e. in the case of

APACIC++, the parton shower is formulated in terms of trees and knots; for a shower de-

scribed in the fashion of Ariadne one could imagine that dipole objects are the basic terms.

Hence, in the case of APACIC++ being the parton shower generator the Jet Evolutionwould

have to administer the translation of partons to knots, i.e. the definition of a primordial tree

structure representing a parton configuration. This is done through suitable interfaces. The

specific instantiation of the abstract base class Perturbative Interface depends on the

form of the matrix elements and their functionality inside the Matrix Element Handler,

and on the Shower Handler itself. The application of these interfaces is mandatory for the

Jet Evolution and results in some “merging blobs” around the blob of the hard subpro-

– 17 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

cess under consideration. These merging blobs are needed for the sake of four-momentum

conservation, since secondary emission a posteriori gives a virtual mass to the primary

on-shell partons, which has to be balanced by shifting the four-momenta of the primary

parton ensemble. All of these interfaces are part of the SHERPA framework itself rather

than of the individual modules (such as AMEGIC++ etc.). Due to the merging algorithm,

this interface needs to supply the possibility to calculate Sudakov weights, and to accept

or reject parton configurations according to them. It is clear that a rejection necessitates

a new parton configuration and, therefore, results in a new event to be supplied by the

Matrix Element Handler. Correspondingly, a new Blob is filled by the Signal Processes

event phase. However, since at the moment only two specific matrix element generators

are available, cf. section 5, only two realisations of the Perturbative Interface exist,

namely SimpleXS Apacic Interface and Amegic Apacic Interface.

The former is very simple, since the library of 2 → 2 subprocesses is used such that

additional jets are the result of the simulation of the radiation activity through the parton

showers. Therefore, in this case, no veto on extra jets has to be performed inside a shower

and consequently no Sudakov form factor has to be applied. Furthermore, the colour struc-

ture of the partons as well as the hard scale of the subprocess can be obtained directly

from the XS Bases inside EXTRA XS through simple access methods made available to the

SimpleXS Apacic Interface. The starting conditions for the shower are obtained in quite

a straightforward fashion. The initial virtualities for the shower evolution are given by the

scale of the hard subprocess, which is connected to the maximal momentum transfer along

coloured lines. The maximal opening angle of the next emission for each parton is obtained

from the angles w.r.t. to the colour connected partons in the hard 2 → 2 process. The par-

ton shower is then simply initialised by filling this information into the trees of APACIC++.

When using AMEGIC++ or any other matrix element generator involving 2 → n processes

with n > 2 the situation is more complicated. In such cases, the 2 → n configuration is

reduced to a “core” 2 → 2 process through the k⊥-cluster algorithm. To keep track of

allowed and disallowed clusterings, i.e. of actual Feynman rules, the clustering follows the

Feynman diagrams of the corresponding matrix element. They are obtained through the

Matrix Element Handler. For each clustering, a Sudakov form factor is evaluated and

attached as an extra weight (for details see [10]), which finally results in an overall weight

for this specific parton-level event. In case it is accepted, the initial colour structure is

fixed by the colour structure of the core 2 → 2 process, since the parton shower inherently

is formulated in the large Nc-approximation. In the clustering procedure the tree structure

for the parton shower already has been constructed, and, hence, the colour configuration of

the partons has been fixed. It is supplemented with missing information (i.e. the starting

virtualities for each parton, opening angles etc.) through the principle that the parton

shower evolution of each parton is defined through the node in which it was produced first.

This condenses in the following algorithm: going from inner knots to the outer ones,

in each node it is decided by the Perturbative Interface which emerging parton is the

harder, i.e. more energetic, one. The winner inherits the starting scale and angle of the

decaying mother, the losers starting conditions are defined through the actual node. The

starting conditions of the first four partons stem from the core 2 → 2 subprocess.

– 18 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

As already stated, the interface to the showers and the actual physics implementation

are separated. Whereas the interface is located in the Shower Handler, the first physics

implementation of a parton shower is encapsulated in the independent module APACIC++. It

provides a virtuality ordered parton shower, supplemented with angular ordering enforced

“by hand”, similar to the one realized in Pythia. One of the major differences, however, is

that in SHERPA matrix elements for arbitrary parton configurations are merged consistently

with the parton shower. This merging procedure results in constraints on the parton

shower, which must not produce any parton emission that would have to be interpreted

as the production of an extra jet, since jet production is left to the corresponding matrix

elements.

The parton shower in APACIC++ is organised recursively in terms of binary tree struc-

tures, where the emission of an additional parton is understood as a branching process

giving rise to another node, a Knot, inside the Tree.10 In the evolution of the tree the

binary branches are defined through splitting functions, which are represented by objects

of similar name, i.e. by derivatives of the base class Splitting Function. These objects

contain methods to determine outgoing flavours of a branching process and their kinemat-

ics. Since in APACIC++ the parton shower proceeds through a hit-or-miss method, functions

overestimating the integral of a splitting function in certain boundaries and corresponding

correction weights are also included. For the incorporation of new branching modes, such as

for the simulation of parton showers off supersymmetric particles, just a suitable derivative

of the base class has to be added. The sequence of branches within the parton shower is de-

fined through Sudakov form factors. Consequently, such objects are also used by APACIC++.

For the description of parton showers in the initial state, backward evolution relying on

the parton distribution functions usually is employed. Therefore, the corresponding PDFs

are handed over to APACIC++ and used in the space-like showers and Sudakov form factors.

Here, it should be briefly mentioned that the Sudakov form factors, in principle, provide

only the trees of branching processes. There, each node is supplemented by the scale, where

the branching takes place, and the distribution of energies. The corresponding determina-

tion of the actual kinematics is separated from the implementation of the Sudakov form

factors; it is located in extra classes. However, once the parton shower has terminated, the

tree structure is translated back into partons. The interface, i.e. the Shower Handler, will

provide blobs with one incoming parton stemming from the hard matrix element, which

is identified as the jet’s seed, and a number of outgoing partons exhibiting the partonic

structure of the jet before hadronisation sets in.

9. Hadronisation & soft physics aspects

After the parton shower described above has terminated, one is left with a configuration

of coloured partons at some low scale of the order of a few GeV in transverse momen-

tum. These partons, in order to match experiments, have to be translated into white

10These trees are the only objects of APACIC++, which are handed over to the Shower Handler in order

to be filled with partons subject to further emission. This process is triggered by the Shower Handler and

managed by the Hard Interface, the class managing the access to APACIC++

– 19 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

hadrons. Within SHERPA, this transition occurs in an event phase called Hadronisation.

This Event Phase Handler contains interfaces to two physics tasks related to this phase.

First of all, extracting a coloured parton from a white initial hadron (such as in colli-

sions involving protons) necessitates to describe the colour structure of its remnant. This

is achieved by the Beam Remnant Handler.

It is clear that the coloured constituents will be colour connected to other partons in

the final state, thus influencing properties of the event at hadron level. The distribution

of colour over the hadron remnants is a tricky task, well beyond perturbation theory. This

immediately implies that phenomenological models have to be employed. For instance, one

could assume that such a model is guided by the attempt to minimise the string length

of the colour string spanned by the outgoing partons. Therefore, within SHERPA the beam

remnants arising from hadrons are currently handled in a naive approach. Given a list of

Blobs, all initiators of initial state showers are extracted and attached to a beam blob,

which represents the breakup of the incoming hadron. Beam-remnant partons are added

such that the flavour quantum numbers of the hadron are recovered step by step. Colours

are distributed in a randomised fashion, where, of course, gluons or quarks carry two or

one colour index different from zero, respectively. Again, these indices are distributed such

that they add up to a white hadron. The energies of the additional parton remnants are

distributed either according to PDFs or to a phenomenological function like the one in [31].

Finally, all particles obtain a mild k⊥-kick according to a gaussian distribution.

The resulting final parton configuration then originates from the perturbative event

phases, i.e. from Signal Processes, Hard Decays, Multiple Interactions or Jet -

Evolution, or from the beam remnants as described above.11 The Hadronisation phase

has to translate these coloured partons into white hadrons. For this purpose, it employs its

Fragmentation Handler, which provides an interface to phenomenological hadronisation

models.

The Fragmentation Handler first of all sorts the partons into disconnected chains

starting with a colour triplet, such as a quark, and ending with a parton in a colour anti-

triplet state, such as an anti-quark. Then, within these chains, partons are shifted to

their constituent mass-shells, if necessary. Only then, the selected individual hadronisation

model is invoked. This mass-shift inside the Fragmentation Handler guarantees the in-

dependence of the perturbative phase, which presumably is formulated in terms of current

masses, and the non-perturbative phase with its constituent masses. Especially for cluster-

fragmentation models [34] relying on the breakup of massive gluons into constituent quarks

this is clearly advantageous. However, at the moment only the Lund string model [35] is

implemented as a specific hadronisation model to be used by the Fragmentation Handler.

Its implementation within Pythia is accessible through a special Lund Fortran Interface

class, which also reads in some of the parameters needed in this model from a correspond-

ing data file. In the near future, also a new version of the cluster-hadronisation model [36]

will be made available.

11Altogether these partons must form a colour singlet, although, if baryon-number violating sub-processes

are implemented, it might be difficult to recover them as singlets in the large Nc-representation inherent to

event generation.

– 20 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

This model will be added as a new module, AHADIC++, to the overall framework. This

module just finished construction and currently is being tested. It performs the transition

from partons to primary hadrons in two steps: first of all, the gluons experience a forced

decay into colour triplet pairs, which allows to decompose the parton singlet chain into

clusters. The clusters are built from one triplet-anti-triplet pair and thus have the quantum

numbers of hadrons, including those of baryons. In this step of cluster formation effects

of soft colour reconnection are modelled, which is an extension to the previous versions

of the cluster model [34]. In the next step, the clusters decay either into lighter ones, or

into the primary hadrons. The respective decay mode depends on the cluster mass and on

the masses emerging for the resulting four-vectors. The distribution of the decay products’

momenta is governed by some universal anisotropic kinematics, the selection of the decay

mode thus reflects a constituent-flavour-dependent separation into a cluster and a hadron

regime. There, also soft colour reconnection effects are taken into account. In the rare

case that a primary cluster already is inside the hadron regime a one-particle transition is

enforced. For more details on this model, cf. [36].

In any case, invoking the Fragmentation Handler results in a number of colour singlet

parton chains, each of which enters a new Blob, producing a number of primordial hadrons.

These hadrons may or may not decay further; at the moment, the subsequent hadron

decays are also handled through the Lund Fortran Interface. In the future, however, it

is envisioned to have an extra event phase Hadron Decays and specific interfaces. Each of

the hadron decays is then represented by another Blob, allowing to reconstruct displaced

vertices etc..

10. Summary and outlook

In this publication a proof-of-concept version of the new event-generation framework

SHERPA, Simluation for High-Energy Reactions of PArticles, has been presented in its ver-

sion 1.α. Its construction is a still on-going process, which is based on three programming

paradigms, namely modularity, the separation of interface and physics implementation

and a bottom-to-top approach for the addition of further modules. In its overall structure,

SHERPA reflects a typical, event-generator-inherent simulation of full events through disjoint

event phases. This lends itself to modularisation and, therefore, SHERPA is entirely written

in the object-oriented programming language C++.

So far a number of physics modules have been attached to SHERPA, which allow users

to fully simulate electron-positron or unresolved photon-photon collisions at high energies.

Also, fully hadronic collisions, such as, e.g., proton-anti-proton or proton-proton reactions,

can be simulated. In the description of such events, however, some features, for instance

the soft underlying event, are still lacking or basically not tested yet. In all cases considered

so far, SHERPA proved to be flexible and to live up for all demands. More tests and the

inclusion of further, nearly ready physics modules, such as a new version of the cluster

hadronisation, hard decays of unstable heavy particles, or an underlying event model, will

be in the focus of future work.

– 21 –

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

SHERPA can be obtained through the downloads section of:

http://www.physik.tu-dresden.de/~krauss/hep/index.html

Acknowledgments

F.K. wants to acknowledge financial support by the EC 5th Framework Programme under

contract number HPMF-CT-2002-01663. Further financial support by BMBF, DFG and

GSI is gratefully acknowledged.

The authors are grateful for fruitful discussions with Stefan Gieseke, Klaus Hamacher,

Hendrik Hoeth, Leif Lönnblad, Alberto Ribon, Gerhard Soff, Philip Stevens, and Bryan

Webber. Also, the authors owe a great deal to users of SHERPA, which have reported on bugs

and shortcomings, in particular Claude Charlot, Alessio Ghezzi, Hendrik Hoeth, Huber

Nieto, and Thorsten Wengler. Without all this help such a task would be unsurmountable.

References

[1] T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4,

Comput. Phys. Commun. 82 (1994) 74;

T. Sjöstrand, L. Lönnblad, S. Mrenna and P. Skands, PYTHIA 6.3 physics and manual,

hep-ph/0308153.

[2] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with

interfering gluons (including supersymmetric processes), J. High Energy Phys. 01 (2001) 010

[hep-ph/0011363]; HERWIG 6.5 release note, hep-ph/0210213.

[3] L. Lönnblad, Development strategies for PYTHIA version 7, Comput. Phys. Commun. 118

(1999) 213 [hep-ph/9810208];

M. Bertini, L. Lönnblad and T. Sjöstrand, Pythia version 7-0.0: a proof-of-concept version,

Comput. Phys. Commun. 134 (2001) 365 [hep-ph/0006152].

[4] S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B. Webber, HERWIG++ 1.0: an event

generator for e+e− annihilation, J. High Energy Phys. 02 (2004) 005 [hep-ph/0311208].

[5] S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour and B.R. Webber, Implementation of

supersymmetric processes in the HERWIG event generator, J. High Energy Phys. 04 (2002)

028 [hep-ph/0204123].

[6] T. Sjöstrand and P.Z. Skands, Baryon number violation and string topologies, Nucl. Phys. B

659 (2003) 243 [hep-ph/0212264].

[7] The PEG, http://www.thep.lu.se/ThePEG/;

L. Lönnblad, CLHEP: a project for designing a C++ class library for high-energy physics,

Comput. Phys. Commun. 84 (1994) 307.

[8] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, J.

High Energy Phys. 02 (2002) 044 [hep-ph/0109036];

A. Schälicke, F. Krauss, R. Kuhn and G. Soff, Implementing initial state radiation for lepton

induced processes in AMEGIC++, J. High Energy Phys. 12 (2002) 013 [hep-ph/0203259].

[9] R. Kuhn, F. Krauss, B. Ivanyi and G. Soff, APACIC++ 1.0: a parton cascade in C++,

Comput. Phys. Commun. 134 (2001) 223 [hep-ph/0004270].

– 22 –

http://www.physik.tu-dresden.de/~krauss/hep/index.html
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C82%2C74
http://xxx.lanl.gov/abs/hep-ph/0308153
http://jhep.sissa.it/stdsearch?paper=01%282001%29010
http://xxx.lanl.gov/abs/hep-ph/0011363
http://xxx.lanl.gov/abs/hep-ph/0210213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C118%2C213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C118%2C213
http://xxx.lanl.gov/abs/hep-ph/9810208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C134%2C365
http://xxx.lanl.gov/abs/hep-ph/0006152
http://jhep.sissa.it/stdsearch?paper=02%282004%29005
http://xxx.lanl.gov/abs/hep-ph/0311208
http://jhep.sissa.it/stdsearch?paper=04%282002%29028
http://jhep.sissa.it/stdsearch?paper=04%282002%29028
http://xxx.lanl.gov/abs/hep-ph/0204123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB659%2C243
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB659%2C243
http://xxx.lanl.gov/abs/hep-ph/0212264
http://www.thep.lu.se/ThePEG/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C84%2C307
http://jhep.sissa.it/stdsearch?paper=02%282002%29044
http://jhep.sissa.it/stdsearch?paper=02%282002%29044
http://xxx.lanl.gov/abs/hep-ph/0109036
http://jhep.sissa.it/stdsearch?paper=12%282002%29013
http://xxx.lanl.gov/abs/hep-ph/0203259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C134%2C223
http://xxx.lanl.gov/abs/hep-ph/0004270

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

[10] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, J.

High Energy Phys. 11 (2001) 063 [hep-ph/0109231];

F. Krauss, Matrix elements and parton showers in hadronic interactions, J. High Energy

Phys. 08 (2002) 015 [hep-ph/0205283].

[11] M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy

physics, Comput. Phys. Commun. 134 (2001) 41.

[12] E. Boos et al., Generic user process interface for event generators, hep-ph/0109068.

[13] S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering

algorithm for multi - jet cross-sections in e+e− annihilation, Phys. Lett. B 269 (1991) 432;

S. Catani, Y.L. Dokshitzer and B.R. Webber, The k-perpendicular clustering algorithm for

jets in deep inelastic scattering and hadron collisions, Phys. Lett. B 285 (1992) 291;

S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K(t)

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187.

[14] S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG

and PYTHIA, hep-ph/0312274.

[15] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the

standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56

[hep-ph/9704448].

[16] H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, ISAJET 7.48: a Monte Carlo event

generator for PP, p̄p and e+e− reactions, hep-ph/0001086.

[17] P. Skands et al., SUSY les houches accord: interfacing SUSY spectrum calculators, decay

packages and event generators, hep-ph/0311123.

[18] A.F. Zarnecki, CompAZ: parametrization of the photon collider luminosity spectra, Acta

Phys. Polon. B34 (2003) 2741 [hep-ex/0207021].

[19] F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron -

positron collisions, Nucl. Phys. B 424 (1994) 308 [hep-ph/9404313];

R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys.

Commun. 83 (1994) 141 [hep-ph/9405257].

[20] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions and the

LHC: W and Z production, Eur. Phys. J. C 14 (2000) 133 [hep-ph/9907231];

[21] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD

analysis, J. High Energy Phys. 07 (2002) 012 [hep-ph/0201195].

[22] The LHAPDF interface, http://vircol.fnal.gov/.

[23] M. Gluck, E. Reya and A. Vogt, Photonic parton distributions, Phys. Rev. D 46 (1992) 1973.

[24] H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the

standard model, Phys. Rept. 117 (1985) 75.

[25] J. Rosiek, Complete set of Feynman rules for the minimal supersymmetric extension of the

standard model, Phys. Rev. D 41 (1990) 3464; Complete set of Feynman rules for the MSSM

— erratum, hep-ph/9511250.

[26] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315].

– 23 –

http://jhep.sissa.it/stdsearch?paper=11%282001%29063
http://jhep.sissa.it/stdsearch?paper=11%282001%29063
http://xxx.lanl.gov/abs/hep-ph/0109231
http://jhep.sissa.it/stdsearch?paper=08%282002%29015
http://jhep.sissa.it/stdsearch?paper=08%282002%29015
http://xxx.lanl.gov/abs/hep-ph/0205283
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C134%2C41
http://xxx.lanl.gov/abs/hep-ph/0109068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB269%2C432
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB285%2C291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C187
http://xxx.lanl.gov/abs/hep-ph/0312274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C108%2C56
http://xxx.lanl.gov/abs/hep-ph/9704448
http://xxx.lanl.gov/abs/hep-ph/0001086
http://xxx.lanl.gov/abs/hep-ph/0311123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APPOA%2CB34%2C2741
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APPOA%2CB34%2C2741
http://xxx.lanl.gov/abs/hep-ex/0207021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB424%2C308
http://xxx.lanl.gov/abs/hep-ph/9404313
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C83%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C83%2C141
http://xxx.lanl.gov/abs/hep-ph/9405257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC14%2C133
http://xxx.lanl.gov/abs/hep-ph/9907231
http://jhep.sissa.it/stdsearch?paper=07%282002%29012
http://xxx.lanl.gov/abs/hep-ph/0201195
http://vircol.fnal.gov/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C1973
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C117%2C75
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD41%2C3464
http://xxx.lanl.gov/abs/hep-ph/9511250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C263
http://xxx.lanl.gov/abs/hep-ph/9803315

J
H
E
P
0
2
(
2
0
0
4
)
0
5
6

[27] T. Gleisberg et al., Helicity formalism for spin-2 particles, J. High Energy Phys. 09 (2003)

001 [hep-ph/0306182].

[28] T. Gleisberg, F. Krauss, C.G. Papadopoulos, A. Schälicke and S. Schumann, Cross sections

for multi-particle final states at a linear collider, hep-ph/0311273.

[29] S. Gieseke, Event generators: new developments, hep-ph/0210294.

[30] P. Richardson, Spin correlations in Monte Carlo simulations, J. High Energy Phys. 11 (2001)

029 [hep-ph/0110108].

[31] T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron

collisions, Phys. Rev. D 36 (1987) 2019.

[32] L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing

the color dipole model, Comput. Phys. Commun. 71 (1992) 15.

[33] S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, J. High

Energy Phys. 12 (2003) 045 [hep-ph/0310083].

[34] B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl.

Phys. B 238 (1984) 492.

[35] B. Andersson, The Lund model, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 7

(1997) 1.

[36] J.-C. Winter, F. Krauss and G. Soff, A modified cluster-hadronization model,

hep-ph/0311085.

– 24 –

http://jhep.sissa.it/stdsearch?paper=09%282003%29001
http://jhep.sissa.it/stdsearch?paper=09%282003%29001
http://xxx.lanl.gov/abs/hep-ph/0306182
http://xxx.lanl.gov/abs/hep-ph/0311273
http://xxx.lanl.gov/abs/hep-ph/0210294
http://jhep.sissa.it/stdsearch?paper=11%282001%29029
http://jhep.sissa.it/stdsearch?paper=11%282001%29029
http://xxx.lanl.gov/abs/hep-ph/0110108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C71%2C15
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://xxx.lanl.gov/abs/hep-ph/0310083
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB238%2C492
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB238%2C492
http://xxx.lanl.gov/abs/hep-ph/0311085

