
[12pt]JHEP3
1 bottomnumber5
@outputbox
epsfig array
ImSU
-.5pt/{}
SHERPA 1.α, a proof-of-concept version CERN-TH/2003-284 Tanju Gleisberg
Stefan Höche
Frank Krauss
Andreas Schälicke
Steffen Schumann
Jan-Christopher Winter
The new multipurpose event-generation framework SHERPA, acronym for Simulation for High-Energy

Reactions of PArticles, is presented. It is entirely written in the object-oriented programming language
C++. In its current form, it is able to completely simulate electron–positron and unresolved photon–photon
collisions at high energies. Also, fully hadronic collisions, such as, e.g., proton–anti-proton, proton–proton,
or resolved photon–photon reactions, can be described on the signal level.

Standard Model, Higgs Physics, LEP HERA and SLC Physics, Tevatron and LHC Physics, QCD
document Introduction To a large amount, modern particle physics centres around accelerator experi-

ments, where high-energetic particles are brought to collision. With rising energies, these interactions become
more and more violent, leading to an increasing number of particles being produced. To confront the result-
ing experimental data with theoretical models, a systematic understanding of such multi-particle production
processes is of paramount importance. A full, quantum-mechanically correct, treatment is, at the moment,
out of reach. There are two reasons for this:
First of all, there only is a limited understanding of the non-perturbative phase of QCD, or, in other words, of
how colourless hadrons are built from the coloured quarks and gluons. This is especially true for phenomena
such as hadronisation or for questions related to the impact of the partonic substructure of the colliding
hadrons on the pattern of multiple interactions. In all such cases, phenomenological models for the transition
from hadrons to partons or vice versa have to be applied with parameters to be fitted. This clearly puts a
constraint on a conceptual understanding of high-energy particle production processes. On the other hand,
even considering the, in principle, well-understood perturbative phase of scattering processes alone, there
are limits on our technical abilities to calculate all amplitudes that contribute to a given process. This is due
to the fact that even at the tree-level the number of Feynman diagrams grows factorially with the number
of particles involved. Moreover, at higher orders of the perturbative evolution new difficulties arise, which
are connected for instance with the evaluation of multi-leg loop integrals.
This failure necessitates other, approximate solutions, such as simulation programs. These event generators
decompose the full scattering process into a sequence of different stages, which are usually characterised
by different energy scales. The past and current success of event generators, like Pythia Pythia or Herwig
Herwig, in describing a full wealth of various data justifies this decomposition intrinsic to all such programs.
As a by-product, the decomposition of events into distinguishable, more or less independent phases opens a
path to test the underlying assumptions on the dynamics of particle interactions at the corresponding scales.
These assumptions, in turn, can be modified and new models can be included on all scales. This property
turns event generators into the perfect tool to bridge the gap between experimental data and theoretical
predictions. It renders them indispensable for the analyses and planning of current and future experiments.
To meet the new challenges posed by the new experiments, for instance Tevatron at Fermilab and especially
LHC at CERN, the traditional event generators Pythia and Herwig, so far programmed in Fortran, are
currently being re-written in the modern, object-oriented programming language C++. Their new versions
will be called Pythia7 Pythia7 and Herwig++ Herwig++, respectively. The decision to re-write them from
scratch is based on two reasons:
First, new features and models concerning the simulation of particle physics at the shifting energy frontier
need to be included. In fact this still is an on-going issue also for the Fortran versions (see for instance
Moretti:2002eu,Sjostrand:2002ip).
Furthermore, and maybe more importantly, there is a wide-spread belief that the old Fortran codes cannot

1



easily be maintained or extended. On top of that, the software paradigm of the new experiments has already
shifted to object-orientation, more specifically, to C++ as programming language. On the other hand, by the
virtue of being decomposed into nearly independent phases, the simulation of high-energy particle reactions
lends itself to modularisation and, thus, to an object-oriented programming style. In this respect it is also
natural to further disentangle management and physics issues in event generation. In fact, both Pythia7
and Herwig++ will fully rely on the same management structure, called ThePEG ThePEG. It includes items
such as the event record, mathematical functions, management functionalities, etc.. Using this common
event-generation framework, Pythia7 and Herwig++ will just provide their respective, different modules for
physics simulation, for instance the implementations of their hadronisation models.
In addition to these two re-writes of their older, Fortran-based counterparts, in the past few years a new
event generator, called SHERPA, acronym for Simulation for High-Energy Reactions of PArticles, has been
developed independently. From the beginning, it entirely has been written in C++, mainly due to the same
reasons already named above. A number of paradigms have been the guiding principles in the construction
of this code: enumerate
M odularity:

The goal of this publication is to give a brief status report of SHERPA’s first α-version. It already incorporates
enough functionality to make SHERPA a useful tool for a number of physics applications.
The outline of this paper is as follows: in Sec. Overall the overall generation framework is briefly introduced.
This basically amounts to a discussion of how the framework and its physics modules are initialised, and how
these modules are handed over to the actual event generation. Then, in the next two sections, Secs. Tools
and Setup, general tools for event generation, including for instance the event record, are presented as well
as those modules that specify the physics environment (such as the physics model, beam spectra, or parton
distribution functions), in which the simulation is performed. In the following, the implementation of some of
the event phases reflecting different physics features will be briefly highlighted. The discussion is commenced
with describing the inclusion of hard matrix elements for jet production etc. (Sec. ME) and for heavy-particle
decays such as, e.g., top-quark decays, (Sec. DEC) into SHERPA. Matrix elements are also needed for the
simulation of multiple hard parton interactions in hadronic collisions. Hence, in Sec. MI a brief outlook will
be given on how SHERPA will describe such phenomena. In all cases mentioned above, the matrix elements
may give rise to configurations of jets to be fragmented by the subsequent parton shower. A cornerstone of
SHERPA is the implementation of an algorithm, which merges matrix elements and parton showers respecting
the next-to leading logarithmic accuracy of the parton shower (for details on this algorithm, see CKKW). In
Sec. PS, questions related to the inclusion of this algorithm and the interplay with the parton shower inside
the SHERPA framework are discussed. The quick tour through the event phases will be finished in Sec. Soft
with a discussion of issues related to soft QCD, e.g. hadronisation, beam jets, etc.. Finally, in Sec. Finish,
conclusions will be drawn and a further outlook will be given.

Overall event-generation frameworkOverall In SHERPA, the various tasks related to event generation are
encapsulated in a number of specific modules. From a structural point of view, the set-up of the event-
generation framework condenses into the problem to define the rules for the interplay of these modules
and to implement them. The flexibility to do so is increased by a separation of the interfaces defining this
interplay from the specific modules – the implementations of physics tasks Of course, this abstraction is to
some extent limited by a kind of linguistic problem: in the implementation of the physics tasks, a choice has
to be made on the terms in which the tasks are formulated. As a simple example consider four-momenta,
clearly a basic ingredient of event generators. In ThePEG, the choice has been made to represent them as
five-vectors, where the fifth component denotes the mass related to the four-momentum; in contrast, in
SHERPA the representation is in terms of plain four-vectors. To use ThePEG modules within SHERPA requires
a translation, which in SHERPA would be performed through the interface classes. The objects defining the
terms in which physics tasks are implemented inside SHERPA are accumulated in a namespace ATOOLS, cf.
Sec. Tools. Clearly, all other modules rely on these definitions. How this is realized within SHERPA can be
exemplified by the hard matrix elements:
There are two implementations, which can be used to generate hard partonic subprocesses. One of them
is restricted to a list of analytically known 2 → 2 processes, the other one is the multipurpose parton-level
generator AMEGIC++. However different they are, in the framework of event generation they have to calculate

on these definitions. .

2



total cross sections for the hard subprocesses and they must provide single weighted or unweighted events.
In SHERPA, these functionalities of both modules are accessible through an interface, the Matrix Element -
Handler. It naturally lives up to the intrinsic differences in these physics implementations. Without knowing
any details about the realization of hard matrix elements in the modules, they can be plugged anywhere into
the event-generation framework by means of this abstract handler class. To add another module concerned
with hard partonic subprocesses, on the level of SHERPA one would just have to extend the corresponding
methods of the Matrix Element Handler accordingly. This reflects a typical object-oriented design principle.
In general, such abstract handler classes encapsulate the specific physics implementations and are used
to interface them with each other. Further examples that have been implemented so far include the
Beam Spectra Handler, the ISR Handler, the Hard Decay Handler, the Shower Handler, the Beam Remnant Handler
and the Fragmentation Handler. They will be described in the forthcoming sections.
In many cases the underlying physics modules will require some initialisation before they can be used
during event generation. Again, this can be exemplified by the hard matrix elements. In this case the
initialisation basically consists of tasks like the set-up of matrix elements and phase-space integrators, and
of the evaluation of total cross sections. They define the relative contributions of individual sub-processes
in the overall composition of the hard process part inside the events. It is clear that such tasks have to
be performed in an initialisation phase of an event-generation run. During this phase, SHERPA initialises
the various physics modules selected by the user through the abstract handlers responsible for them. The
specific set-up of a selected module will depend on external, run-specific parameters, which are read-in from
corresponding data files and managed by the same handler class. The initialisation sequence of these handlers
and their physics modules is organised by a SHERPA-internal Initialization Handler, which also owns the
pointers to the handlers. To add new handlers for completely new physics features, therefore, necessitates
to modify and extend this Initialization Handler.
Having initialised the interfaces to the physics modules, the SHERPA framework is ready for event generation.
As already stated before, the individual events are decomposed into separate phases. This decomposition
is reflected by SHERPA’s program structure in the following way: an Event Handler object manages the
generation of one single event by having a list of various Event Phase Handlers acting on the expanding event
record. This process of event generation is formulated in terms of particles connecting generalised vertices,
coined blobs. These Blobs in turn reflect the space-time structure of the event, each of them has a list of
incoming and outgoing particles. In other words, the blobs are the nodes, the particles are the connecting
lines of a network. For a pictorial example, confronting a simple hadron–hadron event with its representation
through Blobs, cf. Fig. blobs. figure[h] tabularcc [width=7cm]scetch1.eps[width = 8cm]scetch2.eps

3


