
 CHEP 2003 La Jolla, California, March 24-28 1

TUGP005

Verification and Diagnostics Framework in ATLAS Trigger/DAQ
M.Barczyk, D.Burckhart-Chromek, M.Caprini1, J.Da Silva Conceicao, M.Dobson, J.Flammer,
R.Jones, A.Kazarov2,3, S.Kolos2, D.Liko, L.Lucio, L.Mapelli, I.Soloviev2
CERN, Geneva, Switzerland

R.Hart
NIKHEF, Amsterdam, Netherlands

A.Amorim, D.Klose, J.Lima, L.Pedro
FCUL, Lisbon, Portugal

H.Wolters
UCP, Figueira da Foz, Portugal

E.Badescu
NIPNE, Bucharest, Romania

I.Alexandrov, V.Kotov, M.Mineev
JINR, Dubna, Russia

Yu.Ryabov
PNPI, Gatchina, Russia
1 on leave from NIPNE
2 on leave from PNPI
3 paper editor

Trigger and data acquisition (TDAQ) systems for modern HEP experiments are composed of thousands of hardware and
software components depending on each other in a very complex manner. Typically, such systems are operated by non-expert
shift operators, which are not aware of system functionality details. It is therefore necessary to help the operator to control the
system and to minimize system down-time by providing knowledge-based facilities for automatic testing and verification of
system components and also for error diagnostics and recovery.

For this purpose, a verification and diagnostic framework was developed in the scope of ATLAS TDAQ. The verification
functionality of the framework allows developers to configure simple low-level tests for any component in a TDAQ
configuration. The test can be configured as one or more processes running on different hosts. The framework organizes tests in
sequences, using knowledge about components hierarchy and dependencies, and allowing the operator to verify the
functionality of any subset of the system. The diagnostics functionality includes the possibility to analyze the test results and
diagnose detected errors, e.g. by starting additional tests and understanding reasons of failures. A conclusion about system
functionality, error diagnosis and recovery advice are presented to the operator in a GUI. The current implementation uses the
CLIPS expert system shell for knowledge representation and reasoning.

1. INTRODUCTION

The ATLAS experiment [1] is one of four experiments
at the Large Hadron Collider particle accelerator that is
currently being built at CERN and is scheduled to start
data taking in 2007. The ATLAS detector data rate and
volume requires a very efficient Data Acquisition with a
three-level trigger system [2].

The ATLAS Online Software (Online SW) is a
subsystem of the ATLAS TDAQ project [2, chapter 5.3].
It encompasses the software to configure, control and
monitor the TDAQ but excludes the processing and
transportation of physics data. It must co-exist and co-
operate with the other ATLAS sub-systems, in particular,
interfaces are required to the data-flow, triggers, processor
farms, event builder, detector read-out crate controllers
and Detector Control System (DCS).

The Control subsystem of the Online SW includes
software packages responsible for the distribution of run
commands and synchronization between the systems,
TDAQ initialization and shutdown, run supervision, error
handling and diagnostics, system testing and verification,

access management, process management and user
interfaces.

The Diagnostics and Verification System (DVS) is one
of the software packages of the Control subsystem. It is
used for configuring and executing tests for TDAQ
components, for detecting and diagnosing faults, and for
advising recovery actions to the TDAQ operator.

2. DVS FUNCTIONALITY

The ATLAS TDAQ system has a very complex
structure and behavior. Automation of system testing,
error diagnosing and recovery are important issues for the
control of such systems, because it helps to minimize
experiment down-time.

DVS is a framework which allows TDAQ developers
and experts to integrate tests and knowledge into it, so it
can be later used by a non-experienced shift operator to
verify the functionality of the TDAQ and diagnose
problems. It is possible to have a number of tests defined
for a single TDAQ component. Tests can be started on
different hosts, sequentially or in parallel.

A
T

L
-D

A
Q

-2
00

3-
03

3
20

 O
ct

ob
er

 2
00

3

 CHEP 2003 La Jolla, California, March 24-28 2

TUGP005

The main human users of DVS are the TDAQ Operator
and TDAQ Expert. The functionality of DVS is also used
by the TDAQ Supervisor application that helps the
Operator to control the system.

DVS functionality is exploited by the users in the
following cases (also presented in Figure 1):

• The TDAQ Expert implements and configures tests
for TDAQ components and stores tests in a
database. The Expert also stores the knowledge
about testing sequences and components behavior
in a knowledge base.

• During TDAQ initialization, TDAQ Supervisor
application or TDAQ Expert launches a number of
tests to ensure that hardware and software TDAQ
components are correctly initialized.

DVS

Supervisor

Operator

Expert

Verify
Component

Diagnose
Errors

Delevop &
Configure

Test

Browse
Testable

Components

Figure 1. DVS users and functionality

• When an error is detected during the data taking,

the TDAQ Operator can browse the TDAQ
configuration in the DVS GUI and verify the status
of a group of TDAQ components in order to detect
problems. Using rules stored in the knowledge base
and the test repository, DVS organizes and launches
sequences of tests for selected components. Then it
analyses test results, diagnoses errors and presents
to the Operator a conclusion about the reason for
the errors. Advice on how to repair failed
components is also presented.

3. DVS DESIGN AND IMPLEMENTATION

3.1. Design approach

The main design ideas for DVS development were:
• to use simple component tests, developed by experts

for TDAQ components
• to use expert system technology to store TDAQ

developers knowledge in order to make it available
for non-experienced shift operators

• develop a framework which allows to configure,
store tests and store knowledge, which can be made
available for later use by the operators

• develop end-user, friendly GUI application to be
used by the operators

3.2. DVS package context

Figure 2 shows how DVS cooperates with users and
other Online SW packages. The functionality of DVS can
be used either by a human user (TDAQ Operator) via GUI
or by other packages (TDAQ Supervisor) via API. To
implement the required functionality, DVS reads the
TDAQ configuration via the Configuration Databases
service, launches tests via the Test Manager and uses the
CLIPS package to implement the expert system.

DVS

Operator

Configuration
Databases

Test
ManagerCLIPS

TDAQ
Supervisor

Figure 2. DVS package context

3.3. Implementation overview

The DVS internal architecture is presented in Figure 3.
It is composed of a Test Repository Database, a
Knowledge Base, an Expert System engine, C++ and Java
libraries and a Graphical User Interface application.

The Test Repository and Expert System provide TDAQ
developers (experts) with the possibility to:

• develop and configure tests for classes and objects
in the TDAQ configuration, or redefine existing
tests and store them in the test repository database

• develop the Knowledge Base, using the expert
system language, to store specific knowledge about
component functionality.

DVS

Expert Operator

Test
Repository

Knowledge
Base

Expert
System

dvs GUIC+ API

supervisor

Java API

Figure 3. DVS package internal architecture

For end users (TDAQ Operator or other Online SW
component like the Supervisor application), DVS provides
the possibility to have a "testable" view on a TDAQ
configuration, where a user can select a single component
or a group of components and verify its status. This
functionality is provided via GUI, or via the C++ and Java

 CHEP 2003 La Jolla, California, March 24-28 3

TUGP005

APIs, so it can be used either directly by the operator or by
another application.

3.4. What is a test

A test is a small application, which verifies status of a
single software or hardware TDAQ component in a
configuration and returns a test result (either Passed,
Failed or Unresolved). Test should be as independent as
possible, i.e. it should not rely on functionality of other
TDAQ components. Typically a test is developed by a
component expert. A test can be launched on any host
used in the configuration. It is possible to have a number
of tests defined for one TDAQ component, so they can be
started on different hosts, synchronously one-by-one or in
parallel.

Test processes are handled and executed with the help of
the Test Manager and Process Manager [3, 4] - other
Online SW components.

3.5. Test Repository

The Test Repository is a database which allows to
describe different attributes of a test in the TDAQ
Configuration Database [5].

The facilities provided by the TDAQ Configuration
Databases are used to develop object schema, to store and
to retrieve test objects from the database.

Each test in the repository is an instance of one of three
classes defined in the Test Repository schema, presented
in Figure 4: Test, Test4Object or Test4Class. These classes
are used to describe test attributes and to associate the test
with objects in the TDAQ Configuration database.

The base Test class describes basic test attributes:
• test implementation (as a link to a SW_object class

from the TDAQ Configuration Database schema)
• test parameters
• test time-out
• host name where the test to be executed
• mode of test execution: synchronous or

asynchronous (for the case where a number of tests
are defined for a database object)

• order of tests execution (for the case where a
number of tests are defined for a database object)

Test

parameters : string
host : string
exec_mode : {sync, async}
timeout : int

Test4Class

class_name: string

Test4Object

object_id : list <string>

depends-from

0..N

SW_Object
is-a

1..1

Figure 4. Test Repository schema

Test4Class and Test4Object classes, inherited from the
Test class, are used to associate a test to objects in the
TDAQ Configuration database. Instances of the
Test4Object class are tests which verify the functionality
of particular TDAQ components, whose database
identifiers are stored in the “object_id” attribute of
Test4Object. To define a test for all objects of a particular
class, it is necessary to create an instance of Test4Class
and fill its “class_name” attribute with the name of the
class to be tested.

A C++ API (Test Data Access Library) is provided to
access all the required configuration information.

The Test Repository and Test DAL are described in
details in [6].

The Test Repository can contain tests for any TDAQ
component described in a TDAQ configuration. Currently
the Online SW test repository contains:

• tests for all TDAQ Online SW infrastructure
applications

• a test for computer (remote access test)
• a test for VME module ("vme ping" test)
• a test for optical S-Link (source-destination test)

More tests are being implemented by TDAQ developers
for their particular TDAQ subsystems and components. It
is envisaged for the final TDAQ system to have a
complete test repository, which covers all TDAQ
components that can be tested.

3.6. Expert System

The core of DVS is an expert system engine,
implemented in CLIPS ("C" language Integrated
Production System) [7]. Its main features are:

• the expert system functionality is available via C
API, so it can be integrated in C/C++ applications

• provides fully featured OO language
• uses “ if-then” rules for knowledge representation
• free for non-commercial use
• available as source, easy to port to new platforms
• widely used, is known as the "de-facto" standard of

forward-chaining rule-based (production) systems
in the public domain

The DVS Knowledge Base (KB) is a number of text
files with CLIPS object schema and rules. Currently it
contains knowledge for testing and diagnosing application
failures in the distributed TDAQ environment. There are
rules to analyze results of testing, to start additional tests,
to build diagnostics and advisory messages.

Users can extend KB by developing new classes and
rules in CLIPS.

3.7. DVS GUI

The DVS GUI (shown in figures 5 and 6) presents the
TDAQ configuration as a hierarchical tree of testable
components (on the left side of the GUI).The user can
select any component or a group of component and launch
tests defined for these components. Test results, diagnosis
of found errors (if any) and recovery advice are presented

 CHEP 2003 La Jolla, California, March 24-28 4

TUGP005

on the right side in separate panels for each tested
component.

Other GUI features are:
• implemented in Java
• hypertext navigation over the output panels and the

components tree
• log file browser for accessing log files produced by

TDAQ applications running in a distributed
environment

• help panel to read on-line HTML documentation for
TDAQ components

Figure 5. DVS GUI main window with test result

DVS GUI for the TDAQ configuration which is used for

the current run can be launched from the main TDAQ
Control "Integrated GUI" application [8].

3.8. Usage examples

In Figure 5 the screenshot of the DVS GUI is presented.
It is an example of usage of the verification functionality
of DVS. On the left side of the GUI one can see a tree of
testable components in the loaded TDAQ configuration.
One component (Workstation “ lxplus075”) was selected
and tested. The test log is displayed in a hypertext panel on
the right side. It shows a sequence of three independent
tests launched for this workstation and the details of those
tests, like parameters and host. Then the output of the tests
and finally the test result (“PASSED”) are displayed.

The screenshot in Figure 6 shows an example of failed
testing for the “MRS Server” application (Online SW
Message Reporting System server). To diagnose the
failure, some additional tests were launched by DVS
(according to rules in the KB) and the diagnosis of the
failure was developed along with advices what to do in
order to recover the failed component. The list of recovery
actions to be applied by the operator to repair the problem

with the “MRS Server” is presented in the “Expert
Advice” panel on the right side of the GUI.

Figure 6. DVS GUI window with recovery advice

4. SUMMARY

The paper describes use cases, and the design and
implementation details of the Diagnostics and Verification
System of the ATLAS TDAQ system. DVS is a
framework which is used for the configuration of tests for
TDAQ components and for automation of their execution.
Each TDAQ component in a configuration can be
associated with a number of tests. Each test is a binary that
can be launched on a computer in a distributed
environment. All information about tests is stored in the
Test Repository database. DVS is based on an expert
system technique. Its knowledge base keeps TDAQ
developers knowledge, useful for detecting and diagnosing
faults and for advising the non-experienced TDAQ
Operator of recovery actions.

More detailed information about DVS, including Users
Guide can be found in [9].

References

[1] ATLAS Collaboration, “Technical Proposal for a
General-Purpose pp Experiment at the LHC collider
at CERN”, CERN/LHCC/94-43, 1994

[2] ATLAS Collaboration, “ATLAS High-Level
Triggers, DAQ and DCS Technical Proposal” ,
CERN/LHCC/2000-17, March 2000

[3] I.Alexandrov et al., “Process Management inside
ATLAS DAQ”, IEEE Transactions on Nuclear
Science, Volume 29, Issue 5, Part 2, October 2002,
pages 2459-2462

[4] R.Hart, “ Implementation of Test Manager” ,
ATLAS DAQ-1 Technical Note112,
http://atddoc.cern.ch/Atlas/Notes/112/Note112-
1.html

 CHEP 2003 La Jolla, California, March 24-28 5

TUGP005

[5] I.Alexandrov et al., “ATLAS TDAQ Configuration
Databases” , Proceedings of CHEP2001 Conference,
Beijing, China, 2001, pp 608-611

[6] A.Kazarov, “Test Repository and Test DAL” ,
ATLAS TDAQ-1 Technical Note 170,
http://atddoc.cern.ch/Atlas/Notes/170/Note170-
1.html

[7] CLIPS Expert System Shell,
http://www.ghg.net/clips/CLIPS.htm

[8] IGUI web page, http://atlas-
onlsw.web.cern.ch/Atlas-
onlsw/components/igui/Igui.html

[9] DVS web page
http//atddoc.cern.ch/Atlas/DaqSoft/components/dia
gnostics/Welcome.html

