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Abstract

We study the 3-form fluxi,,,; associated with the semi-classical geometrg¢f! gauged
WZW models. We derive a simple, general expression for th&rflan orthonormal frame
and use it to explicitly verify conformal invariance to theatling order in’. For super-
symmetric models, we briefly revisit the conditions for emted supersymmetry. We also
discuss some examples of non-abelian cosets with flux.
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I ntroduction

WZW models and their cosets (gauged WZW) provide examplasrioig backgrounds where
both the exact CFT description and the geometry of the tagste are well-known. The coset
space(/ H is obtained by the identification~ hgh~! (g € G,h € H), hence its geometry is
quite different from that of the usual left-coset{ hg). The ‘adjoint-coset’ is also required to
have non-trivial dilaton and three-form fluki(,;) on itin order to ensure conformal invariance.

For left-cosets, the invariant one-forms and structurestaonts offer a clear intuitive picture
of the geometry. In Ref[]1], analogous one-forms were ohiiceed for adjoint cosets and were
shown to define an orthonormal frame for the metric. The gbtdis note is to take advantage
of these one-forms to better understand the geometry ofdjoendcoset with emphasis on the
properties of the flux.

We first derive a simple, general expression for the flux indtthonormal frame.! As
a consistency check, we use it to verify conformal invargata the leading order. We then
specialize to supersymmetric cases and comment on the arhant of world-sheet super-
symmetry fromN = 1to N = 2 in the presence of the flux. Finally, we discuss the condition
for vanishing of the flux and two examples of non-abelian togéth dim(G/H) = 6. Our
result may be useful in the study of how mirror symmetry wdB{gSee alsol]4]) in an NS-NS
flux background and the geometric aspects of D-branes inegh Wz W model[[5].

Setup

We begin with a very brief review of WZW model and its cosetséb up our notations. Let
G be a compact, simple Lie group. The Lie algebra:of written in terms of an orthonormal

basis of anti-Hermitian generators as
(T4, Tg) = fap“Tc, Te(TaTs) = —bap. (1)
To describe the geometry of the group manifold, we introdheestandard one-forms:

g 'dg = EATy, dgg™' = ET,

EA=CABEB Cup = —Tr(TagTeg™), CCT =1. 2)

Throughout this paper, we work only in the semi-classiodf R? ~ 1/k < 1) limit because the problem of
obtaining the exact expression for the flux is quite involi#&d




The WZW model defined fof7,
k 2 -1 —-15 .
Sqg = s d°zTr(g " 0g - g 0g) + ikl'w z, (3)
corresponds to a sigma model on the group manifold with emigtilaton and the following
metric and flux

1
ds* = E,E,, H= éfABcEAEBEC. (4)

More precisely, the metric and the flux should be scaled byaHais square?? = ki%a’/4,
where the integek is the level of WZW model ang is the highest root of Li&g). We will
suppressz? in the following unless its precise value becomes important

We will consider cosets of typ&'/H, whererank(H) = rank(G) and H acts onG as
g — hgh~'. We use(a,b,---) indices for Lie@) and(«, 3, - - -) indices for its orthogonal
complement. The coset theory is realized as a gauged WZ\Wytheth the following action
and gauge transformation law:

S = Sg+ 854, (5)

Sa = % /dzzTr(Ag_lﬁg — Adgg™t — AA+ g TAgA)

B - A — A - C) D)
g — ulgu, A —u(A+ 0. ©)

The expression

Since the action is quadratic in the non-propagating gaed fit is easy to integrate out the
gauge field and find [6.] 1]

Gun = GS&)N +2(M Y B E vy, (7)
Bun = B](\Z)N + 2(M_1)abEa[MEbN]7 (8)
e 2 = detM, 9)

whereM,, = d, — Cyup. AlthoughGy and By carrydg = dim(G) indices, they actually
depend only on the ‘coset directions,’ as can be seen fromaxiséence of thely; = dim(H)
null vectors

ZM = BEM - EM = My EM — CopEs™ = GunZ,M =0. (10)
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Removal ofd;; degrees of freedom and gauge-invariant way can be madendkbahe help of
the one forms([1]

H,=E,+E, (M "YCpo (Z,-Hy=0). (11)
As shown in[1], these one-forms define an orthonormal frareg,
ds® = H,H,. (12)

It is natural to write down the flux also in this frame. A lengthut straightforward computation
using the basic identities,

dCap = —Capfpeckc, (13)

fase = CapCprCcrfpEF, (14)
facpfeep = cGOaB,  facafocd = CHOub, (15)
fAB[CfBDE] = 0, (16)
fay = 0, (17)

shows that the flux also takes a very simple form in this frame,
1
H = g{fam + 3440y | Ho A Hy A B,

Aasy = faap(M ™) pChy. (18)
This expression is the starting point of our discussion imtfbllows.

It is useful to note that the gauge transformatidn (6) tratesl into a local Lorentz transfor-
mations on vielbeing/,,. Suppose we choose a gauge sligler) with a set of coordinatéx* }
(w=1,---,dg — dy). Then, consider the following type of gauge transformatio

go(x) — h(f™(x)) go(x) h(f™(x))", (19)
whereh(y™), (m = 1,--- ,dy) define a coordinate system éh. The functionsf™(z) shift

the gauge slice from the original one without inducing a damate change. Upon this type of
gauge transformation, the one-formis, £, and H,, transform as

Ea - Qab(Eb - ecMcb)a
Ea - Qaﬁ(Eﬁ + ecCcﬁ>7 (20)
H, — Qap(x)Hpg, (21)

whereQ 5 = —Tr(TahTsh™1), andh~tdh = ¢,T,. Clearly, the change of gauge slice results
in a local Lorentz transformation ofd,,.



Conformal invariance

The leading order conformal invariance condition for a sagmodel is well known to be

1
Ryn — ZHMIJHNIJ +2VuVyp = 0, (22)
VM(€_2¢HM[J) = 0, (23)
1
V(e ) — 6H2 = t. (24)

For WZW or coset models, the constant £ on the RHS of the thjtthéons equal3(Ad) /3¢,
where(Ad) is the deviation of the ‘dimension of the target space’ (nexisely, the central
charge) from an integer value.

For a WZW model, it follows straight fromdE 4, = —%fABcEB A Ec that

4Rap = HacpHpep = facpfeep = ccdas, (25)
2 C(;d(; 4CGdG
o= = (26)

At a largek, the value ofi? agrees with the central charge of the WZW model at ldvel

subtracted from its value in the— oo limit (Recall ¢ = k’jﬁffc). Eq. [23) follows from Jacobi

identity for the structure constants.
For a coset space, the computation is somewhat more invoedisual, the metric con-
nection is derived from

1 _
dHo = =5 (fapy + Apra) H N Hy — (M DavfappHp N Eq. (27)

The last term ensures that the spin-conneciign transform inhomogeneously under a local
Lorentz transformation. It also produces many non-tensons in the intermediate steps of
the computation of the curvature tensor. This complicatiam be avoided by using the gauge
transformation[{20) to sef,, = 0. This can be always done at any point on the coset space,
although care should be taken to include the derivativds,pfvhich do not vanish in general.

In this special gauge, the connection is given by
1

Wap = _§(faﬁv — Aapy + Apya — Aayp) Hy = wap, H, (28)
and the components of its derivatives that are relevantimpeing R, are
1
d(wagsy) = {i(Aamcs — Apyals + Aaygls) + Awaﬁw} H;,
Aa,@ﬂé = Aaﬁo (A05’y + fo&ﬂ/) + fa,@y(M_1>abecfc5~/7
2Awaﬁ['y\5] - _(M_l)abfaﬁbfa'y(5~ (29)
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Using these results and the basic properfies (13)-(13 sitraightforward to verify the confor-
mal invariance condition§(P5) including the precise valtie.

N = 2 Supersymmetry

It is well-known [4,[8] that supersymmetry df = 1 G/H coset is enhanced ty = 2
when7 = Lie(G) — Lie(H) decomposes &8 = 7, ¢ 7_, where7Z.. are complex conjugate
representations off with (7., 7. ] C 7, [7_,7_] C 7_. In complex notation, closure under
commutation implies thaf;;, = 0 = f;5z and fi;o = 0 = f3;,. It follows that the(3,0) and
(0,3) components of the flux vanish. This fact is in agreement withlated analysi< [9] of
supersymmetry enhancement of sigma models in the presérioe fhux; in Ref. [9], it was
shown that in order for atv = 1 supersymmetric sigma model to have an extra supersymmetry,
the target space should be complex and (the) and (0,3) components of the flux should
vanish.

Examples

Given the formula for the flu{{18), it is natural to ask what #re conditions for &/ H coset
to have non-vanishing flux. First, we note that the flux carvastish whenf,3, # 0. The
reason is thaf, s, andA,3, are orthogonal to each othef,(, A.3, = 0) as follows from [Ib)
and [17), and therefore cannot cancel each otherNFer 2 supersymmetric cosets (Kazama-
Suzuki models), all such examples have been classified in[Ré@f The simplest among them
is SO(5)/SU(2) x U(1) wheresu(2) is embedded along a pair of long rootssi#(5).

For cosets wittf, 3, = 0, it remains to determine whe#y,;,) also vanishes To our knowl-
edge, the full answer to this question is not known. In thexditure, all known examples with
fapy, = 0@nd Az, # 0 are abelian cosets (i.e., the subBeis abelian) [T 12, 13,14, 15].
Several non-abelian cosets wifhy, = Aj.3,) = 0 are also knowrl [17,16, 18,119,120, 21] 2, 23].
Using our formula[(IB) and a gauge choice similar to that hfj@ have computed the flux for
the two Kazama-Suzuki models of dimensiondd7(4)/SU(3) x U(1) andSO(5)/SO(3) x
SO(2). It turns out thatd, 3, vanishes for the former and not for the latter. It would beint
esting to develop a systematic method to determine whetgema coset withf,3, = 0 has
vanishing flux. Algebraic CFT description of coset modelsyman out to be useful in that
direction.

2See[[16] for an example d¢f> x G')/H coset that is rather different from tii&/ H cosets considered here.
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