
ar
X

iv
:h

ep
-p

h/
03

11
26

3v
1 

 2
0 

N
ov

 2
00

3

Preprint typeset in JHEP style - HYPER VERSION CERN-TH/2003-284

SHERPA 1.α, a proof-of-concept version

Tanju Gleisberg

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: tanju@theory.phy.tu-dresden.de

Stefan Höche

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: hoeche@theory.phy.tu-dresden.de

Frank Krauss

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

and

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: krauss@theory.phy.tu-dresden.de

Andreas Schälicke

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: dreas@theory.phy.tu-dresden.de

Steffen Schumann

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: steffen@theory.phy.tu-dresden.de

Jan-Christopher Winter

Institut für Theoretische Physik, TU Dresden, 01062 Dresden, Germany

E-mail: winter@theory.phy.tu-dresden.de

Abstract: The new multipurpose event-generation framework SHERPA, acronym for

Simulation for High-Energy Reactions of PArticles, is presented. It is entirely written

in the object-oriented programming language C++. In its current form, it is able

to completely simulate electron–positron and unresolved photon–photon collisions

at high energies. Also, fully hadronic collisions, such as, e.g., proton–anti-proton,

proton–proton, or resolved photon–photon reactions, can be described on the signal

level.

Keywords: Standard Model, Higgs Physics, LEP HERA and SLC Physics,

Tevatron and LHC Physics, QCD.

http://arxiv.org/abs/hep-ph/0311263v1
mailto:tanju@theory.phy.tu-dresden.de
mailto:hoeche@theory.phy.tu-dresden.de
mailto:krauss@theory.phy.tu-dresden.de
mailto:dreas@theory.phy.tu-dresden.de
mailto:steffen@theory.phy.tu-dresden.de
mailto:winter@theory.phy.tu-dresden.de
http://jhep.sissa.it/stdsearch?keywords= Standard_Model+Higgs_Physics+LEP_HERA_and_SLC_Physics+Tevatron_and LHC_Physics+QCD
http://jhep.sissa.it/stdsearch?keywords= Standard_Model+Higgs_Physics+LEP_HERA_and_SLC_Physics+Tevatron_and LHC_Physics+QCD


Contents

1. Introduction 1

2. Overall event-generation framework 4

3. Tools for event generation 7

4. Physics set-up 10

5. Matrix elements and phase space integration 13

6. Decays of unstable particles 16

7. Multiple interactions 18

8. The interface to fragmentation 18

9. Hadronisation & soft physics aspects 22

10. Summary & outlook 23

1. Introduction

To a large amount, modern particle physics centres around accelerator experiments,

where high-energetic particles are brought to collision. With rising energies, these

interactions become more and more violent, leading to an increasing number of par-

ticles being produced. To confront the resulting experimental data with theoretical

models, a systematic understanding of such multi-particle production processes is of

paramount importance. A full, quantum-mechanically correct, treatment is, at the

moment, out of reach. There are two reasons for this:

First of all, there only is a limited understanding of the non-perturbative phase of

QCD, or, in other words, of how colourless hadrons are built from the coloured quarks

and gluons. This is especially true for phenomena such as hadronisation or for ques-

tions related to the impact of the partonic substructure of the colliding hadrons on

the pattern of multiple interactions. In all such cases, phenomenological models for

the transition from hadrons to partons or vice versa have to be applied with param-

eters to be fitted. This clearly puts a constraint on a conceptual understanding of

– 1 –



high-energy particle production processes. On the other hand, even considering the,

in principle, well-understood perturbative phase of scattering processes alone, there

are limits on our technical abilities to calculate all amplitudes that contribute to a

given process. This is due to the fact that even at the tree-level the number of Feyn-

man diagrams grows factorially with the number of particles involved. Moreover, at

higher orders of the perturbative evolution new difficulties arise, which are connected

for instance with the evaluation of multi-leg loop integrals.

This failure necessitates other, approximate solutions, such as simulation programs.

These event generators decompose the full scattering process into a sequence of dif-

ferent stages, which are usually characterised by different energy scales. The past

and current success of event generators, like Pythia [1] or Herwig [2], in describing a

full wealth of various data justifies this decomposition intrinsic to all such programs.

As a by-product, the decomposition of events into distinguishable, more or less inde-

pendent phases opens a path to test the underlying assumptions on the dynamics of

particle interactions at the corresponding scales. These assumptions, in turn, can be

modified and new models can be included on all scales. This property turns event

generators into the perfect tool to bridge the gap between experimental data and

theoretical predictions. It renders them indispensable for the analyses and planning

of current and future experiments.

To meet the new challenges posed by the new experiments, for instance Tevatron

at Fermilab and especially LHC at CERN, the traditional event generators Pythia

and Herwig, so far programmed in Fortran, are currently being re-written in the

modern, object-oriented programming language C++. Their new versions will be

called Pythia7 [3] and Herwig++ [4], respectively. The decision to re-write them

from scratch is based on two reasons:

First, new features and models concerning the simulation of particle physics at the

shifting energy frontier need to be included. In fact this still is an on-going issue also

for the Fortran versions (see for instance [5, 6]).

Furthermore, and maybe more importantly, there is a wide-spread belief that the

old Fortran codes cannot easily be maintained or extended. On top of that, the

software paradigm of the new experiments has already shifted to object-orientation,

more specifically, to C++ as programming language. On the other hand, by the virtue

of being decomposed into nearly independent phases, the simulation of high-energy

particle reactions lends itself to modularisation and, thus, to an object-oriented pro-

gramming style. In this respect it is also natural to further disentangle management

and physics issues in event generation. In fact, both Pythia7 and Herwig++ will

fully rely on the same management structure, called ThePEG [7]. It includes items

such as the event record, mathematical functions, management functionalities, etc..

Using this common event-generation framework, Pythia7 and Herwig++ will just

provide their respective, different modules for physics simulation, for instance the

implementations of their hadronisation models.

– 2 –



In addition to these two re-writes of their older, Fortran-based counterparts, in the

past few years a new event generator, called SHERPA, acronym for Simulation for High-

Energy Reactions of PArticles, has been developed independently. From the beginning,

it entirely has been written in C++, mainly due to the same reasons already named

above. A number of paradigms have been the guiding principles in the construction

of this code:

1. Modularity:

SHERPA only provides the framework for event generation. The physics is-

sues related to the various phases of event generation are handled by specific,

physics-oriented modules. These modules, however, rely on a number of service

modules that incorporate basic organisational, mathematical or physics tools,

or information concerning the physics environment.

2. Separation of interface and implementation:

Within SHERPA, the specific physics modules are interfaced through correspond-

ing (handler) classes, which are sufficiently abstract to support an easy inclusion

of other modules with similar tasks.

3. Bottom-to-top approach:

Before the interfaces (abstract handlers) are implemented, the corresponding

physics module has been programmed and tested. This is especially true for

modules like AMEGIC++ [8], providing a full-fledged matrix-element generator

for the evaluation of multi-particle production cross sections, or APACIC++ [9],

hosting a parton shower module. In general, these modules can be used as

stand-alone codes. They also can be implemented into other event-generation

frameworks with minor modifications only, as long as some of the underlying

mathematical and physics tools are supplemented as well.

The goal of this publication is to give a brief status report of SHERPA’s first α-

version. It already incorporates enough functionality to make SHERPA a useful tool

for a number of physics applications.

The outline of this paper is as follows: in Sec. 2 the overall generation framework

is briefly introduced. This basically amounts to a discussion of how the framework

and its physics modules are initialised, and how these modules are handed over to

the actual event generation. Then, in the next two sections, Secs. 3 and 4, general

tools for event generation, including for instance the event record, are presented

as well as those modules that specify the physics environment (such as the physics

model, beam spectra, or parton distribution functions), in which the simulation

is performed. In the following, the implementation of some of the event phases

reflecting different physics features will be briefly highlighted. The discussion is

commenced with describing the inclusion of hard matrix elements for jet production

– 3 –



etc. (Sec. 5) and for heavy-particle decays such as, e.g., top-quark decays, (Sec. 6)

into SHERPA. Matrix elements are also needed for the simulation of multiple hard

parton interactions in hadronic collisions. Hence, in Sec. 7 a brief outlook will be

given on how SHERPA will describe such phenomena. In all cases mentioned above,

the matrix elements may give rise to configurations of jets to be fragmented by the

subsequent parton shower. A cornerstone of SHERPA is the implementation of an

algorithm, which merges matrix elements and parton showers respecting the next-to

leading logarithmic accuracy of the parton shower (for details on this algorithm, see

[10]). In Sec. 8, questions related to the inclusion of this algorithm and the interplay

with the parton shower inside the SHERPA framework are discussed. The quick tour

through the event phases will be finished in Sec. 9 with a discussion of issues related

to soft QCD, e.g. hadronisation, beam jets, etc.. Finally, in Sec. 10, conclusions will

be drawn and a further outlook will be given.

2. Overall event-generation framework

In SHERPA, the various tasks related to event generation are encapsulated in a num-

ber of specific modules. From a structural point of view, the set-up of the event-

generation framework condenses into the problem to define the rules for the interplay

of these modules and to implement them. The flexibility to do so is increased by

a separation of the interfaces defining this interplay from the specific modules –

the implementations of physics tasks1. How this is realized within SHERPA can be

exemplified by the hard matrix elements:

There are two implementations, which can be used to generate hard partonic sub-

processes. One of them is restricted to a list of analytically known 2 → 2 processes,

the other one is the multipurpose parton-level generator AMEGIC++. However dif-

ferent they are, in the framework of event generation they have to calculate total

cross sections for the hard subprocesses and they must provide single weighted or

unweighted events. In SHERPA, these functionalities of both modules are accessible

through an interface, the Matrix Element Handler. It naturally lives up to the in-

trinsic differences in these physics implementations. Without knowing any details

about the realization of hard matrix elements in the modules, they can be plugged

anywhere into the event-generation framework by means of this abstract handler

1Of course, this abstraction is to some extent limited by a kind of linguistic problem: in the

implementation of the physics tasks, a choice has to be made on the terms in which the tasks

are formulated. As a simple example consider four-momenta, clearly a basic ingredient of event

generators. In ThePEG, the choice has been made to represent them as five-vectors, where the fifth

component denotes the mass related to the four-momentum; in contrast, in SHERPA the representa-

tion is in terms of plain four-vectors. To use ThePEG modules within SHERPA requires a translation,

which in SHERPA would be performed through the interface classes. The objects defining the terms

in which physics tasks are implemented inside SHERPA are accumulated in a namespace ATOOLS, cf.

Sec. 3. Clearly, all other modules rely on these definitions.

– 4 –



class. To add another module concerned with hard partonic subprocesses, on the

level of SHERPA one would just have to extend the corresponding methods of the

Matrix Element Handler accordingly. This reflects a typical object-oriented design

principle.

In general, such abstract handler classes encapsulate the specific physics implemen-

tations and are used to interface them with each other. Further examples that

have been implemented so far include the Beam Spectra Handler, the ISR Handler,

the Hard Decay Handler, the Shower Handler, the Beam Remnant Handler and the

Fragmentation Handler. They will be described in the forthcoming sections.

In many cases the underlying physics modules will require some initialisation before

they can be used during event generation. Again, this can be exemplified by the hard

matrix elements. In this case the initialisation basically consists of tasks like the set-

up of matrix elements and phase-space integrators, and of the evaluation of total

cross sections. They define the relative contributions of individual sub-processes in

the overall composition of the hard process part inside the events. It is clear that

such tasks have to be performed in an initialisation phase of an event-generation

run. During this phase, SHERPA initialises the various physics modules selected by

the user through the abstract handlers responsible for them. The specific set-up

of a selected module will depend on external, run-specific parameters, which are

read-in from corresponding data files and managed by the same handler class. The

initialisation sequence of these handlers and their physics modules is organised by

a SHERPA-internal Initialization Handler, which also owns the pointers to the

handlers. To add new handlers for completely new physics features, therefore, ne-

cessitates to modify and extend this Initialization Handler.

Having initialised the interfaces to the physics modules, the SHERPA framework is

ready for event generation. As already stated before, the individual events are de-

composed into separate phases. This decomposition is reflected by SHERPA’s program

structure in the following way: an Event Handler object manages the generation of

one single event by having a list of various Event Phase Handlers acting on the

expanding event record. This process of event generation is formulated in terms

of particles connecting generalised vertices, coined blobs. These Blobs in turn re-

flect the space-time structure of the event, each of them has a list of incoming and

outgoing particles. In other words, the blobs are the nodes, the particles are the

connecting lines of a network. For a pictorial example, confronting a simple hadron–

hadron event with its representation through Blobs, cf. Fig. 1. An event thus can

be represented as a list of Blobs, which in turn forms SHERPA’s event record. The

Event Phase Handlers act on this list, by either modifying the Blobs themselves or

by adding new Blobs or by subtracting unwanted ones. For event generation, the

list of Event Phase Handlers is tried on the list of Blobs until no more action is

– 5 –



���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������

������
������
������

������
������
������

������
������
������

����
����
����
����
����

����
����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������

������
������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

Figure 1: Pictorial representation of the event record. In the left picture, a hadron–

hadron collision is exhibited. Clearly, apart from the hard signal subprocess followed

by hard decays of two heavy unstable particles, it also contains two more hard parton

interactions, all of them shown as thick blobs. The partons are dressed with secondary

radiation as well, before the parton ensemble is transformed into primary hadrons which

then decay further. On the right this is translated into the language of Blobs. Here,

each hard matrix-element Blob (red) is equipped with merging Blobs (green) in the initial

and final state which define initial conditions for the parton shower. All extra partons

emitted during the shower evolution are combined in individual shower Blobs (blue). In

the hadronisation Blobs (magenta) colour singlet chains formed by incoming partons are

translated into primary hadrons which might decay further. Each such hadron decay is

represented by an extra Blob.

possible, i.e. until none of the individual Event Phase Handlers finds an active Blob

it can deal with. To illustrate this, consider the following simple example:

• First of all, a yet unspecified blob of the type “Signal Process” is added to

the so far empty Blob list. Iterating with the list of Event Phase Handlers

the Signal Processes phase deals with the single unspecified active Blob,

inserting a number of incoming and outgoing partons through the Matrix -

Element Handler.

• In the next iteration of the Event Phase Handlers, the Jet Evolution phase

steps over this Blob and adds parton showers to it. To this end, some “ME

PS Interface” Blobs are added as well as some Blobs for the initial- and final-

state parton shower, signified by the types “IS Shower” and “FS Shower”,

– 6 –



respectively. Assuming that an e+e− annihilation into hadrons is simulated,

the “IS Shower” Blobs have one incoming and one outgoing electron each, and,

maybe, some outgoing photons as well. The “Signal Process” as well as the

“ME PS Interface” Blobs are switched to passive by this phase.

• The Hadronisation phase selects out the shower Blobs for the transition

of partons into hadrons. First the Beam Remnant Handler has to fill “Beam

Remnant” and “Bunch” Blobs. In the toy example, both, however, have a

simple structure with one incoming and one outgoing electron each. Now,

the Fragmentation Handler comes into play, adding more blobs of the type

“Fragmentation” with a number of incoming partons and a number of outgoing

primary hadrons. All Blobs apart from the “Fragmentation” ones would be

switched to passive now, leaving the outgoing primary hadrons to be decayed.

These decays would be represented by more Blobs of the type “Hadron Decay”.

The structure elucidated above allows for nearly arbitrary mixtures in the composi-

tion of an event. For example, through the action of the Jet Evolution phase the

parton shower could in principle alternate with a sequence of hard decays on the

parton level, or it could even be invoked in the decay of a heavy hadron.

In Fig. 2 the Event Phase Handlers implemented so far and their connections to

various interfaces are exhibited.

3. Tools for event generation

In SHERPA, the basic infrastructure for event generation, which is used by other

modules, is centralised in a separate package, called ATOOLS. It contains management,

mathematics, and physics tools.

The organisational tools include, among others, classes to read-in input data, and

to provide parameters and objects that must be globally accessible. During the

initialisation of the SHERPA environment this data-container class is instantiated as

a global object, which is filled and accessed by the other modules in due course.

Therefore, if a potential user wants to include more objects that are needed in very

separate corners of the total framework, he or she would have to include these objects

into this class Run Parameters. Of course, the corresponding access methods have to

be provided there as well. SHERPA offers the possibility to specify a large amount of

parameters for a run without recompiling. To enhance the transparency of the read-

in procedure and to contribute to its intuitive understanding, the variables might be

contained in different, user-specified data files in the following fashion:

KEYWORD = Value .

– 7 –



Event_Phase_Handler

Hadronization

Hadron_Decay_Handler

Fragmentation_Handler

Beam_Remnant_Handler

Shower_Handler

Hard_Decay_Handler

MI_Handler

Matrix_Element_Handler

ISR_Handler

Beam_Spectra_Handler

Multiple_Interactions

Hard_Decays

Jet_Evolution

Hadron_Decays

Event_HandlerInitialization_Handler

Sherpa

Signal_Processes

owns pointer employs object inherited

Figure 2: The Event Phase Handlers and their interfaces, all of which are implemented

up to now in SHERPA.

Within the code, default values can be given for the parameters connected to the

keywords. An example defining, e.g. the physics model, and declaring the Standard

Model as the default choice, reads:

Data_Read _dataread(path,file);

std::string model = _dataread.GetValue("MODEL",std::string("SM"));

In its instantiation, the dataread-object is given the path and the file name for the

read-in procedure.

A second group provides mathematical service classes, including:

• a representation of three- and four-vectors;

– 8 –



• a class for real or complex matrices;

• a representation of Lorentz-transformations (boosts and rotations);

• abstract definitions of functions or grids which can be integrated or inverted;

• a class for simple histograms and operations on them;

• the random number generator.

This group of objects defines the mathematical terms in which SHERPA generates

events.

The basic physics terms are also part of the ATOOLS package and cover a wide range

of applications. In the following, some of the corresponding basic classes will be

briefly described:

• Particles are described by some, in principle, unchangeable characteristics:

their quantum numbers, their mass and width, etc.. All these properties are

contained in a Flavour object. Within SHERPA, also pseudo-flavours, for in-

stance “jet”, are available. Hence, a Flavour object might serve as a container

for other Flavours. In SHERPA the particles and their properties are collected

in two data files, Particle.dat and Hadron.dat. A typical line in these files

looks like:

kf Mass Width 3*e Y SU(3) 2*Spin maj on stbl m_on Name

1 .01 .0 -1 -1 1 1 0 1 1 0 d

Apart from the mass, width and spin, the electrical charge, the third component

of the weak iso-spin, and the ability to participate in strong interactions are

defined. In addition, for fermions, the user should provide information whether

a specific Flavour describes Majorana particles or not. Also, information has

to be provided, whether individual particles should be included at all, whether

they are stable or not, and whether their mass should be taken into account in

matrix-element calculations2. Finally, the particles’ names should be defined

as well in a form that will show up in the event record.

• In some cases, the user might wish to have, e.g., the matrix-element genera-

tor(s) to calculate the width of a Flavour, thus overwriting the one given in

Particle.dat. To this end, another data file, by default called Decays.dat,

might be read-in. Then, for the corresponding particles, decay tables are con-

structed and evaluated. They are implemented as Decay Table objects.

2It should be mentioned here that this mass enters in the phase space and in the propagators.

For the Yukawa couplings these masses, if switched on, serve as default value, but can be overwritten

during the initialisation of the physics models.

– 9 –



• The particles, which finally show up in the generated event, are represented

through a class Particle. In addition to the data objects specifying its prop-

erties, the Particles are characterised by their four-momenta, by the vertices

(Blobs) in which they are created or end, and by the flow of quantum numbers

associated with them, such as colour.

In addition to the classes outlined above, the ATOOLS package includes classes which

define some physics observables or which can be used to select events. These Selector

classes are also needed for the integration over the phase space of the final state in

hard subprocesses. One of them is providing a definition of jets according to the k⊥-

(or Durham-) algorithm [11] in various collision types. It is of special importance for

the SHERPA package, since it is used for the merging procedure of matrix elements

and the parton shower.

4. Physics set-up

In this section those packages are presented that define the overall physics set-up.

Clearly, this contains the specification of the physics model, in which cross sections

are calculated or events are generated. Such a physics model defines the set of par-

ticles in it as well as most of their properties, including their mutual interactions.

Equally important is a declaration of which type of process is discussed. Basically

this amounts to a definition of incoming beams and their structures, both in terms

of their respective energy spread and in terms of their eventual partonic substruc-

ture, which can be parametrised by parton distribution functions. In the following,

therefore, the packages MODEL, BEAM, and PDF are briefly introduced. Within SHERPA

they define the physics model, the structure of the incoming beams and the eventual

inner structure of the colliding particles, respectively.

The package MODEL encapsulates abstract structures to specify arbitrary parameter

sets of physical models, e.g. coupling constants, Yukawa masses, decay widths, etc..

For a certain physical model, for instance the Standard Model or its minimal super-

symmetric extension, all parameters are represented by a Model object derived from

the abstract base class Model Base. This base class and its explicit instances mainly

serve as containers and handle the input and the access to the parameters. The main

ingredients of this class are lists of four standard parameter types:

• ScalarNumber for integer constants,

• ScalarConstant for floating point (double precision) constants,

• ScalarFunction for real single-parameter functions, derived from the abstract

class ATOOLS::Function Base, and

– 10 –



• ComplexMatrix for a matrix of complex floating point (double precision) con-

stants.

Examples of parameters, which could be contained in the lists, are the number of

extra dimensions, α in the Thomson limit, the running strong coupling constant α
s
,

and the CKM-matrix, respectively. Each parameter is mapped on a name string,

which is used for all references on the parameter. A code example for the insertion

of such a pair of name and parameter into the list of scalar constants reads

p_constants->insert(std::make_pair(std::string("ALPHAQED(0)"),

1./137.03599976));

To access parameters, the class Model Base defines a function for each parameter

type, for instance the constant "ALPHAQED(0)" can be re-obtained through a call of

ScalarConstant("ALPHAQED(0)");

There are two typical situations for setting the parameters of a certain model. First,

they can be simply read-in from a file, which by default is called Model.dat. As a sec-

ond possibility, Model Base is equipped with a pointer to a Spectrum Generator -

Base object. This object provides an abstract interface to external spectrum genera-

tors with methods to read-in input parameters, to deduce the particle spectrum and

to calculate the other parameters of this model. So far, interfaces to the Fortran

codes Hdecay [12] and Isajet [13] have been constructed. They are instances of the

abstract base class Spectrum Generator Base and they are called Hdecay Fortran -

Interface and Isajet Fortran Interface, respectively. To include more of these

generators, a user would have to derive such an interface class and provide methods

to read-in the input parameter set, to calculate the other parameters and to modify

the particle spectrum accordingly. It should be noted that for the inclusion of new

particles, also the class Flavour would have to be extended correspondingly3.

Within SHERPA the original beams of a specific collider are treated in two different

stages in order to extract the partonic initial states for the hard interactions. In the

first step, the incoming beams at a certain energy, the nominal energy of the collider,

are transfered into bunches of interacting particles, which have an energy distribution,

and whose momenta are distributed collinearly w.r.t. the original beams. Two options

are currently implemented: the beams can either be monochromatic, and therefore

need no extra treatment, or, for the case of an electron collider, Laser backscattering

off the electrons is supported. This mode leads to photon bunches with a certain

energy and polarisation distribution. In a second step, possible substructures of the

bunch particles are taken into account, as well as ordinary initial state radiation.

3Using the new accord on a generic interface structure for spectrum generators, [14], the task to

inherit new instances of the Spectrum Generator Base will be substantially alleviated.

– 11 –



This task is achieved by means of parton distribution functions (PDFs) or simple

structure functions for the case of electron ISR.

As an illustrative example, consider the case of resolved photon interactions at an

electron collider. As stated above, by Laser backscattering the incoming electrons

can be “transformed” into photons distributed in energy and polarisation depend-

ing on the parameters chosen for the incoming electron beam and the Laser. This

corresponds to the first step. In the second step, these photons have a partonic sub-

structure described by an appropriate photon PDF defining the probability to find

a certain parton flavour at the scale Q2 and the energy fraction x inside the photon.

The first stage is hosted in the module BEAM, housing all classes that are employed

to generate beam spectra. The handler class to access different beam-manipulation

strategies is Beam Spectra Handler. Before coming into full effect during integra-

tion or event generation, this handler initialises a suitable treatment (Beam Bases) for

both beams and uses them to generate corresponding weights, i.e. energy distribu-

tions. At the moment, all outgoing bunch particles are still collinear to the incoming

beams, but this is going to change in the future, by adding transversal boosts to

the kinematics. Up to now two types of Beam Bases are supported: Monochromatic

beams, and the generation of photon beams via Laser Backscattering. For the

latter one the parametrisation of [15] is supplied in addition to a simple theoretical

ansatz. To flatten out the peaks in the energy distribution of the produced pho-

tons, additional phase-space mappings have been introduced, which are located in

the module PHASIC++ and come to action as further channels in a multi-channel

phase-space sampling [16] also implemented there. For more details, cf. Sec. 5. To

implement any new beam treatment, such as, e.g., Beamstrahlung, a corresponding

instance of the class Beam Base has to be provided. In addition, the construction of

extra phase-space mappings might become mandatory.

The second stage, i.e. the handling of initial state radiation or partonic substruc-

tures, is located in the PDF module. The handler class steering the selection of PDFs

or structure functions of bunch particles is the PDF Handler, instantiating a suitable

PDF Base object and returning a pointer to it. So far, a structure function for elec-

trons (that can handle charged leptons in general), a photon PDF and various proton

structure functions are available. The list of proton PDFs covers: a C++ version of

MRST99 [17], the Fortran CTEQ6 PDF [18], and the set of LHAPDFs [19]. The

two Fortran pieces are encapsulated by the two classes CTEQ6 Fortran Interface

and LHAPDF Fortran Interface. For the case of photon bunches, the only struc-

ture function implemented is the GRV (LO) parton density [20], again framed by a

C++ class, GRVph Fortran Interface. Having selected and initialised all required

PDFs the PDF Base objects are handed over to the ISR Handler via pointers to

two ISR Base objects. If no ISR treatment is necessary for a beam the ISR Base

is instantiated as an Intact object, else a Structure Function object is instanti-

– 12 –



ated, which possesses a pointer to the corresponding PDF Base. At first glance this

construction looks quite over-engineered, however, it allows for a straightforward im-

plementation of possible multi-parton structure functions, which one would possibly

like to use to correctly account for multiple interactions. To efficiently sample initial

state radiation or parton distributions, and similar to the beam treatment, qualified

phase-space mappings have been constructed, taking into account the peak struc-

ture of the corresponding distributions. It is also worth noting that the PDFs are

handed over to the Shower Handler in order to facilitate the backward evolution of

initial-state parton showers, see Sec. 8.

5. Matrix elements and phase space integration

In the SHERPA framework, hard matrix elements occur in different phases of event

generation, i.e. in the generation of the (hardest) signal process, in the decay of

heavy unstable particles, or during the simulation of multiple parton interactions.

This is reflected by the appearance of different Event Phase Handlers during event

generation. In fact, event generation starts with an empty list of blobs. The first

blob to be filled by the Signal Processes event phase is, obviously, for the partonic

signal process. This event phase, like the other ones, such as Hard Decays and

Multiple Interactions, owns a pointer to an appropriate handler for the matrix

elements.

As briefly mentioned before, SHERPA currently incorporates two modules concerned

with matrix elements for hard partonic subprocesses. These modules are interfaced

through the Matrix Element Handler, which in turn possesses public methods for

the set-up of the calculation framework (physics model, beam spectra, PDFs, con-

struction of suitable, process- and framework-dependent integration channels), for

the evaluation of total cross sections, and for the generation of single events. These

tasks as well as some management issues (number and flavour of partons, etc.) look

very similar on an abstract level, and in fact, the corresponding methods just call

their counterparts in the specific matrix element realisation. There is one difference,

however, in these modules. The analytically known 2 → 2 processes incorporated in

the module EXTRA XS provide the colour structure of individual parton configurations

through specific methods. SetColours defines this structure in terms of the external

four-momenta, whereas Colours returns the colour structure. In AMEGIC++ things

are not so easy. In fact, in SHERPA the colour structure of an n-parton configuration

is reconstructed by backward clustering, which is guided by the individual Feynman

diagrams, cf. Sec. 8. This algorithm allows, in principle, to reconstruct colour flows

for any multi-parton configuration in a leading-log large-N
c

scheme for any parton

level generator. The only ingredient that has to be delivered by the parton-level

generators is a representation of Feynman diagrams in terms of binary trees. There-

fore, AMEGIC++ provides methods to access the amplitudes. This difference is also

– 13 –



reflected in the Matrix Element Handler. It allows to either directly access the class

responsible for the hard 2 → 2 subprocesses in the case of EXTRA XS or to extract

individual Feynman diagrams from AMEGIC++.

The library EXTRA XS supplies a list of simple 2 → 2 processes at leading order and

their analytically known differential cross sections. Thus it allows for a fast evaluation

of such processes. At present it includes all 2 → 2 QCD and Drell-Yan processes with

massless partons. Furthermore, it is employed for the determination of the initial

colour configuration for the parton shower during event generation. When AMEGIC++

is used as signal generator, this applies after an appropriate backward clustering, cf.

Sec. 8.

Within EXTRA XS each process object is inherited from the base class XS Base, which

contains the basic ingredients for a 2 → 2 signal generator. This amounts to methods

providing the particle types, the total and differential cross section of the process,

and to methods that allow the generation of single parton-level events and the de-

termination of their colour structure. In the set-up of such an XS Base the overall

physics model, the beam spectra and the ISR strategy have to be handed over as

well. The latter information is employed to select adequate initial state channels

for the phase-space integration (see below). Since only 2 → 2 processes are taken

into account within EXTRA XS, its final state part boils down to simple hard wired

S-, T- and U-channel integrators. According to its specific purpose, an XS Base ob-

ject may either correspond to a single 2 → 2 process represented by an instance

of the class Single XS or to a set of processes represented by the container class

XS Group. However, if a user wants to set up his own process, he or she has to

derive it from Single XS and to define all its process-specific properties, such as

the colour structure of the particles involved, the differential cross section or the

final state channels. The overall interface from EXTRA XS to the SHERPA framework

is the special XS Group called Simple XSecs, which can be accessed through the

Matrix Element Handler and serves as a signal generator. This class also contains

methods to read-in user-defined run-specific subprocesses and to select and initialise

the corresponding XS Bases.

AMEGIC++ is SHERPA’s prefered multipurpose matrix-element generator concerned

with the production and evaluation of matrix elements for hard processes in particle

collisions at the tree-level. A manual for the current version 2.0 is in preparation,

superseding an older one, [8]. This new version now also covers the full Minimal

Supersymmetric Standard Model (MSSM) [21, 22] and the ADD model [23] of large

extra dimensions; for details concerning the implementation of the latter one, see

[24].

In its instantiation, AMEGIC++ is equipped with pointers to a Model Base object, to

a Beam Spectra Handler and to an ISR Handler object. The first one supplies all

– 14 –



coupling constants and model specific parameters that allow AMEGIC++ to construct a

list of all available Feynman rules, i.e. vertices, for the chosen physical model. They

are represented through objects of the type Single Vertex, which possess pointers

to a Lorentz Function and a Color Function object accounting for the intrinsic

Lorentz and SU(3) colour structure of the vertex. This is nicely exemplified by the

triple gluon vertex:

Kabbala kcpl0 = -g3;

Kabbala kcpl1 = kcpl0;

for (short int i=0;i<3;i++)

vertex[vanz].in[i] = Flavour(kf::gluon);

vertex[vanz].cpl[0] = kcpl0.Value();

vertex[vanz].cpl[1] = kcpl1.Value();

vertex[vanz].cpl[2] = 0.;

vertex[vanz].cpl[3] = 0.;

vertex[vanz].Str = (kcpl0*PR+kcpl1*PL).String();

vertex[vanz].ncf = 1;

vertex[vanz].Color = new Color_Function(cf::F);

vertex[vanz].Color->SetParticleArg(0,2,1);

vertex[vanz].Color->SetStringArg(’0’,’2’,’1’);

vertex[vanz].nlf = 1;

vertex[vanz].Lorentz = new Lorentz_Function(lf::Gauge3);

vertex[vanz].Lorentz->SetParticleArg(0,1,2);

vertex[vanz].on = 1;

vanz++;

To extend AMEGIC++ and incorporate new interaction models, a potential user would

just have to derive a corresponding class from the Interaction Model Base class

and to fill it with suitable vertices.

Having specified a process or a group of processes to be evaluated, AMEGIC++ then

constructs all Feynman diagrams by matching the set of vertices onto topologies gen-

erated beforehand. These amplitudes are translated into helicity amplitudes, which

are subject of various manipulations, all aiming at a reduction of the calculational

cost of the entire computation. As a further step AMEGIC++ analyses all individual

Feynman diagrams and, according to their phase-space singularities, it automati-

cally generates appropriate phase-space mappings for the integration over the final

state. For more details on the multi-channel integration, see below. The integration

– 15 –



channels as well as the helicity amplitudes are stored as library files that have to

be compiled once and are linked to the main program. The by far most convincing

features of the AMEGIC++ module are its robustness and flexibility. The package of-

fers the evaluation of arbitrary processes4 in the Standard Model, and in two of its

extensions, the MSSM and the ADD model.

The tools for phase-space integrations, i.e. simple integration channels, building

blocks for complex phase-space mappings and the full set of multi-channel integra-

tion [16] routines are hosted in the package PHASIC++. It is used by AMEGIC++ as

well as by the simple matrix elements located in the EXTRA XS package. If needed,

it can be adjusted in a straightforward fashion for usage by any other matrix el-

ement generator. The only thing, one would have to do, is to provide informa-

tion about or to directly construct the channels for the final state part. Both

strategies are realized by EXTRA XS and by AMEGIC++, respectively. In the latter

case, the class responsible for the construction of the full final-state multi-channel

integrator is the Phase Space Generator, individual channels are constructed by

the Channel Generator through a mapping of the Feynman diagrams onto the

Channel Elements supplemented by PHASIC++.

Apart from the matrix-element-specific final-state channels, during the phase-space

integration one might have to sample over all initial-state configurations. Within

SHERPA initial states on the parton level are constructed from the incoming beams

in two steps. First, the beam particles might be transformed into other particles

(such as electrons into photons through Laser backscattering) or may experience

some smearing (such as electrons through Beamstrahlung). The resulting particles,

which may or may not have an energy distribution, might have a resolved partonic

substructure parametrised by PDFs or they might experience additional initial state

radiation, which can also be parametrised by a PDF-like structure. To guarantee op-

timal integration performance, one has to analyse the emerging energy distributions

in each of the two steps and flatten them out. This results in up to two more multi-

channel mappings, one for the beam centre-of-mass system, and one for the parton-

level centre-of-mass system. Both systems currently are defined through the boost

relative to their ancestors and by their respective centre-of-mass energy squared. In

the near future, also transversal boosts of the subsystems will be included. This,

however, is a straightforward extension of existing code.

6. Decays of unstable particles

Decays of heavy unstable particles during the generation of an event are treated by a

specific Event Phase Handler called Hard Decays. This handler owns, not surpris-

ingly, an interface to matrix elements responsible for the description of such decays
4AMEGIC++ has proved to work for up to six final state particles [25].

– 16 –



on the parton level. Again, this interface, the Hard Decay Handler, is separated

from the physics implementation, namely the matrix elements. Currently, only the

matrix elements of AMEGIC++ are accessible through this interface.

At the moment, heavy unstable particles are produced by hard matrix elements only,

i.e. through the actions of the following event phases: Signal Processes, Hard -

Processes and Multiple Interactions. While processing each of these phases, it is

checked whether unstable particles emerge. If this is the case, their respective decay

channel and the effective mass of this decay are determined. The decay channel is

selected by invoking the Hard Decay Handler, which provides a mapping of particles

to decay tables and the corresponding matrix elements for each decay channel. Hence,

a pointer to this interface is a member of all the event phases above. The effective

mass is distributed according to a Breit–Wigner function, the method for this resides

in the Particle object itself. Fixing the decay channel before the mass is determined

ensures that the correct, initialised branching ratios are recovered. In principle, this

also allows for using tree-level decay kinematics as supplemented by, e.g., AMEGIC++

together with higher order branching ratios5. After all masses are fixed, the four-

momenta of all particles emerging in the corresponding hard subprocess (all particles

leaving the blob) are shifted to their new mass-shell accordingly. This induces some

minimal modifications of the energy-momentum relations of the particles and might

affect the mutual respective angles. However, the four-momentum of the total system

stays fixed. Eventually, after some jet evolution took place, the unstable particles

are decayed, maybe giving rise to more unstable particles or new jets and, thus,

triggering more actions of the Hard Decays or Jet Evolution phase.

At the moment, the procedure outlined above is being implemented and tested. In

its current, minimal form, two issues have not been tackled:

• In principle, attaching secondary radiation to hard decays leads to multi-scale

parton showers [26], which act in the following way: In a first step the parton

shower evolves the parton configuration down to scales comparable to the width

of the decaying particles. Then, these particles decay, eventually starting an

initial and a final state parton shower, which have to be matched with the

preceeding one. Finally, the emerging parton ensemble is evolved down to

the next decay or the infrared scale. An implementation of this procedure is

straightforward in the SHERPA framework.

• Furthermore, spin correlations in the fashion of [27] should be added. The

underlying idea is as follows. When decays of heavy unstable particles are

5Such a procedure might seem somewhat inconsistent. However, using loop-corrections for,

say, two-body decays, basically amounts to a specific choice of scale of the coupling constant(s)

involved. In this sense, inconsistencies are due to different choices of scale, which could be fixed

and compensated for in the corresponding vertices.

– 17 –



treated in the way outlined above, implicitly some narrow width approxima-

tion has been used. In fact, this inherent assumption only allows to cut the

propagators of the unstable particles6. Under the narrow width approximation,

one can decompose the propagator into a sum over physical polarisation states.

The polarisations of a number of outgoing particles produced in one interac-

tion, however, are correlated, and this correlation propagates to a correlation

in the kinematical distribution of the decay products.

7. Multiple interactions

Multiple interactions are handled within the SHERPA framework by the Event -

Phase Handler called Multiple Interactions. Given a Blob list, which already

contains the signal process, it adds one by one hard 2 → 2 subprocesses, according

to an ordering in the transverse momentum p⊥ of the outgoing particles. The ini-

tial conditions for this sequence of parton interactions are determined by the signal

process. However, it might happen that the signal process contains more than two

outgoing particles and, thus, the definition of p⊥ is ambiguous. Then, the backward

clustering already employed to create an interface from the signal process to the

parton shower (see Sec. 8) defines the corresponding 2 → 2 process. The sequence of

further partonic 2 → 2 interactions results in new Blobs, each of which experiences

its own shower evolution through the action of the Jet Evolution event phase.

To create the additional hard subprocesses, the Multiple Interactions phase em-

ploys a MI Handler, the interface to the new module AMISIC++. This module is

concerned with the generation of hard underlying events similar to how this is sim-

ulated in Pythia [28]. There, the hard underlying event is assumed to be a mostly

incoherent sum of individual scattering processes. Right now, AMISIC++ is restricted

to hard QCD processes and therefore employs the library of EXTRA XS, (see Sec. 5). To

account for a fast performance, however, AMISIC++ does neither evaluate matrix ele-

ments on-line nor uses a veto algorithm as proposed in [28]. Instead it pre-calculates

and tabulates the appropriate differential cross sections and stores them to disk in

the initialisation phase. This data may then also serve for future runs.

It should be noted here that AMISIC++ is in the process of full implementation and

of careful tests only. Furthermore, the description of the soft underlying event is still

lacking in Multiple Interactions.

8. The interface to fragmentation

Having produced a number of partons in hard subprocesses – either the signal process,

hard particle decays, or multiple hard partonic interactions – these coloured objects

6In other words, if the decaying particles’ width becomes large, all processes, i.e. also the “con-

tinuum” or background, contributing to the same final state have to be taken into account.

– 18 –



have to be transformed into colourless hadrons. The gap between the varying scales

of these hard interactions and some universal scale connected to hadronisation is

bridged by parton showers. Invoking the parton shower fills in further parton ra-

diation and guarantees the universality of the scale, where the phenomenological

hadronisation model sets in, and of its parameters.

Within the SHERPA framework, such additional emission in general happens during

an event phase called Jet Evolution. This event phase adds blobs describing radi-

ation of secondary partons to the list of blobs constituting the event. To this end,

all parton configurations in blobs for signal processes, hard decays, or for multi-

ple parton interactions have to be analysed and modified by parton showers. The

Jet Evolution, thus, owns pointers to all corresponding Matrix Element Handlers

for the definition of colour configurations and other starting conditions of the parton

shower and to a Shower Handler. This object provides public methods that allow to

initialise and perform showers and to insert the resulting shower blobs into the event

record. In principle, one can think of using different shower realisations, for instance

a dipole cascade as in Ariadne [29], an angular ordered shower as in Herwig [2, 30],

or a virtuality ordered shower as in Pythia [1]. So far, in SHERPA a virtuality-ordered

shower has been implemented through a separate module called APACIC++ [9]. This

module also includes the functionality needed for the merging of parton showers and

matrix elements in the fashion of [10], i.e. a veto on jets at the parton level. The

implementation of other approaches that model multiple emission of secondary par-

tons will not substantially change the interface Shower Handler.

From the brief description above, it is clear that the matrix elements and the parton

showers might act on different objects. In the case realized so far, i.e. in the case of

APACIC++, the parton shower is formulated in terms of trees and knots; for a shower

described in the fashion of Ariadne one could imagine that dipole objects are the

basic terms. Hence, in the case of APACIC++ being the parton shower generator the

Jet Evolution would have to administer the translation of partons to knots, i.e. the

definition of a primordial tree structure representing a parton configuration. This

is done through suitable interfaces. The specific instantiation of the abstract base

class Perturbative Interface depends on the form of the matrix elements and their

functionality inside the Matrix Element Handler, and on the Shower Handler itself.

The application of these interfaces is mandatory for the Jet Evolution and results

in some “merging blobs” around the blob of the hard subprocess under consideration.

These merging blobs are needed for the sake of four-momentum conservation, since

secondary emission a posteriori gives a virtual mass to the primary on-shell partons,

which has to be balanced by shifting the four-momenta of the primary parton en-

semble. All of these interfaces are part of the SHERPA framework itself rather than

of the individual modules (such as AMEGIC++ etc.). Due to the merging algorithm,

this interface needs to supply the possibility to calculate Sudakov weights, and to

– 19 –



accept or reject parton configurations according to them. It is clear that a rejec-

tion necessitates a new parton configuration and, therefore, results in a new event

to be supplied by the Matrix Element Handler. Correspondingly, a new Blob is

filled by the Signal Processes event phase. However, since at the moment only

two specific matrix element generators are available, cf. Sec. 5, only two realisa-

tions of the Perturbative Interface exist, namely SimpleXS Apacic Interface

and Amegic Apacic Interface.

The former is very simple, since the library of 2 → 2 subprocesses is used such that

additional jets are the result of the simulation of the radiation activity through the

parton showers. Therefore, in this case, no veto on extra jets has to be performed

inside a shower and consequently no Sudakov form factor has to be applied. Further-

more, the colour structure of the partons as well as the hard scale of the subprocess

can be obtained directly from the XS Bases inside EXTRA XS through simple access

methods made available to the SimpleXS Apacic Interface. The starting condi-

tions for the shower are obtained in quite a straightforward fashion. The initial

virtualities for the shower evolution are given by the scale of the hard subprocess,

which is connected to the maximal momentum transfer along coloured lines. The

maximal opening angle of the next emission for each parton is obtained from the

angles w.r.t. to the colour connected partons in the hard 2 → 2 process. The parton

shower is then simply initialised by filling this information into the trees of APACIC++.

When using AMEGIC++ or any other matrix element generator involving 2 → n pro-

cesses with n > 3 the situation is more complicated. In such cases, the 2 → n

configuration is reduced to a “core” 2 → 2 process through the k⊥-cluster algorithm.

To keep track of allowed and disallowed clusterings, i.e. of actual Feynman rules,

the clustering follows the Feynman diagrams of the corresponding matrix element.

They are obtained through the Matrix Element Handler. For each clustering, a

Sudakov form factor is evaluated and attached as an extra weight (for details see

[10]), which finally results in an overall weight for this specific parton-level event. In

case it is accepted, the initial colour structure is fixed by the colour structure of the

core 2 → 2 process, since the parton shower inherently is formulated in the large N
c
-

approximation. In the clustering procedure the tree structure for the parton shower

already has been constructed. It is supplemented with missing information (i.e. the

starting virtualities for each parton, opening angles etc.) through the principle that

the parton shower evolution of each parton is defined through the node in which it

was produced first.

This condenses in the following algorithm: going from inner knots to the outer ones,

in each node it is decided by the Perturbative Interface which emerging parton

is the harder, i.e. more energetic, one. The winner inherits the starting scale and

angle of the decaying mother, the losers starting conditions are defined through the

actual node. The starting conditions of the first four partons stem from the core

2 → 2 subprocess.

– 20 –



As already stated, the interface to the showers and the actual physics implementa-

tion are separated. Whereas the interface is located in the Shower Handler, the first

physics implementation of a parton shower is encapsulated in the independent mod-

ule APACIC++. It provides a virtuality ordered parton shower, supplemented with

angular ordering enforced “by hand”, similar to the one realized in Pythia. One

of the major differences, however, is that in SHERPA matrix elements for arbitrary

parton configurations are merged consistently with the parton shower. This merging

procedure results in constraints on the parton shower, which must not produce any

parton emission that would have to be interpreted as the production of an extra jet,

since jet production is left to the corresponding matrix elements.

The parton shower in APACIC++ is organised recursively in terms of binary tree struc-

tures, where the emission of an additional parton is understood as a branching process

giving rise to another node, a Knot, inside the Tree7. In the evolution of the tree

the binary branches are defined through splitting functions, which are represented

by objects of similar name, i.e. by derivatives of the base class Splitting Function.

These objects contain methods to determine outgoing flavours of a branching pro-

cess and their kinematics. Since in APACIC++ the parton shower proceeds through a

hit-or-miss method, functions overestimating the integral of a splitting function in

certain boundaries and corresponding correction weights are also included. For the

incorporation of new branching modes, such as for the simulation of parton show-

ers off super-symmetric particles, just a suitable derivative of the base class has to

be added. The sequence of branches within the parton shower is defined through

Sudakov form factors. Consequently, such objects are also used by APACIC++. For

the description of parton showers in the initial state, backward evolution relying on

the parton distribution functions usually is employed. Therefore, the corresponding

PDFs are handed over to APACIC++ and used in the space-like showers and Sudakov

form factors. Here, it should be briefly mentioned that the Sudakov form factors,

in principle, provide only the trees of branching processes. There, each node is

supplemented by the scale, where the branching takes place, and the distribution

of energies. The corresponding determination of the actual kinematics is separated

from the implementation of the Sudakov form factors; it is located in extra classes.

However, once the parton shower has terminated, the tree structure is translated

back into partons. The interface, i.e. the Shower Handler, will provide blobs with

one incoming parton stemming from the hard matrix element, which is identified as

the jet’s seed, and a number of outgoing partons exhibiting the partonic structure of

the jet before hadronisation sets in.

7These trees are the only objects of APACIC++, which are handed over to the Shower Handler

in order to be filled with partons subject to further emission. This process is triggered by the

Shower Handler and managed by the Hard Interface, the class managing the access to APACIC++

– 21 –



9. Hadronisation & soft physics aspects

After the parton shower described above has terminated, one is left with a configu-

ration of coloured partons at some low scale of the order of a few GeV in transverse

momentum. These partons, in order to match experiments, have to be translated

into white hadrons. Within SHERPA, this transition occurs in an event phase called

Hadronisation. This Event Phase Handler contains interfaces to two physics tasks

related to this phase.

First of all, extracting a coloured parton from a white initial hadron (such as in colli-

sions involving protons), necessitates to describe the colour structure of its remnant.

This is achieved by the Beam Remnant Handler.

It is clear that the coloured constituents will be colour connected to other partons

in the final state, thus influencing properties of the event at hadron level. The

distribution of colour over the hadron remnants is a tricky task, well beyond per-

turbation theory. This immediately implies that phenomenological models have to

be employed. For instance, one could assume that such a model is guided by the

attempt to minimise the string length of the colour string spanned by the outgoing

partons. Therefore, within SHERPA the beam remnants arising from hadrons are cur-

rently handled in a naive approach. Given a list of Blobs, all initiators of initial state

showers are extracted and attached to a beam blob, which represents the breakup of

the incoming hadron. Beam-remnant partons are added such that the flavour quan-

tum numbers of the hadron are recovered step by step. Colours are distributed in a

randomised fashion, where, of course, gluons or quarks carry two or one colour index

different from zero, respectively. Again, these indices are distributed such that they

add up to a white hadron. The energies of the additional parton remnants are dis-

tributed either according to PDFs or to a phenomenological function like the one in

[28]. Finally, all particles obtain a mild k⊥-kick according to a Gaussian distribution.

The resulting final parton configuration then originates from the perturbative event

phases, i.e. from Signal Processes, Hard Decays, Multiple Interactions or Jet -

Evolution, or from the beam remnants as described above8. The Hadronisation

phase has to translate these coloured partons into white hadrons. For this purpose,

it employs its Fragmentation Handler, which provides an interface to phenomeno-

logical hadronisation models.

The Fragmentation Handler first of all sorts the partons into disconnected chains

starting with a colour-triplet, such as a quark, and ending with a parton in a colour-

anti-triplet state, such as an anti-quark. Then, within these chains, partons are

8Altogether these partons must form a colour singlet, although, if baryon-number violating

sub-processes are implemented, it might be difficult to recover them as singlets in the large Nc-

representation inherent to event generation.

– 22 –



shifted to their constituent mass-shells, if necessary. Only then, the selected indi-

vidual hadronisation model is invoked. This mass-shift inside the Fragmentation -

Handler guarantees the independence of the perturbative phase, which presumably

is formulated in terms of current masses, and the non-perturbative phase with its

constituent masses. Especially for cluster-fragmentation models [31] relying on the

breakup of massive gluons into constituent quarks this is clearly advantageous. How-

ever, at the moment only the Lund string model [32] is implemented as a specific

hadronisation model to be used by the Fragmentation Handler. Its implementation

within Pythia is accessible through a special Lund Fortran Interface class, which

also reads in some of the parameters needed in this model from a corresponding data

file. In the near future, also a new version of the cluster-hadronisation model [33]

will be made available.

This model will be added as a new module, AHADIC++, to the overall framework.

This module just finished construction and currently is being tested. It performs

the transition from partons to primary hadrons in two steps: first of all, the gluons

experience a forced decay into colour-triplet pairs, which allows to decompose the

parton sinlget chain into clusters. The clusters are built from one triplet–anti-triplet

pair and thus have the quantum numbers of hadrons, including those of baryons.

In this step of cluster formation effects of soft colour reconnection are modelled,

which is an extension to the previous versions of the cluster model [31]. In the next

step, the clusters decay either into lighter ones, or into the primary hadrons. The

respective decay mode depends on the cluster mass and on the masses emerging

for the resulting four-vectors. The distribution of the decay products’ momenta is

governed by some universal anisotropic kinematics, the selection of the decay mode

thus reflects a constituent-flavour-dependent separation into a cluster and a hadron

regime. There, also soft colour reconnection effects are taken into account. In the

rare case that a primary cluster already is inside the hadron regime a one-particle

transition is enforced. For more details on this model, cf. [33].

In any case, invoking the Fragmentation Handler results in a number of colour

singlet parton chains, each of which enters a new Blob, producing a number of pri-

mordial hadrons. These hadrons may or may not decay further; at the moment, the

subsequent hadron decays are also handled through the Lund Fortran Interface.

In the future, however, it is envisioned to have an extra event phase Hadron Decays

and specific interfaces. Each of the hadron decays is then represented by another

Blob, allowing to reconstruct displaced vertices etc..

10. Summary & outlook

In this publication a proof-of-concept version of the new event-generation framework

SHERPA, Simluation for High-Energy Reactions of PArticles, has been presented in its

version 1.α. Its construction is a still on-going process, which is based on three

– 23 –



programming paradigms, namely modularity, the separation of interface and physics

implementation and a bottom-to-top approach for the addition of further modules.

In its overall structure, SHERPA reflects a typical, event-generator-inherent simulation

of full events through disjoint event phases. This lends itself to modularisation and,

therefore, SHERPA is entirely written in the object-oriented programming language

C++.

So far a number of physics modules have been attached to SHERPA, which allow users

to fully simulate electron–positron or unresolved photon–photon collisions at high

energies. Also, fully hadronic collisions, such as, e.g., proton–anti-proton or proton–

proton reactions, can be simulated. In the description of such events, however, some

features, for instance the soft underlying event, are still lacking or basically not tested

yet. In all cases considered so far, SHERPA proved to be flexible and to live up for

all demands. More tests and the inclusion of further, nearly ready physics modules,

such as a new version of the cluster hadronisation, hard decays of unstable heavy

particles, or an underlying event model, will be in the focus of future work.

SHERPA can be obtained through the downloads section of:

http://www.physik.tu-dresden.de/~krauss/hep/index.html

Acknowledgements

F.K. wants to acknowledge financial support by the EC 5th Framework Programme
under contract number HPMF-CT-2002-01663. Further financial support by

BMBF, DFG and GSI is gratefully acknowledged.
The authors are grateful for fruitful discussions with Stefan Gieseke, Klaus
Hamacher, Hendrik Hoeth, Leif Lönnblad, Alberto Ribon, Gerhard Soff, Philip
Stevens, and Bryan Webber. Also, the authors owe a great deal to users of SHERPA,
which have reported on bugs and shortcomings, in particular Claude Charlot,

Alessio Ghezzi, Hendrik Hoeth, Huber Nieto, and Thorsten Wengler. Without all
this help such a task would be unsurmountable.

References

[1] T. Sjöstrand, “High-energy physics event generation with PYTHIA 5.7 and

JETSET 7.4”, Comput. Phys. Commun. 82 (1994) 74;

T. Sjöstrand, L. Lönnblad, S. Mrenna and P. Skands, “PYTHIA 6.3 physics and

manual”, arXiv:hep-ph/0308153.

[2] G. Corcella et al., “HERWIG 6: An event generator for hadron emission reactions

with interfering gluons (including supersymmetric processes)”, JHEP 0101 (2001)

010 [arXiv:hep-ph/0011363];

G. Corcella et al., “HERWIG 6.5 release note”, arXiv:hep-ph/0210213.

– 24 –



[3] L. Lönnblad, “Development strategies for PYTHIA version 7”, Comput. Phys.

Commun. 118 (1999) 213 [arXiv:hep-ph/9810208];

M. Bertini, L. Lönnblad and T. Sjöstrand, “Pythia version 7-0.0: A proof-of-concept

version”, Comput. Phys. Commun. 134 (2001) 365 [arXiv:hep-ph/0006152].

[4] S. Gieseke, A. Ribon, M. H. Seymour, P. Stephens, and B. Webber, ”Herwig++

1.0: An Event Generator for e+e- Annihilation”, CERN-TH/2003-265 and

arXiv:hep-ph/0311208.

[5] S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour and B. R. Webber,

“Implementation of supersymmetric processes in the HERWIG event generator”,

JHEP 0204 (2002) 028 [arXiv:hep-ph/0204123].

[6] T. Sjöstrand and P. Z. Skands, “Baryon number violation and string topologies”,

Nucl. Phys. B 659 (2003) 243 [arXiv:hep-ph/0212264].

[7] http://www.thep.lu.se/ThePEG/.

Large fractions of ThePEG date back to: L. Lönnblad, “CLHEP: A project for

designing a C++ class library for high-energy physics”, Comput. Phys. Commun.

84 (1994) 307.

[8] F. Krauss, R. Kuhn and G. Soff, “AMEGIC++ 1.0: A matrix element generator in

C++”, JHEP 0202 (2002) 044 [arXiv:hep-ph/0109036];

A. Schälicke, F. Krauss, R. Kuhn and G. Soff, “Implementing initial state radiation

for lepton induced processes in AMEGIC++”, JHEP 0212 (2002) 013

[arXiv:hep-ph/0203259].

[9] R. Kuhn, F. Krauss, B. Ivanyi and G. Soff, “APACIC++ 1.0: A Parton Cascade In

C++”, Comput. Phys. Commun. 134 (2001) 223 [arXiv:hep-ph/0004270].

[10] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, “QCD matrix elements + parton

showers”, JHEP 0111 (2001) 063 [arXiv:hep-ph/0109231];

F. Krauss, “Matrix elements and parton showers in hadronic interactions”, JHEP

0208 (2002) 015 [arXiv:hep-ph/0205283].

[11] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, “New

clustering algorithm for multi - jet cross-sections in e+ e- annihilation”, Phys. Lett.

B 269 (1991) 432;

S. Catani, Y. L. Dokshitzer and B. R. Webber, “The K-perpendicular clustering

algorithm for jets in deep inelastic scattering and hadron collisions”, Phys. Lett. B

285 (1992) 291;

S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, “Longitudinally

invariant K(t) clustering algorithms for hadron hadron collisions”, Nucl. Phys. B

406 (1993) 187.

[12] A. Djouadi, J. Kalinowski and M. Spira, “HDECAY: A program for Higgs boson

decays in the standard model and its supersymmetric extension”, Comput. Phys.

Commun. 108 (1998) 56-74 [arXiv:hep-ph/9704448].

– 25 –



[13] H. Baer, F. E. Paige and S. D. Protopopescu, and X. Tata, “ISAJET 7.48: A

Monte Carlo event generator for p p, anti-p p, and e+ e- reactions”,

[arXiv:hep-ph/0001086].

[14] P. Skands et al., “SUSY Les Houches accord: Interfacing SUSY spectrum

calculators, decay packages, and event generators”, arXiv:hep-ph/0311123.

[15] A. F. Zarnecki, “CompAZ: Parametrization of the photon collider luminosity

spectra”, Acta Phys. Polon. B 34 (2003) 2741 [arXiv:hep-ex/0207021].

[16] F. A. Berends, R. Pittau and R. Kleiss, “All electroweak four fermion processes in

electron - positron collisions”, Nucl. Phys. B 424 (1994) 308

[arXiv:hep-ph/9404313];

R. Kleiss and R. Pittau, “Weight Optimization In Multichannel Monte Carlo”,

Comput. Phys. Commun. 83 (1994) 141 [arXiv:hep-ph/9405257].

[17] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, “Parton

distributions and the LHC: W and Z production”, Eur. Phys. J. C 14 (2000) 133

[arXiv:hep-ph/9907231]. The mentioned C++ version has been written by Jeppe

Andersen.

[18] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky and W. K. Tung,

“New generation of parton distributions with uncertainties from global QCD

analysis”, JHEP 0207 (2002) 012 [arXiv:hep-ph/0201195].

[19] http://vircol.fnal.gov/

[20] M. Gluck, E. Reya and A. Vogt, “Photonic parton distributions”, Phys. Rev. D 46

(1992) 1973.

[21] H. E. Haber and G. L. Kane, “The Search For Supersymmetry: Probing Physics

Beyond The Standard Model”, Phys. Rept. 117 (1985) 75.

[22] J. Rosiek, “Complete Set Of Feynman Rules For The Minimal Supersymmetric

Extension Of The Standard Model”, Phys. Rev. D 41 (1990) 3464. J. Rosiek,

“Complete set of Feynman rules for the MSSM – ERRATUM”,

arXiv:hep-ph/9511250.

[23] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, “The hierarchy problem and new

dimensions at a millimeter”, Phys. Lett. B 429 (1998) 263 [arXiv:hep-ph/9803315].

[24] T. Gleisberg, F. Krauss, K. T. Matchev, A. Schalicke, S. Schumann and G. Soff,

“Helicity formalism for spin-2 particles”, JHEP 0309 (2003) 001

[arXiv:hep-ph/0306182].

[25] In preparation.

[26] S. Gieseke, “Event generators: New developments”, arXiv:hep-ph/0210294.

– 26 –



[27] P. Richardson, “Spin correlations in Monte Carlo simulations”, JHEP 0111 (2001)

029 [arXiv:hep-ph/0110108].

[28] T. Sjöstrand and M. van Zijl, “A Multiple Interaction Model For The Event

Structure In Hadron Collisions”, Phys. Rev. D 36 (1987) 2019.

[29] L. Lönnblad, “ARIADNE version 4: A Program for simulation of QCD cascades

implementing the color dipole model”, Comput. Phys. Commun. 71 (1992) 15.

[30] S. Gieseke, P. Stephens and B. Webber, “New formalism for QCD parton showers”,

arXiv:hep-ph/0310083.

[31] B. R. Webber, “A QCD Model For Jet Fragmentation Including Soft Gluon

Interference”, Nucl. Phys. B 238 (1984) 492.

[32] B. Andersson, “The Lund Model”, Cambridge Monogr. Part. Phys. Nucl. Phys.

Cosmol. 7 (1997) 1.

[33] J. Winter, F. Krauss and G. Soff, “A modified cluster-hadronization model”,

CERN-TH/2003-272 and arXiv:hep-ph/0311085.

– 27 –


