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We describe a model of jet quenching in nuclear collisions at RHIC energies. In

the model, jet quenching is to be caused by the interruption of jet formation by

nucleons arriving at the position of jet formation in a time shorter than the jet

formation time. Our mechanism predicts suppression of high-pT spectra also in

d+Au reactions.

PACS: 25.75.-q, 25.45.-z, 25.75.Nq

1 Introduction

Hadronic spectra at high transverse momenta from ultrarelativistic nuclear collisions re-
sult from jets produced in the early hard partonic interactions. The yields are normally
expected to scale with the number of binary nucleon-nucleon collisions. However, ex-
perimental results obtained at the Relativistic Heavy Ion Collider (RHIC) contradict
these expectations: in central Au+Au collisions the yields above 2 GeV/c are strongly
suppressed with respect to binary collisions scaling [1, 2, 3, 4]. Recent data from d+Au
collisions show an enhancement of the yield with respect to the binary-collision scaling
for pT & 2 GeV/c [5, 6, 7, 8] but indicate that the yield may fall below this expectation
above 8 GeV/c [6].

The lack of strong suppression of high-pT yields in deuteron-induced reactions sug-
gests that the effect in Au+Au collisions is due to partonic energy loss in a medium
with very high energy density. This mechanism has been studied by many authors
[9, 10, 11, 12, 13, 14].
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In addition, there are some models which aim to describe high-pT spectra from nuclear
collisions by invoking different physical effects. The perturbative-QCD-improved parton
model of refs. [15, 16] includes shadowing and the broadening of pT spectra due to intrinsic
parton transverse momentum. The authors conclude that the mechanism is insufficient
to explain high-pT suppression at RHIC and even at the SPS.

The mechanism of parton saturation [17, 18, 19] was argued to lead to suppression of
intermediate pT production in both Au+Au and d+Au collision systems [20, 21].

In ref. [22], we proposed a model for the suppression of high-pT spectra in ultrarel-
ativistic nuclear collisions based on arguments involving the uncertainty principle and
formation time [23, 24]. The mean-free path of an incident nucleon in the nucleon–
nucleon centre-of-mass system (CMS) at RHIC is rather short: λ ≈ 0.025 fm. When two
jets are produced in a particular nucleon–nucleon collision, the next nucleon arrives at
the position where the jets were created in a time interval of the order of λ/c. According
to the uncertainty relation, a process with longitudinal momentum transfer ∆pL and
energy transfer ∆E needs space and time intervals given by

∆z >
~

∆pL
, ∆t >

~

∆E
. (1)

to reach completion. Hence, if the mean-free path or the mean-free time are shorter
than these intervals, the created jets may be seriously influenced by nucleons arriving at
the position where the process develops. For the quoted mean-free path at RHIC, this
puts a limit on processes which are not influenced by our mechanism at ∆pL & 8 GeV/c.
The limit is, of course, not strict, since the time interval between subsequent collisions
fluctuates.

In the next Section we present a slightly improved version of the model from our
earlier paper [22]. The results are shown in Section 3 and we conclude in Section 4. The
appendix contains a discussion of Lorentz invariance in our model. In what follows we
shall work in natural units c = ~ = 1.

2 The model

We shall formulate our Glauber model in the nucleon–nucleon centre-of-mass system. For
the sake of simplicity, we assume that the density distribution is uniform. Technically,
the model is rather similar to those for nuclear absorption of J/ψ in heavy-ion collisions
[25].

A Glauber model is usually formulated in terms of “tube-on-tube” collisions, with
tubes filled with nucleons2. For a collision of nuclei A and B at impact parameter b we
have for the lengths of the colliding tubes

2LA(s) = 2 γ−1
√
R2

A − s2 , 2LB(b, s, θ) = 2 γ−1
√
R2

B − b2 − s2 + 2 b s cos θ . (2)

2The integral of the density along the “tube”, i.e. in the longitudinal direction, is often called the
thickness function TA(s) =

∫∞
−∞ ρ(

√
s2 + z2) dz. In our model, the density is given by ρAθ(RA − r) and

the thickness function corresponds to the tube length given in eq. (2) multiplied by the constant nuclear
density.
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Fig. 1. Left: geometry of non-central nuclear collisions. Right: layout of tube-on-tube interac-
tion (plotted without Lorentz contraction).

Here, γ is the Lorentz contraction factor for the boost of the nuclei from their own rest-
frame to the CMS. All other coordinates and sizes on the r.h.s., however, are taken in
the rest frames of the nuclei and their meaning is explained in Figure 1. The positions
of nucleons within the colliding tubes will be denoted by zA and zB. The values of zA

and zB satisfy

−LA ≤ zA ≤ LA, −LB ≤ zB ≤ LB.

We take zA and zB as increasing in the direction of motion of A and B respectively in
the CMS.

We will be interested in comparing the yield of jets at high transverse momentum
produced in nuclear collisions to that produced in nucleon–nucleon collisions. By staying
at the level of jets and not including fragmentation, our calculation is not influenced by
the form of the fragmentation function which is not entirely known for nuclear collisions.
On the other hand, we must keep in mind that our results cannot be compared directly
to the measured pT -spectra.

The yield of jets in collisions of nuclei A+B at impact parameter b is defined as

YAB(pT , b) =
dσAB

dp2
T db2

dσAB

db2

, (3)

while the yield in nucleon–nucleon collisions is introduced as

Ypp(pT ) =
dσpp

dp2
T

σpp
. (4)



As in our previous paper [22] we intend to determine quantity

RAB(pT , b) =
YAB(pT , b)
Ypp(pT )

=

σnn

∫
overlap

s ds dθ

∫ LA

−LA

dzA ρA

∫ LB

−LB

dzB ρB F (b, s, θ, zA, zB) . (5)

Here, ρA and ρB are the Lorentz-contracted nuclear densities of the nuclei A and B,

ρA = ρB = ρ = γ ρ0

with ρ0 = 0.138 fm−3. For the total inelastic nucleon–nucleon cross-section we will take

σnn = 40 mb = 4 fm2 .

Without the suppression factor F (b, s, θ, zA, zB), formula (5) would give the average
number of binary collisions in an interaction of nuclei A+B at impact parameter b. The
suppression factor will account for the assumed effect of jet destruction.

If jets are created in a hard interaction of two incident partons of the colliding nuclei,
we shall assume a cross-section for their destruction by a subsequent incoming nucleon
(in CMS) an expression

σa(pT , t, t
′) = σ0

(
1

1 + (pT (t′ − t))2
)2

, (6)

where t is the time coordinate of the hard interaction and t′ is the time3 when the
destroying nucleon arrives at the position of the jet4. The jet transverse momentum pT

is roughly equal to the energy ∆E involved in the process. Therefore, the form (6) is in
line with our considerations about the jet destruction based on the uncertainty relation
described in the introduction. The absorption cross-section is of order of few milibarns
and were tuned by the parameter σ0. Although formula (6) for the cross-section is written
in the CMS reference frame, we demonstrate in the Appendix how it can be written in
an explicitly invariant way. The improvement over our previous paper [22] lies in the
time-dependent prescription for the absorption cross-section. In [22] we ignored the fact
that nucleons with different distances from the origin of the jet have different chances to
destroy it, and we assumed

σold
a (pT ) = σ0

(
1

1 + (pT /pT0)2

)2

(the model of [22]) , (7)

3In our previous paper [22] we used the longitudinal coordinates z and z′ instead of the times in our
argumentation. The advantage of the new formalism is that σa can be written in a Lorentz invariant
way, as described in the Appendix. At the energies studied, however, the numerical difference between
(t′ − t) and (z′ − z) is negligible.

4For brevity, we talk about a ”destroying nucleon” although we rather mean those of its quarks with
large enough momentum. The problem with soft sea quarks is that they can be barely localised as
precisely as we need for our argument, but we can assume that their energy is too small to destroy the
jet.



with pT0 = 8 GeV/c for collisions at RHIC.
The suppression factor F (b, s, θ, zA, zB) now reads

F (b, s, θ, zA, zB) = exp

(
−
∫ zA/v

−LA/v

σa

(
pT , t,

zA

v

)
ρA v dt

)

× exp

(
−
∫ zB/v

−LB/v

σa

(
pT , t,

zB

v

)
ρB v dt

)
, (8)

where zA and zB determine the position of the hard interaction within nuclei A and B,
respectively, and v is the longitudinal velocity of the colliding nuclei. The b, s, and θ-
dependences of F are implicitly included in LA and LB. When we insert the prescription
(6) into equation (8), the integrals can be performed analytically and lead to

F (b, s, θ, zA, zB) =

exp
[
−σ0 v ρA

2 pT

(
fA

1 + f2
A

+ arctanfA

)
− σ0 v ρB

2 pT

(
fB

1 + f2
B

+ arctan fB

)]
, (9)

with

fA =
pT

v
(zA + LA) , fB =

pT

v
(zB + LB) . (10)

We can compare our results with our previous model of ref. [22]. The suppression
factor there was obtained by inserting formula (7) for the absorption cross-section. This
leads to

F old(b, s, θ, zA, zB) = exp
(
−
∫ zA

−LA

σold
a (pT ) ρA dz

)
exp

(
−
∫ zB

−LB

σold
a (pT ) ρB dz

)
= exp

(−σold
a (pT ) ρA (zA + LA)− σold

a (pT ) ρB (zB + LB)
)
.

(11)

3 Results

In our calculation we simulated a set of nuclear collisions within the Glauber model
framework and for every nucleon–nucleon interaction we determined the suppression
factor according to eq. (9). By adding the suppression factors from all nucleon–nucleon
interactions we obtained the total yield of jets relative to the yield from nucleon–nucleon
interactions as defined in eq. (5). The set of nuclear collisions under study was always
chosen appropriately to sample given centrality requirements.

The absorption cross-section parameter σ0 was tuned to

σ0 = 8 mb = 0.8 fm2 .

In the figures we always plot the relative yield of jets divided by the number of
binary collisions. In case of no suppression this number approaches unity. As we have
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Fig. 2. The ratio RAu+Au(pT , b)/ncoll(b) for central collisions at
√

s = 200 AGeV plotted as a
function of ncoll. Different curves correspond to variations of pT , as indicated.

already mentioned, we cannot compare our results directly to experimental data because
fragmentation is not included in our calculation. Nevertheless, we make some remarks
on the relation of our results to data in Section 4.

Figure 2 shows the dependence of the relative yield on the number of binary collisions.
We observe that scaling with the number of binary collisions is slowly recovered for large
pT . As the transverse momentum increases, the curves converge to the asymptotic value
of RAB(pT , ncoll)/ncoll = 1.

The pT -dependence of the yields of jets is plotted in Figure 3 for central and peripheral
Au+Au collisions and for d+Au collisions. Our mechanism leads to suppression of jet
production even in d+Au collisions. We comment on the relation of this result to data
in the next Section.

In Figure 4 we compare our model with that of ref. [22]. This comparison shows
that the models give similar results at low transverse momenta while at high pT the
suppression is stronger in the new model. This is due to destroying nucleons which may
be very close to the jet production site in the new model (i.e., (t′ − t) is small) and thus
associated with a very large absorption cross-section. In the old model [22], on the other
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Fig. 3. The ratio RAu+Au(pT , b)/ncoll(b) plotted as a function of the jet transverse momentum
pT . Calculated for collisions at

√
s = 200 AGeV. Different curves refer to: central Au+Au

collisions (0–5% of the total cross-section), peripheral Au+Au collisions (60–80%), and minimum
bias d+Au collisions.

hand, all nucleons were effectively put a distance λ from the jet production such that
there were effectively no nucleons that would be close enough to destroy very-high-pT

jets5. In Figure 4 we also show the result of a modified model in which we forbid the
nucleons within a nucleus (at rest) to be closer to each other than 1 fm, such that there
are no very close destroying nucleons. This makes the suppression weaker by 5–15%,
depending on pT .

When we compare the old and the actual model at low pT , we see the effect of
suppression by subsequent nucleons folowing the first potentially destroying nucleon.
While in the old model their absorption cross-sections were equal to that of the first
destroying nucleon, in the new formulation these cross-sections are smaller due to the
larger distance from the origin of the jet production. Therefore, the new model gives

5Mathematically, in the present model the supression factor F in eq. (9) goes like exp(−const/p2
T )

for high pT , while in the old model the factor F old of eq. (11) approaches exp(−const/p4
T ).
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Fig. 4. The comparison of our model to that of our earlier paper [22]. The relative yield
RAu+Au(pT , b)/ncoll(b) plotted as a function of pT , calculated for central Au+Au collisions (0–
5% centrality cut) at

√
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weaker suppression at low pT than the old one.

4 Conclusions

We have described here an improved version of the jet attenuation model of [22] in which
the cross-section for the jet attenuation is time-dependent as implied by (1). We have
shown that results for the jet attenuation obtained by the new version do not differ very
much from the previous version.

An important feature of our model is the lack of any thresholds under which the
mechanism of jet suppression would cease. We obtain a suppression with respect to the
scaling with the number of binary collisions even in the case of d+Au collisions. This
differs from the recently published high-pT data from d+Au collisions at RHIC [5, 6, 7, 8].
An enhancement, i.e., a yield larger than expected from the ncoll-scaling was reported
from the deuteron-induced reactions. This is likely to be, at least in part, a Cronin effect
which results from pT -broadening of the incoming partons. Since there is no such effect



included in the model, we cannot describe this feature.
However, the data on high-pT spectra of charged hadrons from d+Au collisions pub-

lished by STAR collaboration indicate [6] that the yield normalised to the pT -spectrum
and the number of binary collisions possibly falls below unity for pT & 9 GeV/c. In this
kinematic region, the Cronin effect may not be effective any more and the suppression
could be described by our model. In order to indicate this, in Figure 3 we did not plot
the curves in the kinematic region where we expect the dominance of the Cronin effect
and highlighted only the kinematic region where our model could stay relevant as is. We
plan to combine the Cronin effect with the present model in the future and confront our
results with existing data.
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A Lorentz invariant formulation of the absorption cross-section

In the earlier version of our model [22], the relative yield R, the suppression factor
F , and the absorption cross-section σa, given by eqs. (6), (7), and (3) of that paper,
respectively, are manifestly invariant under longitudinal boosts, since pT and σ0 are boost
invariant and the products ρA dzA and ρB dzB are as well. In the present formulation,
the corresponding equations (5), (6), and (8) are valid in the CMS frame, but they can
be also written in a Lorentz invariant way.

Prescription (6) for the absorption cross-section was formulated in the centre-of-mass
system. In this system, it says that σa will be large if

(t′ − t)2 . 1
p2

T

. (12)

We treat only jets at central rapidity which do not move longitudinally in CMS. The
positions where the jet is created and where it is hit by another nucleon are thus the
same. Thus, the l.h.s. of the previous inequality can be written in a Lorentz invariant
way:

(x′µ − xµ)(x′µ − xµ) . 1
p2

T

, (13)

where xµ and x′µ are the four-vectors corresponding to events of jet creation and possible
destruction, respectively. A Lorentz invariant formula for the absorption cross-section
for mid-rapidity jets thus reads

σa(pT , x
µ, x′µ) = σ0

(
1

1 + p2
T (x′µ − xµ)(x′µ − xµ)

)2

. (14)



We can put this in a more suitable form. We neglect the movement in transverse
direction and write

(x′µ − xµ)(x′µ − xµ) = ∆t2 −∆z2 (15)

We denote:
yj the jet rapidity in a given frame,

yA the nucleon rapidity, same as nucleus rapidity,

z∗ the distance of the destroying nucleon from the place where the
jet was produced, measured in the rest-frame of the nucleus.

Then, the time between jet creation and its possible destruction can be written as

∆t =
z∗

cosh yA(tanh yA − tanh yj)
, (16)

and the distance between these two events is given by

∆z = ∆t vjet =
z∗ tanh yj

cosh yA(tanh yA − tanh yj)
. (17)

Using these equations and after some algebra, we obtain

∆t2 −∆z2 =
z∗2

sinh2(yA − yj)
. (18)

This form depends only on difference of rapidities and is thus Lorentz invariant.
If we are only interested in midrapidity jets, we can replace

yj =
yA + yB

2

where yA and yB are rapidities of the colliding nuclei and obtain the absorption cross
section

σa = σ0


 1

1 + p2
T z∗2

sinh2((yA−yB)/2)




2

. (19)
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