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A bstract

It has been suggested to profct out a num ber of low lying eigenvalues of the four-
din ensional W ilson{D irac operator that generates the transfer m atrix of dom ain-wall
ferm ions In order to In prove sin ulations w ith dom ain-wall ferm ions. W e Investigate how
this pro fction m ethod reduces the residual chiral sym m etry-reaking e ects fora nite
extent of the extra dim ension. W e use the standard W ilson aswellas the renom alization {
group{in proved gauge action. In both cases we nd a substantially reduced residual
m ass when the pro jfction m ethod is em ployed. In addition, the large uctuations in this
quantity disappear.
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1. Introduction

D om ain-wall ferm ions (DW F ) preserve chiral symm etry [1,[J,[3]when the lattice size in the
5th direction, N 4, is taken to in nity. T he approach to the chiral lin it is exponential in N 4,
w ith a rate given by the eigenvalues of the transfer m atrix along the 5th direction, which is
a local operator in 4 dim ensions [4,[H,[d,[7]. A m easure of chiral sym m etry breaking, taking
place for niteN g, is the residualm ass,m s,derived from the axialW ard {Takahashiidentity.

Even if the restoration of chiral sym m etry is expected to be exponentially fast in N4, in
practice m s can decrease very slowly as rst shown by the CP {PACS collaboration [8,[d].
The slow convergence of the residualm ass is due to the existence of very sm all elgenvalues
of the fourdin ensional operator de ning the transfer m atrix along the 5th direction. In
particular, at large N ¢ these low -lying m odes dom nate the convergence rate [9] and render
the recovery of chiral sym m etry di cult. Even if the residualm ass is very sm all, it is then not
clear w hether and w hat distortions of chiral sym m etry are still present. Since large num erical
sinulations with DW F are being perform ed (see eg. refs. [§,[10]and the review s [111,[17)) it
becom es In portant to nd ways around this obstacle. Such solitions for in proving the chiral
properties of DW F then have to com e from elim inating these low -Iying m odes.

O ne dea to reduce these an all eigenvalues is the in provan ent of the gauge actions [8,9,
[10,03] such as Iwasaki [4]or DBW 2 [TH]. However, besides the potential di culties w ith
unitarity violations [IA] and the sam pling problem s of topological charge sectors [11], this
m ethod does not solve the problem com pletely. For exam ple, w ith the Twasakigauge action,
the convergence rate also becom es slow at lJarge N ¢ [A]. T he reason is that again very sm all
eigenvalues of the transfer m atrix appear in this case, though less frequently than for the
W ilson gauge action. U sing the DBW 2 gauge action seem s to bem uch better in this respect
[10,[T7], but it is unclear w hether these am all egenvalues could eventually appear there, too,
leading to sim ilar problam s. A perturbative analysis [18] suggests a m odi cation of the four—
din ensional com ponent of the dom ain wall operator to tackle the problam . T his is, however,
not yet tested in sin ulations.

Another m ethod to elin inate the disturbing e ect of the sn all eigenvalues and the corre-
soonding set of eigenstates of the transfer m atrix is to projct them out and lift them in a
way that does not change the Ng ! 1 lm it of the DW F operators [19,20]. In this paper,
we investigate the profction m ethod based on ref. [19], where the projction is perform ed
in the transfer m atrix itself. n ref. [20], an altemative profction is in plem ented through a
m odi cation of the boundary term s. T he philosophy of both approaches is the sam e as the
one using the transfer m atrix. The ain of this article is to investigate the e ects of the pro-
“Bction m ethod on the residualm ass In quenched sin ulations. A s we w ill see, the projction
m ethod works very well, leading to a substantial In provem ent In the residualm ass.

Let us an phasize that sinulations with DW F can be considered under two aspects. T he
\purist’s" approach dem ands exact chiral sym m etry at non—zero lattice spacing. Here any
violtion of chiral symm etry (in practice up to m achine precision) is not tolerable. Hence



the value of N4 is to be taken as large as possible and the additive m ass renom alization
m s & 0 has to be elin inated. T hus the profction m ethod discussed here, or any m ethod
leading to the sam e In provem ent, becom es an unavoidable necessity in thiscase. A di erent,
m ore practical point of view is to consider DW F at nite, and even sm all, values of N 5 as a
highly In proved W ilson ferm ion. A 1so In this case, the pro fction m ethod w ill accelerate the
num erical sin ulation considerably and should therefore be em ployed.

2. Domain-wall ferm ions and W ard{Takahashi identity

In this section, we establish our notation and give the W ard {Takahashi identity in order to
de ne the residualm ass. For com pleteness, we give here the de nition of the dom an-wall
operator and its relation to the 4D operator satisfying the G insparg{W ilson equation [21].
W e llow the presentation of [T9]. D erivations of this form ulae can be found i [2,03,[4,5,[7].
The 5D dom ain-wall operator is de ned as

1
D = Ef 5 (@ + @5) as@@sg+ M ; (2.1)

w here s denotes a lattice site in the 5th direction (1 s Nyg),as is the corresponding lattice
spacing, and @4 and @ are the free forward and backw ard derivatives.
The operator M is obtained from the standard 4D W ilson {D irac operator by

M =Dy my (22)

w ith 1n o
Dy = 5 r +r ar r : (2.3)
Herer andr arethegauge covariant forward and backw ard derivatives and a is the lattice
spacing In the four physicaldim ensions = 1;:::;4. The dom ain-wall param eterm ( obeys
O<agmgp< 2 ; O0<ampg< 2 : (24)

N ote that the lattice spacings as and a can be di erent in general. T he boundary conditions
in the DW F form ulation in the 5th direction is

P, O;x)=P ©Ng+ L;x)=0 ; (2.5)

where P %(1 5). In these settings, the chiral m odes w ith opposite chiralities are
localized on 4D boundary planesat s= 1 and s= Ng.
The 4D quark elds are constructed from the left and right boundary (chiral) m odes, as

follow s:

ax)=P (1;x)+ P, Ngx) ; gx)= (1;x)P. + Ngx)P : (26)



A bare quark m ass tem is introduced by adding to eq. ) the tem
m ¢ (1;x)Py (Ng;x)+ (Ng;x)P (1;x) = megxR)gx) = (2.7)

T he propagator of the quark elds is related to an e ective 4D operator D . [@,[5,[7]

2 aDNS
hy(x)g(x)i= ; (2.8)
aDNSmf
w ith
DNsmf (L amf)DNS+2mf (2.9)
In term s of the operators K
1 1 asM
K - =5 ; (2.10)
2 2 724 aM
Dy, isgiven by
K_I:IS KNS
aby, =1+ s—F—— (211)
KYs+ KV
From thisequation, it is easy to show that
aD Im aDy.,= 1+ ssign (K, K ) (2.12)
Ng! 1
which is written as A
ab =1 p—— ; (2.13)
AYA
agM
A= — (214)
2+ agM

The operator D in eg. (Z.I3) satis es the G insparg{W ilson relation. The only di erence to
N euberger’s operator 2] is the de nition of A . N euberger’s operator is obtained from egs.
C13) and &I4) by taking the Im it ag ! 0.

InthelimiNg! 1 ,the5D formulation of DW F is com pletely equivalent to a 4D lattice
form ulation of G ngparg{W ilson ferm ions satisfying an exact chiral symm etry. H owever, in
a realistic sinulation N g is kept nite, of course. In this situation, the chiral sym m etry is
explicitly broken by the residual terms D Dy. D . A measurement of the e ects of
this chiral sym m etry breaking is the socalled residualm ass m ps, derived from the axial
W ard{Takahashi dentity. T he chiral transform ation of DW F isde ned as

(s;x)= 10 (s) (six); (s;x)= 1 (s;x)Q (s) ; (2.15)

whereQ (s) = sign(Ng 2s+ 1) and isan In nitesin al transfom ation param eter. Under
this transform ation, the quark elds are transform ed as the usual chiral transform ation:
ax)= 15 gx); gqx)= igx)s .Therefore the axialW ard{Takahashi dentity is

X
hr A (x)P(0)i= Z2m (P (x)P (0)i+ 2hJsq(x)P (0)1 ; (2.16)



where A (x) is the axialsrector current and P (x) is the pseudo-scalar density; A (x) and

P (x) are given as

A (x)= Q(s)J (s;x) ; Px)=49lx) sax) ; (2.17)

h i
J (X)=% (s;x)(1 W (x) (s;x+ ) (s;x+ )1+ WY (x) (s;%) : (2.18)

T he additional term Js4 represents the explicit breaking of chiral sym m etry,

Ng Ng N
Jsq = —;x P 7+ 1;x + 7+ 1;x P, 7;}( : (2.19)

For a sn ooth gauge el background, the tem hJs,P i vanishes exponentially fast [3,[@,23]
asN g is increased . In realistic sin ulations, how ever, the gauge eldscan be rough and itm ay
happen that the rate of convergence in N ¢ is rather poor. T he breaking of chiral sym m etry
can be quanti ed by the values of m 5. Let usde ne the ratio R (t):

P
_xWsg (x7E)P (0;0)1

R (t)= :
P (x;t)P (0;0)1

(2.20)

X

The usualde nition ofm .4 is the average of the quantity R (t) at large tin e separations. A
necessary but, m aybe, not su cient condition to recover fullly on—shell chiral symm etry at a
non-vanishing value of the lattice spacing is that this quantity be negligble.

3. Eigenvalues of AYA

For gauge con gurations w ith a restricted value of the plaquette (socalled adm issble con g-
urations) [@,23], the operator AYA hasbeen shown to have a spectralgap,0< u  AYA v,
ensuring the exponential suppression of the residualm ass in N 5. H owever, in realistic sin u-
Jations as perform ed today, the plaquette bound is not satis ed and it is In portant to study
the distribution of the eigenvalues of AYA in num erical sim ulations.
T he eijgenvalues of AYA can be obtained through the generalized 4D eigenvalue equation
241
alM M = 2+ aM Y2+ aM ) (31)

T he low -lying (m axin al) eigenvalues can be com puted by m Inin izing (m axin izing) the gen—
eralized R itz functional
h #2M ™M 7§ i
h 2+ aM W2+ asM )j i
'T he Interested readerm ay obtain m ore details on request.

(32)




using a straightforward generalization of the algorithm described in ref. [29]. Notice that in
this m ethod no inversion of them atrix (2+ asM ¥ (2+ agM ) is needed. H igher eigenvalues
can be calculated by m odifying the operator M YM in the num erator in eq. (8A), so that
the already com puted elgenvalues are shifted to larger values. This can be achieved [19] by
substituting
X
MM ! MM +

i

M "M jiih 332+ asM 2+ aM ) ; (33)
i i
i, i being the already com puted (lower) eigenvalues and eigenvectors.
F igure[dl show s the eleven low est eigenvalues of the operator AYA asa function of theM onte
Carlo tin e (¢ ). Here and throughout the paper we use the quenched approxin ation and
set ag = 1. Thedata in Fi.[ are obtained w ith the W ilson gauge action at = 6:0 on a

12° 24 lattice, settingm ¢ = 18. A s expected, very sm all eigenvalues appear frequently.
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Figure 1: The 11 lowest elgenvalues of the operator AYA as a function of M onte Carlo tine
tyc at = 60 andm o= 18 on a 12® 24 lattice. The open diam onds denote the lowest
eigenvalue.

Them Ininum rate of convergence in N ¢ of the operator D _ is given by

| 1+ 073
=il ; !5 h—p—t (3.4)
i i 1]

where ; are the egenvalues of AYA [19]. Figure[d show s the inverse convergence rate com —
puted from the eigenvalues in Fig.[l. C learly, the low -lying eigenvalues of AYA Jead to a slow



convergence, causing the sin ulation to becom e expensive.
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Figure 2: The inverse convergence rate ! ! com puted from the egenvalues plotted in F ig[l.

W e also explored the eigenvalues for other gauge actions such as the Iwasaki [14] and
DBW 2 [I8]ones. An exam ple for these eigenvalues is plotted In Fig.[d. In that gqurewe
average over 20 gauge con gurations. T he param eters of the gauge actions were chosen such
that In each case the value of the lattice spacing isa = 0093 fm , leading to setting = 620
for the W ilson action, = 26 for the Iwasakione and = 1:04 for the DBW 2 one. Since
also the lattice size was xed to be 12° 24 we have for the di erent gauge actions the sam e
physical situation. For the W ilson action we observe sm all values for the low est-lying m odes.
This is In proved substantially by em ploying the Iwasaki action and even m ore when using
the DBW 2 action. Note that the 11th low -lying eigenvalue of the W ilson action corresponds
to the lowest eigenvalue of the Iwasakiaction. W e checked for the W ilson and the Iwasaki
action that this picture does not change when we decrease the value of the lattice spacing
down to a = 005 fm . This con m s that the convergence In N g is faster when the gauge
action is m proved [8,110,[13]. Aswe w ill see below a conclusion that Im proved gauge actions
by them selves would com pletely cure the problem of a slow convergence rate is prem ature,
how ever.
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Figure 3: A veraged elgenvalues fortheW ilson, Iwasakiand D BW 2 gauge actionsasa function
of the eigenvalue num ber. The lattice spacing a = 0093 fm used is the sam e for all gauge
actions.

4. TIm provem ent of dom ain-w all ferm ion

T he decay rate of the residualmass In Ny is controlled by the am all eigenvalues of AYA .
For the W ilson gauge action very sm all eigenvalies occur, leading to a slow convergence.
A Ythough the situation is In proved for the Iwasaki gauge action, as we saw above, it was
observed that even in this case for large values of N g the convergence tumed to becom e very
slow [8,[@]. It thus seam s to be necessary to test m ethods as proposed In [19] that m odify
the ferm fonic part of the DW F action by pro fcting out the am all eigenvalues of AYA . T hese
m ethods can beused altematively {oreven in addition{ to em ploying in proved gauge actions.
The key observation in [T9] is that the relations in egs. &213) and {&-14) hold true for any
choice of M as long as

MY= M 5 ; det@2+aM )& 0 : (41)

This fact m ay be used to construct an Inproved M for which the very low eigenvalies of
AYA disappear.



Let us, for com pleteness, repeat the construction of the im proved operator here again
ollow ing [T9]. The basic dea isto nd the new operator M satisfying the follow ing relation;

1 X
. N N (42)
2+ aMf ke 1

sAvi = v ; k= 1;::5r ;0 (Wivi)= oy o (4.3)

T herefore an in proved DW F operator, D f:f;,can beobtained from eq. 1) after substituting
M with ¥ de ned as

r
aM = aM * Xy Wi s (4.4)
k=1
w here
W= (2+ asM ) sw (4.5)
and
K Tha= 2l k) TH (Wgw) (4.6)

It is easy to see that 52]9 has the sam e eigenvectors as sA ; however, all egenvalues ,
k= 1;:::;r,arereplaced by by. ThelimiENg ! 1 ofDy, is of course unchanged by this
m odi cation, provided

sign (by )= sign( x): (4.7)

T he choice of jor jis not unique. W e w ill choose here
by = ZSJgn( k)j lj; 1 k r Kn ax 7 (4.8)

w here ky, o is the num ber of eigenvalues pro gcted out and 1can be chosen freely. A natural

choice is 1= ky 4x such that all low lying eigenvalues are m oved to be tw ice higher than the

largest eigenvalue profcted out. W e also tried, however, di erent values of 1 and found that

the In provem ent is not very sensitive to the precise choice of by, provided it is larger than
Kn ax *

O ur statistics is typically 60 con gurations for the W ilson gauge action and 20 con g—
urations for the Iwasaki action. W e did not explore the DBW 2 action extensively. The
param eters of the gauge actions were chosen as before such thata ' = 2 GeV,which m eans
a choice of = 60 for the W ilson gauge action and = 2% for the Iwasakione. T he lattice
sizeswere 12° 24 Ngand 16> 24 N, forthe two actions, respectively. T he dom ain-wall
masswasmg= 18 and weworked ata quark massofm ¢ = 0:02.

W e have m easured the residualm ass from R (t) ;n eq. (Z20) as the average of R (t) for t
typically n the interval4 t 20 for a tin e extent of the lattice of T = 24. R (t) is shown
n Fig.[ for the case when no profgction is perform ed. For each value of N g we have the
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Figure 4: Theratio R (t) = % as a function of Euclidean tin e. The W ilson gauge action

is chosen w ith sin ulation param eters as given in the text. No profction of eigenvalues is
perform ed.

sam e statistics. A lthough, with increasing N 4, the residualm ass m 5 decreases, it does so
rather slow ly; furthem ore, as N 5 Increases, large uctuations In R (t) occur, rendering the
determ ination of the residualm ass di cult. These large uctuations also suggest that the
residual chirality-breaking e ects in other quantities m ight be very hard to estim ate, taking
only m s as a m easure of these e ects.

In Fig.[H we show R (t) when we profct out a num ber of eijgenvalues. A s expected, the
projction of the low eigenvalues decreases the residual m ass signi cantly with respect to
Fig.@.

T he m ore eijgenvalues are pro gcted the am aller the residualm ass is. A nother In portant
feature is that the uctuations in R (t) becom em uch sm allerwhen a su clently large num ber
of eigenvalues is profcted out; in this case 10 seem s to be a good choice. T his is very clearly
seen In Fig.[@, where we show the value of the ratio ¥ (t),

P
b= pxJIsa®itP0;0)

; (4.9)
« P (x;0)P (0;0)

com puted on single con gurations at t= 12 as a function of M onte C arlo tim e. T he gspikes
are substantially dam ped w ith the projction. Finally, when the profction is in plem ented,
the decrease of the residualm ass w ith N g ism uch faster.
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Figure 5: Sam e as Fig.[4d but now w ith the profction of eigenvalues em ployed.
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Figure 6: The quantity ®(t) HP(t)iatt= 12, see eq. &), as a function of M onte C arlo
tin e for the W ilson gauge action, w ith and w ithout projction.
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In sum m ary, it is clear that the pro fction m ethod has a drastic e ect on the value and dis—
persion of the residualm ass. However a su cient (O (10) in our setup) num ber of eigenvalues

have to be progcted out.

5. DW F with Im proved gauge actions

In our sin ulations w ith the Iwasakigauge action we found, even in our am all sam ple of only
20 con gurations, very low -lying eigenvalues of A YA . In order to see the e ect of thesem odes
we plt, in Fig.[d, the ratio ﬁ@(t) of eq. {£3), for two of these con gurations (note that no
averaging is involved here). The gures indicate thatwe will nd, also for the Iwasakigauge
action, the sam e problem as for the W ilson gauge action. W hen no pro gction is perform ed,
the correlation function shows a spiky behaviour, which may lead to large uctuations in
® (t) and hence to a very di cult determ ination of the residualm ass. This is also con m ed
in the ratio of averaged values, R (t), as shown in Fig.[H. T he pattern resem bles the case of
the W ilson gauge action. For sm allvalues of N ¢ the e ect of the profction is not noticeable.
For larger values of N 5, we see that R (t) is Jowered when the eigenvalues are pro gcted out
and that the uctuations of this quantity are strongly dam ped.
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Figure 7: ® (t) as a function of tin e In the Iwasakiaction. T he circles show the results for
the no-profction case and the diam onds for the case when 3 elgenvalues are profcted out.

W e also m ade an attem pt to see how the profction m ethod a ects R (t) for the DBW 2
action. For the sinulations we chose = 1:04, which corresponds again toa ' = 2Gev.
Thus we study the sam e physical situation w ith the W ilson and Iwasakigauge actions. T he
lattice size was chosen tobe 16° 32 Ngandm o= 1:7. The ferm ion m ass was taken to be
me= 002.

W e observe In Fig.[d that the residualm ass is not changed very m uch by the profction.

W e attribute this to the fact that in our an all statistical sam ple no very low -lying eigenvalies

11
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Figure 8: % w ithout and w ith pro fction for the Iwasakigauge action.

of AYA could be detected. W e see, however, from the sam e gure that the statistical error is
substantially reduced for certain values of t when the profction of eigenvalues is em ployed.

The fact thatR (t) show s large uctuations, even though there are no very an all low -lying
eigenvalues, points tow ard the sugpicion that also the eigenvectorsm ay play an in portant role.
In particular the localization properties of these eigenm odes m ay lead to large uctuations
as discussed in [28]. A lthough this point deserves further investigation, we did not perform
such a study here. To conclude, from a negligible average value of the residualm ass, that
chiralsym m etry is restored is certainly questionable w hen the dispersion of the residualm ass
is large and not gaussian. A much safer situation would be to ensure that the residualm ass
isbounded from above for allcon gurations. T he projction m ethod ensures that this is the
case.

To summ arize, in Fig.[[d we show the com parison of the behaviour of the residualm ass as
a function ofN ¢ fordi erent gauge actions and fordi erent num bers of pro cted eigenvalues.
Fora xed gaugeaction,we nd thatatan allN g there isalm ostno e ect from the pro fction
m ethod.

This can be explained by a sin ple qualitative argum ent w ith the formul suggested In
[8,08,243; z

M res e KNs d () Moo (51)

where () is the elgenvalue density in the continuum . T his (qualitative) form ula describes

12
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Figure 9:

the behaviour of m s as a function of N 5. T he form ula contains two factors, the eigenvalue
density and the exponential supression factore Ys. For an allvalues of N ¢, not only do the
low -lying m odes contribute to the sum in eq. (&), but also the bulk m odes since they are
not supressed su ciently. W hen projcting out a few num ber of low -lying eigenm odes, the
eigenvalue density and the exponential factor rem ain alm ost unchanged and hence also the
residualm ass is not a ected very much for sm all valies of N ;. In such a case, it would be
necessary to projct out a large num ber of eigenm odes to m ake m 5 decrease. W hen N4 is
chosen to be large, on the other hand, the buk m ode contributions to the sum in eq. (&)
w il die out and only the an all eigenvalue contributions w ill survive. A s a consequence, the
factore Y5 becom esmuch sm aller after profcting out even only a few low -lying (isolated)
eigenm odes. T his should hence lead to a large im provem ent, ie. a substantial decrease of
the residualm ass when the profction m ethod is active. A s Fig.[I0d clearly shows, this is
indeed the case. For the W ilson gauge action at N g = 48, the value of the residualm ass is
decreased by several orders of m agnitude when 10 eigenvalues are projgcted out. W e m ade
a rough check for the Iwasakigauge action that also In this case the residualm ass decreases
substantially, choosing N5 = 40. Thus the very slow decrease of the residualm ass as a
function ofN 5 in the original DW F form ulation w ith no pro fction is cured by pro fcting out
a few O (10) elgenvalues.
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Figure 10: A com pilation of the residualm ass as a function of N g for various gauge actions
and various choices of profcting eigenvalues. The lled symbols correspond to our own
results. Thedata of the DBW 2 action are taken from [10]and the ones for the Iwasakiaction
from [8,[9]. T he lines are just to guide the eye.

6. Conclusion

W e have studied the e ect of m odifying the ferm jon action of DW F by projcting out a few
low -lying eigenvalues of the underlying transfer m atrix [19]. By m easuring the correlation
function leading to a determ ination of the residualm ass and the residualm ass itself as a
function of N5, we nd a signi cant in provem ent in the restoration of chiral sym m etry for
quenched DW F at large N g.

T he reason is that in the lJargeN g 1im it the low -lying elgenvalues of AYA are responsible for
the exponential convergence rate of DW F in N g to its chiral invariant lin it. T hese eigenvalues
then dom inate the behaviour of the residualm ass and w henever very sm all low lying m odes
appear they lead to a very slow decrease of the residualm ass as N ¢ is Increased . P ro Bcting
out a sm allnum ber of these m odes can therefore help considerably to lower the values of the
residualm ass. W e have con m ed this picture in practical sin ulations, using the W ilson and
the Twasakigauge actions. W e observe that when a su cient num ber, ie. O (10), eigenvalues
are profcted out, the residualm ass vanishes rapidly w ith increasing N 5.

Let us end our discussion w ith three rem arks.

(1) Profcting out a num ber of low -lying eigenvalies show s a strong e ect not only on the
value but also on the uctuations of the correlation function R (t) n eg. (Z20) and hence
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of the residualm ass. T he dam ping of the uctuations takes place even when no very an all
eigenvalues occur in the sin ulation, as in the case of the DBW 2 action. It thus seem s that
also the eigenvectors and in particular their localization properties play an in portant role. It
isunclear to us, and we did not investigate this here, how far also other correlation functions
are a ected by this phenom enon. O ne possble explanation [28] relies on the relation of the
eigenvalues and eigenvectors of Dy and Dy n, - The study of this correspondence clearly
deserves further e orts using non-perturbative m ethods.

(i1) The m ethod of profcting out eigenvalues as studied here can be used on top of other
In provem ents such as using in proved gauge actions or In proved ferm ion actions. T he pro-
Bction m ethod is not very costly and produces only a an all num erical overhead. Thus we
advocate to em ploy the projction m ethod in any sin ulation donew ith DW F'.

(iii) W e expect that the projction of the low lying eigenvalues should play an even m ore
In portant role in the case of dynam ical sinulations with DW F as the behaviour of the 5D

ferm ionic kemel w ill be a ected by the problem s discussed in (i), too. W e envisage that
such a dynam ical com putation w ith the projction of low ying eigenvalues can be perform ed
along the lines of refs. [27,[28,[29,[30] by estin ating the fullDW F operator stochastically. In
this case the profction can be done easily.
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