
 CHEP03, La Jolla, California, March 24 - 28, 2003 1

MOJT003

SEAL: Common Core Libraries and Services for LHC Applications
J. Generowicz, P. Mato, L. Moneta, S. Roiser
CERN, Geneva, Switzerland
M. Marino
LBNL, Berkeley, CA 94720, USA
L. Tuura
Northeastern University, Boston, MA 02115 , USA

The CERN LHC experiments have begun the LHC Computing Grid project in 2001. One of the project's aims is to develop
common software infrastructure based on a development vision shared by the participating experiments. The SEAL project will
provide common foundation libraries, services and utilities identified by the project's architecture blueprint report. This
requires a broad range of functionality that no individual package suitably covers. SEAL thus selects external and experiment-
developed packages, integrates them in a coherent whole, develops new code for missing functionality, and provides support to
the experiments. We describe the set of basic components identified by the LHC Computing Grid project and thought to be
sufficient for development of higher level framework components and specializations. Examples of such components are a
plug-in manager, an object dictionary, object whiteboards, an incident or event manager. We present the design and
implementation of some of these components and the underlying foundation libraries in some detail.

1. THE BLUEPRINT RTAG

The formal process established in the LHC Computing
Grid project (LCG) to capture the requirements of the
LHC experiments and identify areas of potential common
interest among the experiments is by launching a so called
Requirements and Technology Assessment Group
(RTAG). RTAG 8 was mandated to define the
architectural ‘blueprint’ for LCG applications:

? Define the main architectural domains
(‘collaborating frameworks’) of LHC experiments
and identify their principal components.

? Define the architectural relationships between these
‘frameworks’ and components, including Grid
aspects, identify the main requirements for their
inter-communication, and suggest possible first
implementations.

? Identify the high-level milestones for each domain
and provide a first estimate of the effort needed.

? Derive a set of requirements for the LCG
The basic idea is that any piece of software developed

by any LCG common project must conform to a coherent
overall architectural vision. The main goal is to facilitate
the integration of LCG and non-LCG software to build
coherent applications. The blueprint is established in terms
of a set of requirements, suggested approaches and
guidelines, and recommendations.

The findings, guidelines and recommendations of the
RTAG are summarized in the RTAG report [1]. Here are
some of the identified architectural elements:

? Interface model with abstract interfaces, versioning
and guidelines.

? Component model. Communication via public
interfaces (no hidden channels), plug-ins (run-time
loading), life-time management (reference
counting), application and component
configuration.

? Design guidelines. Software dependencies,
exception handling, interface to external
components .

? Object Dictionary. The ability to query a class
about its internal structure (Introspection). Essential
for data browsing, rapid prototyping, persistency,
etc.

? Object Whiteboard . Uniform access to application-
defined objects (equivalent to the Gaudi transient
stores [2]).

? Component Bus. To easy the integration of
components providing a wide variety of
functionality and developed independently.

The overall software structure and the role of the
different frameworks, ranging from generic ones to
specialized to given domain is shown in Figure 1.

Basic Framework

Foundation Libraries

S
im

ul
at

io
n

F
ra

m
ew

or
k

R
ec

on
st

ru
ct

io
n

Fr

am
ew

or
k

V
is

ua
liz

at
io

n
F

ra
m

ew
or

k

Applications

. . .

Optional Libraries

O
th

er
F

ra
m

ew
or

ks

Basic Framework

Foundation Libraries

S
im

ul
at

io
n

F
ra

m
ew

or
k

R
ec

on
st

ru
ct

io
n

Fr

am
ew

or
k

V
is

ua
liz

at
io

n
F

ra
m

ew
or

k

Applications

. . .

Optional Libraries

O
th

er
F

ra
m

ew
or

ks

Figure 1 Diagram showing the basic software structure
with the different levels from foundations libraries to
application software.

 The recommendations of the blueprint RTAG can be
summarized as:

? RTAG establishes a user/provider relationship
between LCG software and ROOT [3]. LGC
software will not be based on ROOT; it will use
ROOT where appropriate.

2 CHEP03, La Jolla, California, March 24 - 28, 2003

MOJT003

Event
Generation

Core Services

Dictionary

Whiteboard

Foundation and Utility Libraries

Detector
Simulation

Engine

Persistency

StoreMgr

Reconstruction

Algorithms

Geometry Event Model

Grid
Services

Interactive
Services

Modeler

GUI
Analysis

EvtGen

Calibration

Scheduler

Fitter

PluginMgr

Monitor

NTuple
Scripting

FileCatalog

ROOT GEANT4 DataGrid Python Qt

Monitor

. . .MySQLFLUKA

Event
Generation

Core Services

Dictionary

Whiteboard

Foundation and Utility Libraries

Detector
Simulation

Engine

Persistency

StoreMgr

Reconstruction

Algorithms

Geometry Event Model

Grid
Services

Interactive
Services

Modeler

GUI
Analysis

EvtGen

Calibration

Scheduler

Fitter

PluginMgr

Monitor

NTuple
Scripting

FileCatalog

ROOT GEANT4 DataGrid Python Qt

Monitor

. . .MySQLFLUKA

? Start common project on core tools and services
(the SEAL Project)

? Start common project on physics interfaces
? Start an RTAG on analysis, including distributed

aspects
? Tool/technology recommendations such as CLHEP,

CINT, Python, Qt, and AIDA
? Develop a clear process for adopting third party

software.

2. THE SEAL PROJECT

The purpose of the SEAL project is to provide the
software infrastructure, basic frameworks, libraries and
tools that are common among the LHC experiments. The
project should address the selection, integration,
development and support of foundation and utility class
libraries. These utilities cover a broad range of unrelated
functionalities and it is essentially impossible to find a
unique optimum provider for all of them. They should be
developed or adapted as the need arises. In addition to
these foundation and utility libraries, the project should
develop a coherent set of basic framework services to
facilitate the integration of LCG and non-LCG software to
build coherent applications.

The scope of the SEAL project covers a big area in the
domain decomposition as is shown in Figure 2. The basic
two areas are: the Foundation and Utility libraries, and
the Basic Framework services. The Foundation and
Utility libraries include the basic types in addition to the
ones provided by la programming language (Boost,
CLHEP, …), utility libraries, system isolation libraries,
domain specific foundation libraries. The Basic
Framework Service includes the component model,

reflection, plug-in management, incident (event)
management, distributed computing, grid, scripting, etc.

In addition to the two main areas, some elements of the
interactive and grid services are also included since is very
likely that these elements will be common to various LCG
projects.

The SEAL project should provide a coherent and as
complete as possible set of core classes and services in
conformance with overall architectural vision described in
the Blueprint RTAG. The following are some
assumptions, constraints and risks about the project:

? We will not re-invent wheel. Most of the core
software to be delivered by SEAL exists - more or
less - in experiments’ core software in some form.

? We will re-use as much as possible existing
software either from public domain or HEP specific
one. Most of the work will be in re-packaging
existing pieces of software.

? If what exists is not completely adequate, we will
develop / adapt / generalize in order to achieve the
necessary level of coherency and conformance to
the architectural vision already established in the
Blueprint RTAG.

? In order to use SEAL, projects will need to replace
their own software elements with SEAL
functionally equivalent ones. This will certainly
imply some period of instability for the experiment
applications.

3. WORK PACKGAGES

In the following sections we review the different work
packages that have been initiated in the SEAL project. We
will be summarizing the current activities and the current

Figure 2 Software Domains covered (light blue) by the applications area of the LCG
project and not covered (dark grey).

 CHEP03, La Jolla, California, March 24 - 28, 2003 3

MOJT003

status and expected deliverables.

3.1. Foundation and Utility Libraries

The idea of this work package is to provide class
libraries to complement the standard types and utility
libraries (a broad range of unrelated functionalities which
makes sense to re-use across LCG projects). The goal is to
minimize development of foundation and utility libraries
in each LCG project and concentrate on the union of the
needs in a single set of packages. An inventory of existing
utility classes has been produced and the decision to
provide support for Boost library [4] has been taken. Boost
is an open source utility library, and parts of which are
destined to be included in the following C++ standard.
Support for CLHEP [5] is also envisaged since it provides
HEP specific data types in wide use already in the
experiments.

We are developing the SEAL utility and system library
with pieces comp lementary to Boost and STL from
existing code from various libraries in use currently in the
experiments. The first versions of such libraries have been
released and they are in use by other LCG projects.

3.2. Math Libraries

The Math Libraries project, originally an independent
LCG project launched after the conclusions of an RTAG
in reviewing math libraries, has become a work package of
the SEAL project. We should provide to the experiments
with math and statistics libraries to be used in analysis,
reconstruction and simulation.

One of the initial activities has been an evaluation of the
GSL [6] library with a view to deploying it fully in the
experiments’ software. The idea is to standardize on this
library where mathematical functionality is concerned and
give support to the experiments in using it.

The Minuit [7] minimization package is being rewritten
in an object-oriented style, in C++. The idea is to provide
all the functionality already existing in the original Fortran
version, and to make it easily extensible with more
performing algorithms using, for example, dynamically
loadable plug-ins. This work includes studies of linear
algebra packages, investigating their functionality and
performance.

3.3. Component Model and Plug-in Manager

In the LCG architecture described in the Blueprint
RTAG, a plug-in is a logical module that encapsulates the
concrete implementation of a given service. The plug-in
manager service is responsible for loading, activating,
deactivating and unloading plug-ins at run-time . This is a
functionally that is desired and in use already by all LHC
experiments. The plug-in manager holds cached
information about what modules are known, and what
plug-ins can be instantiated from them as it is shown in
Figure 3. The existing implementation is based on the
ideas and code from the Iguana [8] project.

Figure 3 Organization of run time plug-in database
provided by the plug-in manager to manage runtime cache
information about existing modules and the plug-ins they
contain.

In addition to the plug-in manager, we are currently
developing the co-called component model. This is a set of
mechanisms and conventions by which we want to model
the components and services that constitute an application.
Questions like what shape they have, how the interfaces
are exposed and eventually discovered at runtime,
identification and configuration, reference counting for
implementing an object lifetime strategy, component
communication favoring a peer-to-peer strategy are
examples of the issues that need to be defined. The aim is
to define this comp onent model and provide a number of
base classes, interfaces and guidelines that developers can
use to develop their own services or applications that
comply with the model. The final goal is to achieve an
easy way of re-using services and components developed
in the different projects and experiments.

3.4. LCG Object Dictionary

The Blueprint RTAG identified as an essential element
the object dictionary to provide reflection functionality by
complementing the existing very limited native C++ RTTI
(Run Time Type Information). It is highly desirable that
this functionality be provided in common across all
projects and experiments to exploit the benefits of it . The
main idea is to provide pure C++ reflection functionality
without any assumption about the possible clients of this
information, similar to in the way in which this
functionality is provided by other more modern
programming languages like Java or C#. Examples of
possible clients of the dictionary information are the object
persistency layer (e.g. POOL), interactive and scripting
services, data browsers, remote communication
procedures, etc.

In this work package there are two aspects to be taken
into account: the population of the dictionary information
from some source and the runtime access to the dictionary
information through the reflection interface. The reflection
interface is provided by a package that is independent of
information source and the client, and provides access to
all C++ features.

We have developed tools for populating the dictionary
directly from C++ header files, which is the mechanism
required by some of the LHC experiments. These tools are
based on the gcc_xml [9] package. We are able to generate
dictionaries for fairly complex object models without

Plug- In
Cache Plug- In

Cache

Object
Factory Object

Factory
Plug-in

Database
Plug- In
Cache

Module
Module

Module
Module

Module Object
Factory

Attached

Unattached

4 CHEP03, La Jolla, California, March 24 - 28, 2003

MOJT003

having to instrument or change any input C++ header file.
The work flow for the dictionary generation is illustrated
in Figure 4. The selection of the classes for which to
generate the dictionary and any extra information
concerning persistency capabilities or other information is
provided by a selection file. The lcgdict command uses
gcc_xml to generate an intermediate XML representation
of a syntax tree describing the contents of C++ header
files, which is then used to generate the dictionary filling
C++ code (for the “selected classes”) from which we
produce a dynamic library that can be loaded at run time to
create the dictionary in memory.

.xml

.h

.h lcgdict
.h.h

gccxml .xml filter
+

exten

gendictpar
ser

_dict.cpp

.so

make

selection file

(python script)

#include files
.xml

.h

.h lcgdict
.h.h

gccxml .xml filter
+

exten

gendictpar
ser

_dict.cpp

.so

make

selection file

(python script)

#include files

Figure 4 Work flow of the dictionary generation starting
from header files using GCC_XML.

As part also of the project, we are currently developing
various gateways between different object dictionaries to
facilitate the integration and interoperability between
languages and frameworks. For example, the way the
dictionary is used in the ROOT implementation of the
storage manager in POOL [10] is by populating the ROOT
dictionary from the LCG dictionary at run-time in the
initialization phase, which is then used later directly by the
ROOT streaming sub-system. This is shown schematically
in Figure 5.

Another gateway that is being developed is a gateway to
the Python interpreter. This enables the Python interpreter

to access and manipulate any C++ class for which the
dictionary information exists, without the need to develop
specific bindings for that class. This work also provides a
useful completeness check for the LCG reflection
interface, as it exercises the behavioral part of the object
model which is not used much in the object persistency
utilities.

Another required gateway already identified in the
Blueprint RTAG is the one that would allow a user to
interact from ROOT (CINT) with any class in the
dictionary as it will be done with Python (inverse direction
to the one developed currently in POOL).

3.5. Basic Framework Services

In this work package we intend to develop a number of
basic framework services based on the component model
as described previously. These services should be very
basic and neutral to any domain specific framework such
as simulation, reconstruction, visualization etc. Examples
of these services are: message reporting, exception
handling, component configuration, “event” management,
object “whiteboard”, etc. It is understood that more
services of common interest will be identified during the
project execution as needs in other projects or in the
experiments will arise, and that it will make sense to
develop them in common.

The so-called object “whiteboard” is described in the
Blueprint RTAG report as a mechanism to organize and
locate event or detector objects that need to be shared
among services or algorithms. This is pattern that appears
very often in event data processing applications in our
domain, so it makes sense to standardize on something that
later can be exploited by adding extra functionality. It is
important to study in detail the interaction of this

ROOT I/O

LCG
DictionaryCINT

DictStreamer

.h

in

out

ROOTCINT

CINT generated
code Dict generating

code

.adl
.xml

ADL/GOD

Other
Clients:
(python,

GUI, etc.)

LC
G

to
 C

IN
T

D
ic

t
ga

te
wa

y

(2)

(1)

Population

Conversion

Reflection

GCC-XML

ROOT I/O

LCG
DictionaryCINT

DictStreamer

.h

in

out

ROOTCINT

CINT generated
code Dict generating

code

.adl
.xml

ADL/GOD

Other
Clients:
(python,

GUI, etc.)

Other
Clients:
(python,

GUI, etc.)

LC
G

to
 C

IN
T

D
ic

t
ga

te
wa

y

(2)

(1)

Population

Conversion

Reflection

GCC-XML

Figure 5 Overall flow of object dictionary information from primary source to its
use at run-time by the object persistency layer and other clients.

 CHEP03, La Jolla, California, March 24 - 28, 2003 5

MOJT003

component with the persistency services, visualization
services and others.

3.6. Scripting Services

The SEAL project should provide the basic
infrastructure to support scripting. In particular, two
scripting languages (Python and CINT) were identified in
the Blueprint RTAG. The bindings for Python and CINT
of the basic services will be needed to provide a
“component bus” that will allow easy integration of
components, possibly implemented in a variety of
languages and providing a wide range of functionality.
Other bindings to more domain specific components will
be provided by the corresponding project. For example,
bindings for physics analysis tools will be provided in the
Physics Interface project.

There is a variety of techniques for developing Python
bindings of C++ classes (Python extension modules) in
addition the one already mentioned, based directly on
using the LCG object dictionary. Therefore, one of the
initial activities has been the evaluation of the existing
technologies such as SWIG, Boost.Python, SIP, etc. and
understanding their interoperability and the possibility of
exchanging python objects wrapped using two different
technologies. Guidelines for developing Python bindings
will be produced in order to guarantee coherency and
interoperability between LCG and experiment projects.

Within this work package we will be developing Python
bindings to commonly used packages such as CLHEP,
GSL, etc. following the agreed guidelines. In the case of
ROOT, we have developed already a generic package
PyROOT, formerly called RootPython [11], which allows
interacting with any ROOT class generically by exploiting
the internal ROOT/CINT dictionary.

4. STATUS AND CONCLUSIONS

The SEAL project started last November after the
recommendations of the Blueprint RTAG and has already
started to provide the software infrastructure, basic
frameworks, libraries and tools that are common among
the LCG projects and LHC experiments. Several releases
of the project have been made available , which provide
some of the functionality that was initially requested.
Priority has been given to the pieces required by the POOL
persistency project (main emp hasis on foundation and
utility classes, plug-in management and object dictionary).

A big fraction of the current code base has its origins in
various projects across LHC experiments (Iguana, Gaudi,
HepUtilities, etc.). This has allowed us to very quickly

produce high quality software and with the functionality
that we believe is close to what is really needed, since it is
based on recent past experiences.

The first more completed release is scheduled for the
end of June and should incorporate sufficient functionality
to be used by any other LCG project and by LHC
experiments’ frameworks, to replace their existing
equivalent functionality.

Acknowledgments

The authors wish to thank all people currently
participating to the applications area of the LCG project
for their contribution in defining the requirements of
SEAL project and their support. Specially, we wish to tank
the members of the SPI project for their help in setting up
the software development infrastructure.

References

[1] T. Wenaus et al., Report of the LHC Computing Grid
Project Architecture Blueprint RTAG, CERN-LCG-
2002-022. See also
http://cern.ch/LCG/SC2/RTAG8/finalreport.doc

[2] G. Barrand et al., GAUDI: A software architecture
and framework for building HEP data processing
applications, Computer Physics Communications
140(2001) 45-55. See also http://cern.ch/Gaudi

[3] R. Brun and F. Rademakers, ROOT - An Object
Oriented Data Analysis Framework , Proceedings
AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl.
Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See
also http://root.cern.ch

[4] Boost libraries. See http://www.boost.org
[5] CLHEP - A Class Library for High Energy Physics.

See http://cern.ch/CLHEP
[6] M. Galassi et al., GNU Scientific Library Reference

Manual - Second Edition, Network Theory Ltd, 2003
[7] F. James, Minuit, CERN Program Library Long

Writeup D506
[8] G. Alverson et al., The IGUANA interactive Graphics

Toolkit with Examples from CMS and D0 ,
Proceedings CHEP’01, Beijing, Sep 2001. See also
http://cern.ch/iguana

[9] GCC-XML, the XML output extension to GCC. See
http://www.gccxml.org

[10] D. Duellmann, POOL Project Overview, in this
proceedings.

[11] P. Mato, Using ROOT classes from Python, ROOT
2002 Workshop, October 2002, CERN. See also
http://cern.ch/Gaudi/RootPython

