T he P eccei-Q uinn A xion in the N ext-to-M inim al Supersym m etric Standard M odel

 D .J.M iller¹ and R . N evzorov²

 $^{\rm 1}$ T heory D ivision, CERN, CH-1211 G eneva 23, Switzerland ² ITEP, Moscow, Russia

A bstract

W e discuss the N ext-to-M inim al Supersymm etric Standard M odel (NM SSM) with a Peccei-Q uinn (PQ)U (1)sym m etry.W hen thissym m etry isdynam ically broken by the H iggsm echanism, the resulting pseudo-N am bu-G oldstone boson takes the role of an axion. A lthough m uch of the allowed param eter space for low values of the PQ scale has been ruled out, m any scenarios w ith a PQ scale $\&$ 10⁹ G eV rem ain untested, allow ing the NM SSM PQ axion to provide a solution to the strong CP problem and be a good dark m atter candidate. Unfortunately the new particle states are so decoupled that they would not be observable at future colliders, and the NM SSM would appear indistinguishable from the m inim alm odel. H ow ever, we show that in order to m aintain vacuum stability, such a m odel requires that the heavy H iggs boson states have m asses that lie close to approxim ately tan . Therefore, a m easurem entofthe H eavy H iggsboson m assesatthe LH C would allow one to eitherrule out the NM SSM PQ axion, or provide tantalizing circum stantial evidence for its existence.

Introduction: T he Strong C P P roblem and the A xion

For som e som e tim e after its form ulation, one of the principle strengths of Q uantum C hrom odynam ics (QCD) was thought to be its autom atic conservation of parity (P) and chargeconjugation{parity (CP) sym m etries. The only renorm alizable P and CP violating term that m ay be added to the QCD Lagrange density is the \setminus -term ",

$$
L = e \frac{s}{8} F \stackrel{a}{\longrightarrow} f^a ; \qquad (1)
$$

w here F a is the gluon eld strength and F~^a $\frac{1}{2}$ F^a is it dual; e is the eective -param eter after diagonlization of the quark m ass m atrix, i.e. $_{\rm e}$ = + arg det M $_{\rm g}$. It is straightforward to show that this term is a total derivative allow ing its integral over space-time to be w ritten as a boundary term at in nity. Therefore, it was thought, its integral w ill vanishes in the vacuum, and the -term m ay be safely ignored.

H ow ever, it was soon realized that such a term could not be ignored if the vacuum has nontrivial topological structure $[1\{3]$. Indeed, even if set to zero by hand in the QCD Lagrange density, it w ill be regenerated when contributions from instanton solutions are included in the path integral. Its space-tim e integral does not necessarily vanish but is proportional to the w inding num ber (Pontryagin index) of the eld con quration. The -term will then contribute intrinsically non-perturbative CP violation, i.e. itseects will be invisible to perturbation theory. Since no CP violation has been observed in QCD , e must be very sm all.

This can be quantied by examining the electric dipole m om ent of the neutron, d_n : the CP violation induced by the -term leads to a neutron electric dipole m om ent of order \dot{y}_n j j_e j10¹⁶e om [\[4\]](#page-13-0), w hich m ust be compared to the current experimental lim it $d_n < 0.63$ 10²⁵e cm [\[5\]](#page-13-1). Therefore j_e j. 10⁹, naturally leading to the question: why is CP violation in QCD so sm all? This is known as the \strong CP problem ".

The axion provides a very natural solution to the strong CP problem . It was realized that the $-$ term could be absorbed by m aking a rede nition (an axial rotation) of the quark elds $[2]$. If the quarks have zero m ass the Lagrange density w ill be unchanged except for the rem oval of the $-$ term, and theories w ith diering values of $_{e}$ all represent the same physics. In essence, the $-$ term can be rotated away using the globalU (1) axial symmetry of the model. However, if the quarks have non-zero m ass then this rotation w ill introduce com plex phases into the quark m ass m atrix and the theory w ill still be CP-violating.

Peccei and Q uinn [\[6\]](#page-13-2) pointed out that if a new global axial symmetry, a Peccei-Q uinn (PQ) sym m etry, is introduced then it could be used to rem ove the -term instead. W hen this PQ

sym m etry is dynam ically broken by the vacuum structure it w ill result in a pseudo-N am bu-G oldstone boson know n as the axion [\[7\]](#page-13-3). It is only a \pseudo"-N am bu-G oldstone boson because the PQ sym m etry is not exact | it is explicitly broken by the triangle anom aly providing a non-perturbative axion-gluon coupling. This axion-gluon coupling has two e ects. Firstly, it will provide a non-zero axion m ass due to m ixing w ith the pion, w hich is approxim ately given by

$$
M_{a} = \frac{f m}{4h_{a} i} \frac{s}{(m_{u} + m_{d})^{2}} [1 + O (m_{u} A = m_{s})] 0.6 10^{3} eV \frac{10^{10} GeV}{f_{a}} ; \qquad (2)
$$

w here m $_{\rm u}$, m $_{\rm d}$ and m $_{\rm s}$ and the up, down and strange quark m asses respectively, f and m are the pion decay constant and the pion m ass, and α is the axion eld. Secondly, the axion-gluon coupling introduces an eective term into the Lagrange density of the same form as the $-$ term, Eq[.\(1\)](#page-1-0), so that the CP-violating term s become

$$
L_{e} = e \frac{a}{f_a} \frac{s}{8} F^{aq} ; \qquad (3)
$$

where f_a is the axion decay constant. However, the potential for a is also a function of ($_{\rm e}$ a=f_a) and so the axion eld relaxes to a vacuum expectation-value (VEV) given by h $a^{\text{i}}= f_{a e}$. The -term is canceled and the strong CP problem is solved.

T he experim entalbounds on the existence of the axion are already rather strict [\[8\]](#page-13-4). T he non-observation of an axion in collider experim ents and rare decays (e.g. quarkonium decays) rules out m odels w here the PQ scale (f_a) is of the order of the electroweak scale. H owever, these bounds can always be avoided by increasing the PQ scale $[9,10]$ $[9,10]$, or equivalently reducing the axion m ass, thereby reducing the axion's couplings to know n particles.

In order to constrain this \invisible axion" one m ust consider astrophysical constraints $[11]$. Since a low m ass axion is expected to be em itted during star cooling, f_a m ay be constrained by insisting that the axion does not signi cantly alter the observed stellar evolution. Stars in globular clusters are the m ost sensitive to these e ects [12-13]. A dditionally, the neutrino signal from SN 1987A indicates that it is cooled m ainly by neutrino em ission rather than by em ission of an \invisible axion" [\[14\]](#page-13-8). Together these observations place a lim it of roughly $f_a \& 10^9$ G eV (translating via Eq[.\(2\)](#page-2-0) to M $_{\text{a}}$. 0:01 eV).

Intriguingly,at scales just above this lim it the axion is seen to be a good dark m atter can-didate. Indeed, it was shown in R ef[.\[15\]](#page-13-9) that in the standard therm al scenario, and m any inationary m odels, the dark m atter axion's PQ scale is predicted to be f_a 3 10¹⁰ G eV. If the PQ scale becom es too m uch larger the axion contribution to dark m atter m ay becom e too great, thereby over-closing the universe and thus providing an upper lim it on f_a . H owever, this upper bound is very m odeldependent. We w ill see later that the m ain results of this letter do

not depend on the ne details of the axion m ass lim its, but only that the PQ scale be very large.

In this letter, we will brie y describe the PQ symmetric Next-to-M inim al Supersymmetric Standard M odel (NM SSM), w hich is the m inim alsupersym m etric extension of Standard M odel that can provide an axion. We will exam ine the H iggs boson m ass spectrum of the model and see that the lightest pseudoscalar H iggs boson is the \invisible axion", and w ill subsequently be unobservable at colliders for the foreseeable future. H owever, we w ill show that in order to keep the m ass-squared of the lightest scalar H iggs boson positive, one m ust constrain the heavy H iggs bosons to lie in a very speci c m ass w indow . We will provide one-loop expressions for this m ass w indow in a very good approxim ation. Therefore, thism odel provides a prediction for the heavy H iggs boson m asses w hich m ay be con mm ed or ruled out at the next generation of colliders.

The PQ Symmetric NM SSM

O ne m odel that provides an axion is the PQ symmetric NM SSM $[15{18}]$; this has the same eld content as the M inim al Supersym m etric Standard M odel (M SSM) except for the inclusion of an extra H iggs singlet super eld \hat{S} . Its superpotential is given, in an obvious notation, by

$$
W = \hat{u}^{c} h_{u} \hat{Q} \hat{H}_{u} \quad \hat{d}^{c} h_{d} \hat{Q} \hat{H}_{d} \quad \hat{e}^{c} h_{e} \hat{L} \hat{H}_{d} + \hat{S} (\hat{H}_{u} \hat{H}_{d}) \tag{4}
$$

The usualH iggs{higgsino m ass term $\hat{H^u}$ H[^]d seen in the M SSM has been replaced by the term \hat{S} (H^{\hat{H}_d}) coupling the new singlet H iggs eld, \hat{S} , to the H iggs doublets, H $_d$ and H $_u$, w here is a dim ensionless param eter. The H iggs (higgsino m ass term w ill be recovered when the scalar com ponent, S, of the new singlet super eld gains a VEV of $hSi = -1$.

In the M SSM, the dim ensionful param eter, , is constrained to be of the order of the electroweak scale in order to give the correct pattern of electroweak symmetry breaking, even although it has no a priori relation to the electroweak scale. The question of why two seem ingly unrelated scales should be the same is known as the \setminus -problem " [\[21\]](#page-14-0). The original form ulation of the NM SSM was intended to answer this question by dynam ically linking the scale to a VEV of a H iggs eld, S, and thereby to the electroweak scale.

The superpotential, Eq[.\(4\)](#page-3-0), has no dim ensionful couplings and exhibits a U (1) PQ sym m etry, w hich w ill be carried over into the Lagrange density. In the M SSM this PQ sym m etry is explicitly broken by the H iggs-higgsino m assterm $\hat{H^u}$ u $\hat{H^d}$; in the PQ sym m etricNM SSM the PQ sym m etry is only dynam ically broken w hen S gains a non-zero VEV, giving rise to a nearm assless pseudo{ N am bu{G oldstone boson | the $axion¹$. Therefore the PQ symmetric NM SSM is the m inim al

 1^1 The axion is only a \pseudo"{N am bu{G oldstone boson since the PQ symm etry is explicitly broken by the triangle anom aly, giving it a sm all m ass, $Eq.(2)$ $Eq.(2)$.

supersym m etric extension of the Standard M odel that can provide an axion. In fact, it is a supersym m etric version of the D FSZ axion m odel [\[10\]](#page-13-6).

The axion constraintsm entioned in the introduction must also be applied here and som odels w ith hSi of the order of the electroweak scale are ruled out. In the m ore usual form ulation of the NM SSM this is avoided by adding a term $\frac{1}{3}$ \hat{S}^3 to the superpotential; this explicitly breaks the PQ sym m etry, giving the 'axion' a m ass and avoiding the constraints. Here, in order to preserve a near m assless axion, we insist that hS i & 10^9 G eV. Therefore, the PQ symmetric NM SSM no longer links hSito the electroweak scale and cannot be considered as a solution to the $-problem$. Since must rem ain of order the electroweak scale, $=$ = hS imust be very sm all and the -problem is re-expressed as: why is so sm all? We will not attem pt to answer this question here.

The axion w ithin the context of the NM SSM has also been discussed in Ref[.\[19\]](#page-14-1). In that study, the term $\frac{1}{3}$ \hat{S}^3 was included in the superpotential, explicitly breaking the PQ sym m etry, but it was pointed out that in the lim it w here the soft supersym m etry breaking param eters associated w ith and vanish, the m odelw ill contain an additional approxim ate U $(1)_R$ sym m etry. This sym m etry is dynam ically broken by the vacuum , giving rise to an R -axion'. Unfortunately the m ass of this R -axion becom es rather large, forbidding its use in solving the strong CP problem , but nevertheless the m odel has interesting phenom enological consequences.

The superpotential, Eqn[.\(4\)](#page-3-0), leads to the tree{level H iggs potential [\[17\]](#page-13-10):

$$
V = V_F + V_D + V_{soft};
$$
 (5)

w ith

$$
V_{F} = j S \hat{f} (\mathbf{\mu}_{u} \hat{f} + \mathbf{\mu}_{d} \hat{f}) + j H_{u} H_{d} \hat{f};
$$
\n(6)

$$
V_{D} = \frac{1}{8}g^{2}(\mathbf{\ddot{H}}_{d}\mathbf{\dot{f}} + \mathbf{\ddot{H}}_{u}\mathbf{\dot{f}})^{2} + \frac{1}{2}g^{2}\mathbf{\ddot{H}}_{u}^{y}\mathbf{H}_{d}\mathbf{\dot{f}};
$$
\n(7)

$$
V_{\text{soft}} = m_{H_u}^2 \#_u \hat{f} + m_{H_d}^2 \#_d \hat{f} + m_S^2 \hat{f} \hat{f} + [A \, S H_u H_d + h.c.]; \tag{8}
$$

w here g = $\frac{p}{g^2 + g^2}$ with g and g^0 being the gauge couplings of SU (2)_L and U (1) interactions respectively, and we have adopted the notation H_uH_d (H_u) (H_u) = H_u⁺H_d H_u⁰H_d⁰ $_{\text{d}}^{0}$. The rst two term s, V_F and V_D , are the F and D term s derived from the superpotential in the usual way, w hile V_{soft} contains the soft supersym m etry {breaking param eters A , m $_{H_u}$, m $_{H_d}$ and m $_{S}$.

The vacuum of the m odelm ay be rendered neutral by a suitable application of a SU $(2)_L$ U (1)_Y gauge transform ation, and rendered realby exploiting the PQ sym m etry. The vacuum is then given by

$$
H_{d}i = \frac{1}{P} \frac{v_{d}}{2} \quad ; \qquad H_{u}i = \frac{1}{P} \frac{0}{2} \quad , \qquad H_{u}i = \frac{1}{P} \frac{0}{2} \quad , \qquad H_{u}i = \frac{1}{P} \frac{0}{2} v_{s} ; \tag{9}
$$

w ith v_s , v_u , and v_d real and positive. The requirem ent for this vacuum to be a localm in imum provides three relations, linking the three soft m ass parameters to the three VEVs of the Higgs elds:

$$
m_{H_d}^2 = \frac{1}{8}g^2(v_u^2 - v_d^2) - \frac{1}{2}zv_u^2 + \frac{1}{2}A - v_s\frac{v_u}{v_d} - \frac{1}{2}zv_s^2;
$$
 (10)

$$
m_{H_u}^2 = \frac{1}{8}g^2(v_d^2 - v_u^2) - \frac{1}{2}zv_d^2 + \frac{1}{2}A - v_s\frac{v_d}{v_u} - \frac{1}{2}zv_s^2;
$$
 (11)

$$
m_S^2 = \frac{1}{2}^2 v^2 + p \frac{1}{2} A \frac{v_u v_d}{v_s};
$$
 (12)

as usual, we have written v $\frac{q}{v_1^2 + v_2^2}$.

The extra singlet elds m ix w ith the H iggs doublet elds, increasing the rank of the scalar and pseudoscalar m ass (squared m ixing m atrices by one each. A fter an initial rotation of the Higgs doublet elds by an angle, de ned as usual via tan $v_{\rm u} = v_{\rm d}$ and outlined in detail in Ref.[20], the 2 2 pseudoscalar m ass m atrix is given by

$$
M_A^2 = \frac{1}{\frac{1}{2}\sin 2 \cot \frac{1}{s}} \frac{\frac{1}{2}\sin 2 \cot \frac{1}{s}}{\frac{1}{4}\sin^2 2 \cot^2 \frac{1}{s}}.
$$
 (13)

 \mathbf{I}

In anaboy to tan , we have also de ned tan s v_s=v; due to the requirem ent that $hSi\&10^9$ GeV, tan s will be very large, and therefore cot s very small. In the above, we have de ned the upper left entry of the pseudoscalar m ass (squared m ixing m atrix to be M $_A^2$. This new m ass param eter replaces the soft supersym m etry (breaking param eter A and becom es them ass of the MSSM pseudoscalar H iggs boson as the MSSM limit is approached, i.e. $\cot s$! 0 xed. This treatm ent allow s higher order loop corrections to be absorbed directly into w ith the denition of M_A. Including one-loop top/stop corrections, it is related to A by

$$
M_A^2 = \frac{2}{\sin 2} A \qquad \frac{3h_t^2}{16^2} A_t F (m_{t_1}^2 m_{t_2}^2)
$$
 (14)

where $h_t = \frac{p}{2m_t}$ = (vsin) is the top-quark Yukawa coupling and A_t is its associated soft supersym m etry-breaking m ass param eter. The function F is given by

$$
F (m_{t_1}^2 m_{t_2}^2) = \frac{1}{m_{t_1}^2 m_{t_2}^2} m_{t_1}^2 \log m_{t_1}^2 = Q^2 \qquad m_{t_2}^2 \log m_{t_2}^2 = Q^2 \qquad 1
$$
 (15)

and m_t , m_t , m_t are the top and stop m asses, with Q the renormalization scale.

This pseudoscalarm ass-squared m atrix is easily diagonalized, revealing two m ass eigenstates, which will be denoted A_1 and A_2 with the label assigned in order of increasing m ass. The rst of these, A_1 , is the m assless N am bu {G oldstone boson associated with the dynam ical breaking of the PQ sym m etry | the axion. The PQ sym m etry ensures that it will be m assless even after the inclusion of loop corrections; it only gains a very sm all m ass via non-perturbative m ixing with the pion, as described earlier. The heavier m ass eigenstate, A_2 , has m ass

$$
M_{A_2}^2 = M_A^2 (1 + \frac{1}{4} \sin^2 2 \cot^2 s); \qquad (16)
$$

Since $\cot s$. 10⁷ G eV the heavy pseudoscalar H iggs boson reproduces the m ass of the M SSM pseudoscalar with a deviation less than one part in 10^{14} .

Sim ilarly, the symmetric 3 3 scalar H iggs m ass-squared m atrix is

$$
M^2 = M_0^2 + ; \t(17)
$$

where the entries of the tree-level contribution , M $_0^2$, can be written as

$$
\mathbb{M} \, \, \substack{2 \\ 0} \, \, \substack{1 \\ 1} \, = \, \mathbb{M} \, \, \substack{2 \\ A} \, + \, \left(\mathbb{M} \, \substack{2 \\ Z} \, - \, \substack{2 \\ 0} \, \cot^2 \, \, s \right) \sin^2 2 \tag{18}
$$

$$
\begin{array}{rcl}\n M_0^2 & 1_{12} & = & \frac{1}{2} \left(M_2^2 & 2 \cot^2 \sin 4 \right) \\
& & \text{sin } 4\n \end{array}\n \tag{19}
$$

$$
\mathbb{M} \, \, \substack{2 \\ 0} \, \, \substack{1 \\ 13} \, = \, \frac{1}{4} \mathbb{M} \, \, \substack{2 \\ 0} \, \sin 4 \, \cot s \tag{20}
$$

$$
M_0^2 l_{22} = M_Z^2 \cos^2 2 + {^2} \cot^2 s \sin^2 2
$$
 (21)

$$
M_0^2 I_{23} = \frac{1}{2} (4^2 M_A^2 \sin^2 2) \cot s
$$
 (22)

$$
M_0^2 I_{33} = \frac{1}{4} M_A^2 \sin^2 2 \cot^2 s
$$
 (23)

denotes higher order corrections to the scalar H iggs m ass m atrix [22, 23]. Including one-loop top/stop corrections these are given by [23]

$$
11 = \frac{3h_{t}^{2}}{8^{2}}m_{t}^{2} s^{2} \log \frac{m_{t1}^{2}m_{t2}^{2}}{m_{t1}^{4}} g_{s2}^{a4} K_{1}(m_{t1}^{2} m_{t2}^{2}) + 8a^{2} K_{2}(m_{t1}^{2} m_{t2}^{2}) ; \qquad (24)
$$

$$
12 = \frac{3h_{\tau}^{2}}{8^{2}}m_{\tau}^{2} \text{ s c log } \frac{m_{\tau}^{2}m_{\tau}^{2}}{m_{\tau}^{4}} = 8\frac{a^{3}b}{s^{2}}K_{1}(m_{\tau_{1}}^{2}m_{\tau_{2}}^{2}) + 4\frac{a}{s}(ac + bs)K_{2}(m_{\tau_{1}}^{2}m_{\tau_{2}}^{2})
$$
 (25)

$$
13 = \frac{3h_{t}^{2}}{16^{2}} \t P_{\overline{2}} \t S \t C \t F \t (m_{t_{1}}^{2} \t m_{t_{2}}^{2}) + 8m_{t}^{2}a^{2}b \frac{c}{s^{2}}K_{1} \t (m_{t_{1}}^{2} \t m_{t_{2}}^{2}) + 4m_{t}^{2}a \frac{c^{2}}{s}K_{2} \t (m_{t_{1}}^{2} \t m_{t_{2}}^{2}) + 4m_{t}^{2}a \frac{c^{2}}{s}K_{2} \t (m_{t_{1}}^{2} \t m_{t_{2}}^{2}) + 2 \t (26)
$$

$$
{22} = \frac{3h{\tau}^2}{8^2}m_{\tau}^2 c^2 \log \frac{m_{\tau_1}^2 m_{\tau_2}^2}{m_{\tau}^4} \qquad 8a^2b^2 \frac{1}{s^2}K_1(m_{\tau_1}^2 m_{\tau_2}^2) + 8ab \frac{c}{s}K_2(m_{\tau_1}^2 m_{\tau_2}^2) ; \qquad (27)
$$

$$
e_{23} = \frac{3h_{t}^{2}}{16^{2}} P_{\overline{2}} c^{2} F (m_{t_{1}}^{2} m_{t_{2}}^{2}) + 8m_{t}^{2} a^{3} \frac{c}{s^{2}} K_{1} (m_{t_{1}}^{2} m_{t_{2}}^{2})
$$

$$
4m_{t}^{2} ac K_{2} (m_{t_{1}}^{2} m_{t_{2}}^{2}) \frac{1}{2} D_{\overline{2}} (cot_{s};
$$
 (28)

$$
33 = \frac{3h_{\rm t}^2}{2^2}m_{\rm t}^2^2a^2c^2\cot^2{}_{\rm s}K_{1}(m_{\rm t1}^2,m_{\rm t2}^2); \qquad (29)
$$

 \cos , a = ($c + A_t s$) = $\frac{p}{2}$, and b = ($s + A_t c$) = $\frac{p}{2}$, and the functions where s sin , c K_1 and K_2 are

$$
K_1(m_{t_1}^2, m_{t_2}^2)
$$
\n
$$
K(m_{t_1}^2, m_{t_2}^2) = (m_{t_1}^2, m_{t_2}^2)^2;
$$
\n(30)

$$
K_2(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2) \qquad (K(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2) + 1) = (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2); \qquad (31)
$$

w ith

 \mathbf{u}

$$
K \text{ (m } ^{2}_{t_{1}}\text{,m } ^{2}_{t_{2}}) \quad F \text{ (m } ^{2}_{t_{1}}\text{,m } ^{2}_{t_{2}}) \quad \frac{1}{2} \log \frac{\text{m } ^{2}_{t_{1}} \text{m } ^{2}_{t_{2}}}{\text{m } ^{4}_{t_{1}}} \quad . \tag{32}
$$

C losed form expressions for the scalar H iggs boson m ass eigenvalues can be obtained by diagonalizing M 2 . However, these results are rather lengthy and unillum inating, and will not be reproduced here.

Fortunately, these exact expressions are not needed due to the very small size of \cot _s 0 (10⁻⁷). Notice that the m ass-squared m atrix takes the form

$$
M^{2} = \frac{B}{6} \qquad A_{12} \qquad A_{12} \qquad C_{1} \text{cot } s \qquad C_{2} \text{cot } s \qquad C_{1} \text{cot } s \qquad C_{1} \text{cot } s \qquad C_{2} \text{cot } s \qquad A \text{ (33)}
$$
\n
$$
C_{1} \text{cot } s \qquad C_{2} \text{cot } s \qquad B \text{ cot}^{2} \qquad s
$$

This is true not only at tree-level but also when higher orders are included. We m ay reduce this m atrix to block diagonal form by applying a unitary transform ation de ned by the 3 3 m atrix

$$
V^{Y} = \begin{array}{ccccccccc} 1 & \frac{1}{2} \cot^{2} & s & ^{Y} & \cot s & & + 0 (\cot^{4} s); & & \\ & & \cot s & ^{Y} & 1 & \frac{1}{2} \cot^{2} s & ^{Y} & & + 0 (\cot^{4} s); & & \end{array}
$$
 (34)

w ith

$$
= (C_{1}A_{22} C_{2}A_{12}; C_{1}A_{12} + C_{2}A_{11}) = det A: \qquad (35)
$$

 \mathbf{I}

Applying this transform ation gives the simple form

$$
VM_0^{2}V^{y} =
$$
\n
$$
A_{11} + C_{11} \cot^{2} s
$$
\n
$$
A_{12} + \frac{1}{2}(C_{12} + C_{21}) \cot^{2} s
$$
\n
$$
A_{22} + C_{22} \cot^{2} s
$$
\n
$$
A_{32} + \frac{1}{2}(C_{12} + C_{21}) \cot^{2} s
$$
\n
$$
A_{42} + \frac{1}{2}(C_{12} + C_{21}) \cot^{2} s
$$
\n
$$
A_{52} + C_{22} \cot^{2} s
$$
\n
$$
A_{63} = 0
$$
\n
$$
A_{73} = 0
$$
\n
$$
A_{84} = 0
$$
\n
$$
A_{94} = 0
$$
\n
$$
A_{12} + \frac{1}{2}(C_{12} + C_{21}) \cot^{2} s
$$
\n
$$
A_{13} = 0
$$
\n
$$
A_{14} = 0
$$
\n
$$
A_{15} = 0
$$
\n
$$
A_{16} = 0
$$
\n
$$
A_{17} = 0
$$
\n
$$
A_{18} = 0
$$
\n
$$
A_{19} = 0
$$
\n
$$
A_{10} = 0
$$
\n
$$
A_{11} = 0
$$
\n
$$
A_{12} = 0
$$
\n
$$
A_{13} = 0
$$
\n
$$
A_{14} = 0
$$
\n
$$
A_{15} = 0
$$
\n
$$
A_{16} = 0
$$
\n
$$
A_{17} = 0
$$
\n
$$
A_{18} = 0
$$
\n
$$
A_{19} = 0
$$
\n
$$
A_{10} = 0
$$
\n
$$
A_{11} = 0
$$
\n
$$
A_{12} = 0
$$
\n
$$
A_{10} = 0
$$
\n
$$
A_{11} = 0
$$
\n
$$
A_{12} = 0
$$
\n
$$
A_{13} = 0
$$
\

The upper-left block consists of the usual M SSM scalar H iggs boson m ass-squared m atrix (to any desired num ber of loops) plus corrections of order cot^2 _s. Consequently, the two heavier states, H₂ and H₃, are rather uninteresting; the MSSM scalar H iggs m asses, like a heavy pseudoscalar, w ill be recovered w ith corrections of only one part in 10^{14} , w hich is neither experim entally observable, nor theoretically reliable since unincluded higher order corrections w ill present m uch larger deviations. T his was to be expected since our N M SSM param eter choice is approaching the M SSM lim it.

A prediction for M $_A$

The lightest H iggs boson, w hose m ass-squared is given by the low er-right entry, is ratherm ore interesting. Its m ass is suppressed by $\cot s$, m aking it e ectively m assless at current collider energies, but its couplings to know n particles, w hich m ainly arise from the m ixing w ith the other scalar H iggs bosons², w ill also be tiny. Subsequently, this state would be unobservable at high energy colliders for the foreseeable future, and the low energy phenom enology would appear indistinguishable from the M SSM .

H owever, the expression for the lightest scalar m ass show s interesting structure. Inserting the tree-levelvalues into the lower-right entry ofEq[.\(36\)](#page-7-0)gives the tree levelm ass-squared

$$
M_{H_1}^2 = {}^{2} \tan^2 2 \cot^2 s (x^2 + y^2)(x^2 + y^2 \cos^2 2) = (xy)^2
$$
 (37)

where x $M_A \sin 2 = (2)$ and y $M_Z \sin 2 = (2)$.

This m ass-squared m ust be positive in order to have a physically acceptable theory. If it is negative, the H iggs potential w ill be unbounded from below and the vacuum unstable. H owever, only the last term in the brackets of Eq.[\(37\)](#page-8-0) is positive; M $_{\rm H}^2$ $\frac{2}{H_{\text{1}}}$ w ill becom e negative for both high and low values of M_A, and a stable vacuum will be achieved only for a sm all range around x 1. This is also true when loop corrections are included, as shown in Fig[.\(1,](#page-9-0) left).

To dem onstrate this we exam ined 10^6 dierent scenarios, w ith M $_A$ and tan chosen random ly between 0 to 6 TeV and 3 to 30 respectively. we calculated the one-loop m ass spectrum and, for every scenario w ith a stable vacuum, plotted a single point on the M $_A$ {tan plane of F ig[.\(1,](#page-9-0) right). We discarded scenarios with unstable vacua. It is in mediately evident that the physically acceptable scenarios all lie w ithin a sm all band around M $_A$ 2 = sin 2 tan .

Therefore the PQ symmetric NM SSM with a large expectation value of the new singlet eld m akes a prediction for the m asses of the heavy H iggs bosons. This prediction is potentially falsi able, or veri able, at the next generation of colliders. Furtherm ore, as long as cot $\,$ _s is sm all, the

 2 T he Lagrangian of the m odel also contains new direct couplings of the new singlet state to known particles but these are also suppressed by at least one order of $\cot s$.

Figure 1: Left: The dependence of the lightest scalar H iggs m ass (norm alized by tan $_{\rm s}$) on M $_{\rm A}$, for tan $= 10$ and $= 200$ G eV. Beyond the points where the curve m eets the axis the m asssquared becom es negative and the vacuum unstable. Right: The distribution of scenarios with physically acceptable vacua, with M $_A$ chosen random ly between 0 and 6 TeV and tan chosen random $\frac{1}{2}$ between 3 and 30. The vacuum structure constrains the value of M $_{\text{A}}$ to lie close to approxim ately tan . The blow-up allows individual scenario points to be seen.

positivity or negativity of M $_{\rm H}^2$ $\frac{2}{H_1}$ is independent of ∞ t $\frac{1}{s}$, and ∞ nsequently the prediction of the heavy H iggs boson m asses is also independent of the value of $\cot s$. Therefore, if after m easuring and tan at a future collider, the heavy pseudoscalar m ass is not found to lie close to tan then this m odel is ruled out for all large values of the singlet expectation value. A lternatively, if the m ass prediction were found to hold, it would provide very tantalizing, albeit indirect, ev idence for the PQ symmetric NM SSM as a solution to the strong CP problem and for the PQ axion as a source ofdark m atter.

In order to compare the values of and tan with M_A at the next generation of colliders, the vacuum stability bounds m ust be m ade m ore precise. Since M $_{\rm H}^2$ $^{2}_{H_1}$ = 0 w ith M $^{2}_{H_2}$ $\frac{2}{H_1}$ given by Eq[.\(37\)](#page-8-0) is only a cubic in x^2 , it can be solved to give closed form analytical expressions for the tree-level boundary. Throw ing the third non-physical solution away, we nd

$$
x_{\text{max}}^2 = 1 \quad \frac{1}{3} (1 + y^2) (1 \quad \cos \quad \frac{p}{3} \sin \quad) + \qquad ; \tag{38}
$$

w here

$$
\frac{1}{3} \tan^{-1} \frac{P \frac{q(1+y^2)^6}{(2(1+y^2)^3 - 27y^2 \cos^2 2)^2}}{2(1+y^2)^3 - 27y^2 \cos^2 2};
$$
\n(39)

and represents the higher order corrections.

=

Since the one-loop top/stop contributions to , Eqs.(24-29), are independent of M_A, $M_{H_{1}}^{2} = 0$ rem ains cubic in M $_{A}^{2}$ when these corrections are included and we can still nd a closed form solution for the lim its. However, these expressions are long and complicated, and once again such complexity is not needed here. Instead we expand the one-loop corrections as a series in the sm all parameter y and discard term s of 0 (y^3) . This gives

$$
= \frac{1}{64 \text{ }^{2}} \quad \frac{8 \text{ }^{22}}{y \text{ }^{22}} \quad 22 + 32 \quad 23 + 8 \text{ }^{22} \quad 22 \quad 16 \text{ }^{23} \quad 22 \quad 12 \text{ }^{24}
$$
\n
$$
y \frac{1}{\text{ }^{22} \text{ }^{22}} \quad 8 \text{ }^{22} \quad 24 \quad 11 \quad 8 \text{ }^{23} \quad (1 + \text{ }^{22}) \text{ }^{22} \quad 12 + \text{ }^{42} \quad (3 + \text{ }^{22}) \quad 22
$$
\n
$$
32 \text{ }^{23} \quad 22 \quad 32 \text{ }^{24} \quad 23 + 16 \text{ }^{25} \quad 22 \quad 23 + 32 \text{ }^{22} \quad 33
$$
\n
$$
+ 16 \text{ }^{23} \quad \text{ }^{22} \quad 22 \quad 21 + 5 \text{ }^{32} \quad 22 \quad 23 + 32 \text{ }^{22} \quad 33
$$
\n
$$
+ 16 \text{ }^{23} \quad \text{ }^{22} \quad 22 \quad 21 + 5 \text{ }^{32} \quad 22 \quad 23 + 22 \text{ }^{23} \quad 24 \quad 25 \quad 22 \quad 23 + 22 \text{ }^{24} \quad (40)
$$

where $_{ij}$ are given by Eqs.(24{29}.

This approxim ation is rather good. The non-observation of supersymm etry to date requires that tan $\&$ 3 and $\&$ 80 G eV, giving y . 0:34. The discarded term s will therefore alter the one-loop corrections by atm ost a few percent. For m ore typicalM SSM param eter choices, y will be even sm aller; e.g. for the Snowm ass reference point SPS 1a $[24]$, tan = 10 and 350 G eV, giving y 0:026

A large tan expansion of the tree-level result gives a very approximate, but rather useful, \rule of thum b":

$$
M_A \t tan M_Z: \t(41)
$$

The coupling of the lightest scalar H iggs boson to electrons m ay also be restricted by astrophysical data, allow ing m ore stringent lim its to be placed on the PQ scale. Just as for the axion, H₁ w ill be produced during the cooling of globular (cluster stars if its m ass is below about 10 keV. The maximum value of the H₁ mass seen in Fig.(1, left) is realized³ at x 1; inserting this into Eq.(37) gives

$$
M_{H_1}^{max} \qquad \sin 2 \quad \cot \quad s \tag{42}
$$

so the lim its from star cooling cannot be avoided if hSi & 2 sin 2 10⁷ & 10¹⁰ G eV, where for the last inequality we have m ade the reasonable assumption that \therefore 1 TeV and tan > 3.

³M ore accurately, m aking a series expansion in the sm all param eter y, the m aximum (tree-level) value of M $_{\rm H}$, is found at $x = 1 + \frac{1}{2}y^2 \cos^2 2 + 0 (y^4)$.

A bove this scale one m ust respect the lim its on the coupling of the lightest scalar H iggs boson to electrons [13],

$$
q_{\text{H}_1\text{e}} \quad 13 \quad 10^{-14} \tag{43}
$$

In the NM SSM it is easy to see that g_{H_1e} m_e=hS i and so this translates into a lower bound on the PQ scale. Combining this with the requirem ent that the H₁ m ass be less than 10 keV for this lower bound to apply, excludes the values

$$
2 \sin 2 \qquad 10^7 . \quad hSi. \quad 4 \quad 10^{10} GeV : \tag{44}
$$

A llow ing them aximum and m in imum values of and tan respectively, only a rather sm all range of hSi values is unequivocally ruled out. However, as and tan are allowed to move toward less extrem e values, the excluded range becom es larger and soon overlaps with that disallowed by em ission of the axion from globular{cluster stars, i.e. hS i & 10^9 G eV.

Finally, since the model is supersymm etric, the extra neutral singlet super eld also contains a higgsino, which will be m anifest as an extra neutralino | the lightest supersymm etric particle (LSP) of the model. Once again, the large value of the PQ scale leads to it having a very small m ass and being alm ost totally decoupled from the other particles. To a good approximation, its cot^2 s, which, for 10^3 G eV and hS i 10^{11} G eV translates to⁴ m ass is given by M $_{\rm LSP}$ M_{LSP} 3 10⁶ eV. In contrast to the scalar and pseudoscalar H iggs bosons, R-parity conservation prevents the LSP being en itted during star cooling, so it provides no further astrophysical lim its.

Sum m ary & Conclusions

In this letter, we have discussed the Next-to-M inimal Supersymmetric Standard Model (NM SSM) with an explicit Peccei-Quinn (PQ) symmetry. This model is the minimal supersymm etric extension of the Standard M odel that can provide an axion. This axion is a pseudo{ N am bu {G oldstone boson associated with the dynam ical breaking of the PQ sym m etry, and is m anifest in thism odelas the lightest pseudoscalar H iggs boson; it can be used to solve the strong CP problem of QCD and is a dark m atter candidate. The stellar evolution of globular cluster stars and the neutrino signal from SN 1987A provide a lower bound on the PQ breaking scale κ 10⁹ G eV.

We have shown that in this lim it simple expressions for the NM SSM Higgs boson masses can be obtained. The heavy and interm ediate m ass H iggs bosons have m asses and couplings

 4 It is intriguing to note that this m ass lies not too far from the expected neutrino m ass scale.

indistinguishable from those of the corresponding M SSM. The lightest scalar and pseudoscalar (the axion) decouple from the other particles and w illbe invisible to future collider searches.

H owever, we have dem onstrated that in order that the theory have a stable vacuum, i.e. in this case that the lightest scalar m ass-squared be positive, the heavy m ass scale M $_A$ m ust lie w ithin approximately tan M_Z . We have presented analytic expressions for these limits on M_A to one-loop top/stop accuracy.

If, at a future collider, M_A were found to be outside this range, then the PQ symmetric NM SSM would be ruled out for all values of the PQ scale. This is not an unreasonable event; the restriction on M $_A$ is unlikely to occur by chance w ithout some other organizing principle. For exam ple, all of the Snow m ass M SSM reference points [\[24\]](#page-14-5), w hich are considered a representative sam ple of M SSM scenarios, fail this criterion. It is im portant to stress that only the axion associated with this particular m odel would be ruled out; an axion could still be present via som e otherm echanism, and axion search experim ents, such as CAST [\[25\]](#page-14-6), the U S.A xion Search (Liverm ore)[\[26\]](#page-14-7)and theK yoto search experim entC A R R AC K [\[27\]](#page-14-8)would stillbevery im portant.

On the other hand, if the heavy H iggs boson m ass scale were seen to obey the bound given by Eq.[\(38\)](#page-9-1) we would have very exciting circum stantial evidence for the existence of an NM SSM axion. Then the role of the axion search experim ents would becom e even m ore crucial.

A cknow ledgm ents

The authors would like to thank PM. Zerwas for his continual support and encouragem ent. D JM is grateful to W. Buchm uller for helpfuldiscusions, and M. Plum acher for a critical reading of the m anuscript. RN is gratefulto V. Rubakov and H B. N ielsen for useful rem arks and com m ents.

R eferences

- [1] A .A .Belavin,A .M .Polyakov,A .S.Shvarts and Y .S.Tyupkin,Phys.Lett.B 59 (1975) 85.
- [2] G. t H ooft, Phys. R ev. Lett. 37 (1976) 8; Phys. R ev. D 14 (1976) 3432 [E rratum -ibid. D 18 (1978) 2199].
- [3] R .Jackiw and C .R ebbi,Phys.R ev.Lett.37 (1976) 172;C .G .C allan,R .F.D ashen and D .J.G ross,Phys.Lett.B 63 (1976) 334.
- $[4]$ V. Baluni, Phys. Rev. D 19 (1979) 2227; R. J. Crew ther, P. DiVecchia, G. Veneziano and E.W itten, Phys. Lett. B 88 (1979) 123 Erratum -ibid. B 91 (1980) 487].
- [5] P.G.Harris et al., Phys.Rev.Lett.82 (1999) 904.
- [6] R.D.Pexei and H.R.Quinn, Phys.Rev.Lett. 38 (1977) 1440; Phys.Rev.D 16 (1977) 1791.
- [7] S.Weinberg, Phys.Rev.Lett. 40 (1978) 223; F.Wiczek, Phys.Rev.Lett. 40 (1978) 279.
- [8] For a review, see e.q. K.Haqiwara et al. [Particle Data Group Collaboration], Phys.Rev.D 66 (2002) 010001.
- [9] J.E.K in, Phys.Rev.Lett. 43 (1979) 103; M.A.Shifn an, A.I.Vainshtein and V.I.Zakharov, Nucl. Phys. B 166 (1980) 493.
- [10] A.R.Zhitnitsky, Sov.J.Nucl.Phys.31 (1980) 260 [Yad.Fiz.31 (1980) 497]; M.Dine, W. Fischler and M. Srednicki, Phys. Lett. B 104 (1981) 199.
- [11] For a review, see eq. G. G. Raelt, Phys. Rept. 198 (1990) 1.
- [12] D.A.Dicus, E.W.Kolb, V.L.Teplitz and R.V.Wagoner, Phys.Rev.D 18 (1978) 1829; J.A.Grifols and E.Masso, Phys.Lett.B 173 (1986) 237.
- $[13]$ J.A.Grifols, E.M asso and S.Peris, M od.Phys.Lett.A 4 (1989) 311; G.Ra elt and A. Weiss, Phys. Rev. D 51 (1995) 1495 [arX iv: hep-ph/9410205].
- [14] J.R.Ellis and K.A.Olive, Phys.Lett.B 193 (1987) 525; G.Raelt and D.Seckel, Phys. Rev. Lett. 60 (1988) 1793.
- [15] E.P. Shellard and R.A. Battye, arX iv astro-ph/9802216.
- [16] M.D ine, W.F ischler and M.Srednicki, Phys.Lett. B 104 (1981) 199.H.P.Nilles, M.Srednicki and D.W yler, Phys. Lett. B 120 (1983) 346; J.M. Frere, D.R. Jones and S.Raby, Nucl. Phys. B 222 (1983) 11; J. P. Derendinger and C.A. Savoy, Nucl. Phys. B 237 (1984) 307; A.I. Veselov, M.I. Vysotsky and K.A. Ter-Martirosian, Sov. Phys. JETP 63 (1986) 489 [Zh. Eksp. Teor. Fiz. 90 (1986) 838]; U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Nucl. Phys. B 492 (1997) 21.
- [17] J.Ellis, J.F.Gunion, H.Haber, L.Roszkowski, F.Zwimer, Phys.Rev.D 39 (1989) 844.
- [18] S.F.K ing and P.L.W hite, Phys.Rev.D 52 (1995) 4183; F.Franke and H.Fraas, Int.J. Mod.Phys.A 12 (1997) 479; B.Ananthanarayan and P.N.Pandita, Int.J.Mod.Phys.A 12 (1997) 2321; U. Ellwanger and C. Hugonie, Eur. Phys. J. C 25 (2002) 297.
- [19] B.A.D obrescu and K.T.M atchev, JHEP 0009 (2000) 031 [arX iv hep-ph/0008192].
- [20] D . J.M iller, R. Nevzorov and P.M. Zerwas, arX iv hep-ph/0304049.
- [21] J.E.Kim and H.P.Nilles, Phys.Lett.B 138 (1984) 150.
- [22] Y.Okada, M.Yam aquchiand T.Yanaqida, Proq.Theor.Phys.85 (1991) 1; J.Ellis, G.Ridol and F.Zwimer, Phys. Lett. B257 (1991) 83 and B262 (1991) 477; M . Carena, J.R. Espinosa, M . Quiros, C . W agner, Phys. Lett. B355 (1995) 209; M . Carena, M . Quiros, C . W agner, Nucl. Phys. B461 (1996) 407; J.A. Casas, J.R. Espinosa, M. Quiros, A. Riotto, Nucl. Phys. B436 (1995) 3.
- [23] P.A.Kovalenko, R.B.Nevzorov and K.A.Ter-Martirosian, Phys.Atom.Nucl.61 (1998) 812 Yad.Fiz.61 (1998) 898].
- [24] B.C. A llanach et al., in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowm ass 2001) ed. N. Graf, Eur. Phys. J. C 25 (2002) 113 [eConf C 010630 (2001) P125] [arX iv hep-ph/0202233].
- [25] K. Zioutas et al., Nucl. Instrum. Meth. A 425 (1999) 482 [arX iv astro-ph/9801176].
- [26] C.Hagmann et al., Phys.Rev.Lett.80 (1998) 2043 [arX iv astro-ph/9801286].
- [27] I.Ogawa, S.M atsukiand K.Yam am oto, Phys.Rev.D 53 (1996) 1740.