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Abstract

For the first time at LEP the production of prompt photons is studied in the collisions of quasi-
real photons using the OPAL data taken at e+e− centre-of-mass energies between 183 GeV and
209 GeV. The total inclusive production cross-section for isolated prompt photons in the kine-
matic range of transverse momentum pγ

T > 3.0 GeV and pseudorapidity |ηγ| < 1 is determined
to be σtot = 0.32± 0.04 (stat)± 0.04 (sys) pb. Differential cross-sections are compared to the
predictions of a next-to-leading-order (NLO) calculation.
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F. Spano9, A. Stahl3, K. Stephens16, D. Strom19, R. Ströhmer31, S. Tarem21, M.Tasevsky8 ,
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Z. Trócsányi30,e, E.Tsur22, M.F.Turner-Watson1, I. Ueda23, B.Ujvári30,e, C.F.Vollmer31,
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1 Introduction

We present the first LEP measurement of the inclusive production of isolated prompt photons
in photon-photon collisions, γγ → γ +X, where X denotes the hadronic final state produced in
addition to the photon. The interacting photons are emitted by the beam electrons1. Electrons
scattered at small angles into the beam pipe escape detection and, in this analysis, events with
one or two detected scattered electrons are vetoed (“anti-tagging”). The interacting photons
thus carry a small four-momentum squared, Q2, i.e. they are quasi-real.

In leading order (LO), only processes where one (“single-resolved”) or both (“double-
resolved”) of the incoming photons fluctuate into a hadronic state contribute to the production
cross-section for prompt photons. In these processes, a quark or a gluon from the hadronic state
participates in the hard interaction, γq → γq (Fig. 1), qq → γg and gq → γq (Fig. 2). Pro-
cesses with final state radiation (“FSR”) are a higher-order contribution to the direct process
(Fig. 3).

The hadronic structure of the photon has previously been studied by OPAL in the in-
teractions of two quasi-real photons producing jets [1], hadrons [2] or D∗ mesons [3] at high
transverse momentum. The inclusive production cross-section for isolated prompt photons is
expected to be about two orders of magnitude smaller than for di-jet production in a similar
kinematic region of transverse energy ET > 3 GeV and pseudorapidity |η| < 1 [1]. Hadronisa-
tion uncertainties, however, are expected to be much smaller than in the case of jet production
at similar transverse momenta, allowing a complementary study of the hadronic structure of
photon interactions [4, 5]. The photoproduction of prompt photons has previously been studied
by NA14 [6] and by ZEUS [7].

Approximately 649 pb−1 of e+e− collision data taken by the OPAL experiment at centre-
of-mass energies

√
see from 183 GeV to 209 GeV are used in this analysis. Since the expected

production cross-section is small and the increase of the cross-section from the lowest to the
highest centre-of-mass energy is expected to be less than the statistical uncertainty of the

1Positrons are also referred to as electrons.
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measurement [4], all data are combined for the final result. The luminosity-weighted mean e+e−

centre-of-mass energy is approximately 196.6 GeV. The measured differential and total cross-
sections are compared to the leading order predictions of the Monte Carlo generator PYTHIA [8]
and to a next-to-leading-order (NLO) calculation [9]. The measurement is restricted to isolated
prompt photons to suppress background from neutral particle decays into photons.

2 The OPAL detector

A detailed description of the OPAL detector can be found in [10], and therefore only a brief
account of the main features relevant to the present analysis will be given here.

The central tracking system is located inside a solenoidal magnet which provides a uniform
axial magnetic field of 0.435 T. The magnet is surrounded by a lead-glass electromagnetic
calorimeter (ECAL) and a hadronic sampling calorimeter (HCAL). The HCAL is surrounded
by muon chambers. There are similar layers of detectors in the endcaps. The region around
the beam pipe on both sides of the detector is covered by the forward calorimeters and the
silicon-tungsten luminometers.

Starting with the innermost components, the tracking system consists of a high precision
silicon microvertex detector (SI), a precision vertex drift chamber (CV), a large volume jet
chamber (CJ) with 159 layers of axial anode wires and a set of z chambers measuring the track
coordinates along the beam direction2.

The ECAL covers the complete azimuthal range for polar angles satisfying | cos θ| < 0.98.
The barrel section, which covers the polar angle range | cos θ| < 0.82, consists of a cylindrical
array of 9440 lead-glass blocks with a depth of 24.6 radiation lengths. Each block subtends
an angular region of approximately 40 × 40 mrad2. Deposits of energy in adjacent blocks are
grouped together to form clusters. The intrinsic energy resolution of σE/E = 0.2%⊕6.3%/

√
E

is substantially degraded (by a factor ' 2) due to the presence of at least two radiation lengths
of material in front of the lead glass.

The endcap sections consist of 1132 lead-glass blocks with a depth of more than 22 radiation
lengths, covering the range of polar angles between 0.81 < | cos θ| < 0.98. The HCAL consists
of streamer tubes and thin multiwire chambers instrumenting the gaps in the iron yoke of the
magnet, which provides the absorber material of 4 or more interaction lengths.

Scintillators in the barrel and endcap regions provide time measurements for the large
fraction of photons which convert in the material in front of the ECAL. They are also used to
reject the background from cosmic ray interactions. The barrel time-of-flight (TOF) scintillator
bars are located outside the solenoid in front of the barrel ECAL and match its geometrical
acceptance (| cos θ| < 0.82).

The forward calorimeters (FD) at each end of the OPAL detector consist of cylindrical lead-

2In the OPAL coordinate system the x axis points towards the centre of the LEP ring, the y axis points
upwards and the z axis points in the direction of the electron beam. The polar angle θ is defined with respect
to the z axis. The azimuthal angle φ and the radius r denote the usual spherical coordinates.
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scintillator calorimeters with a depth of 24 radiation lengths. The acceptance of the forward
calorimeters covers the angular range from 47 to 140 mrad from the beam direction. The
silicon tungsten detectors (SW) [11] at each end of the OPAL detector cover the angular region
between 25 mrad and 59 mrad in front of the forward calorimeters. Due to a radiation shield
installed for LEP2 running, the lower edge of the useful acceptance is 33 mrad. Each calorimeter
consists of 19 layers of silicon detectors and 18 layers of tungsten, corresponding to a total of
22 radiation lengths.

3 Process kinematics and Monte Carlo simulation

The kinematic properties of the two interacting photons are described by their negative squared
four-momentum transfers, Q2

i=1,2, which are related to the scattering angles θ′i of the correspond-
ing electron relative to the beam direction by

Q2
i = −(ki − k′i)

2 ≈ 2EiE
′
i(1− cos θ′i), (1)

neglecting the mass me of the electron. The quantities ki and k′i are the four-momenta of
the beam and scattered electrons, and Ei and E ′

i their energies. The maximum squared four-
momentum transfer, Q2

max, is given by Eq. 1 using the limits on the energy and the polar angle
from the anti-tagging requirement that no electron has been detected in the ECAL, FD or SW
calorimeters. These cuts correspond to Q2

max ≈ 10 GeV2. No correction for this anti-tagging
condition is applied. The median Q2 resulting from this definition cannot be determined with
the data since the scattered electrons are not tagged. For the kinematic range of this analysis
the Monte Carlo simulations predict the median Q2 to be of the order 10−4 GeV2.

The Monte Carlo generator PYTHIA 6.130 [8] is used for the simulation of signal events,
γγ → γ+X. Separate samples of single and double-resolved processes have been produced using
the SaS-1D [12], GRV-LO [13], and LAC-1 [14] parametrisations of the parton distributions of
the photon. The samples are generated at e+e− centre-of-mass energies

√
see of 189 GeV,

192 GeV, and 206 GeV.

Several samples are generated for systematic studies: single-resolved signal events with
HERWIG [15] and signal events with final state photon radiation with PHOJET 1.10 [16]
using the parton shower option of JETSET [8]. Photon-photon events with initial state photon
radiation are simulated using BDK [17].

The transition from quasi-real to virtual photons is smooth and the definition used to
separate these kinematic regions is somewhat arbitrary. In the Monte Carlo simulation we
choose values of Q2 < 4.5 GeV2 to define quasi-real photons. The background from hadronic γγ
events without prompt photon production is simulated with PHOJET for the case where both
photons have Q2 < 4.5 GeV2. In PHOJET the fragmentation into hadrons is performed using
JETSET. HERWIG 5.9 is used to simulate γγ events where one photon has Q2 < 4.5 GeV2 and
the other photon has Q2 > 4.5 GeV2. This combination of generators gives a good description of
hadronic two-photon events [1]. Two-photon events with fully leptonic final states are simulated
with Vermaseren 1.0 [18].
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PYTHIA 5.7 and KK2f [19] are used for the description of qq(γ) events produced in e+e−

annihilations. KORALZ 4.02 [20] and KK2f are used to simulate τ pairs. Four-fermion final
states are simulated with grc4f 2.1 [21] and KORALW [22].

A photon signal in the electromagnetic calorimeter can originate from a prompt photon
but also from π0 or η mesons decaying into two photons. Background is also expected from
the annihilation of antineutrons, n̄, in the detector material. The different distributions of
energy deposited in the calorimeter for signal and background can be used to separate signal
from background by a cluster shape analysis. To study the response of the electromagnetic
calorimeter to the various sources of background, Monte Carlo samples are generated using a
single-particle generator. These particles are generated with a flat pT distribution in the range
of 2 GeV to 13 GeV, and flat azimuthal angle φ and flat pseudorapidity η = − ln(tan(θ/2))
distributions over the acceptance of the barrel part of the detector. Exponential pT-dependent
weighting functions are introduced to reproduce the shape of the pT distributions as predicted
by PHOJET.

All Monte Carlo samples are passed through a full simulation of the OPAL detector [23]
and are analysed using the same reconstruction algorithms as for data.

4 Event selection

Only anti-tagged photon-photon scattering events are studied in this analysis. The same event
selection is applied to the data samples taken at different e+e− centre-of-mass energies

√
see.

Anti-tagged photon-photon events are selected using the following requirements:

• Anti-tagged events are selected by vetoing all events containing an energy deposit of more
than 15% of

√
see in the SW calorimeter or more than 25% of

√
see in the FD calorimeter,

in either hemisphere of the detector. This corresponds to a maximum allowed scattering
angle of the beam electrons of θ′ = 33 mrad for electrons with energies above the threshold.

• At least three tracks must be found in the tracking chambers. A track is required to have
a minimum transverse momentum of 120 MeV and more than 20 hits in the central jet
chamber. In this paper, transverse is always defined with respect to the z direction of the
detector. The distance of closest approach to the origin must be less than 20 cm in the
z direction and less than 2.5 cm in the rφ plane. An event is rejected if a track with a
momentum higher than 25% of the centre-of-mass energy is detected.

• A minimum visible invariant mass of the event, Wvis, of more than 5 GeV is required.
To reduce the e+e− annihilation background, Wvis should be less than 30% of

√
see. Wvis

is calculated using the energies and positions of clusters measured in the ECAL, HCAL,
FD and SW calorimeters and using the momenta of tracks. A matching algorithm [24] is
applied to compensate for double-counting of particle momenta in the calorimeters and
in the tracking chambers.

• The background due to beam-gas or beam-wall interactions is reduced by requiring the
absolute value of the net charge of an event, calculated by adding the charges of the

6



tracks, to be less than three. In addition, the ratio of the longitudinal component of the
momentum vector of the final state to the total visible energy is required to be smaller
than 0.98.

Photon candidates are selected as follows:

• The photon candidates are reconstructed using the same algorithm as in [25]. Only
clusters in the ECAL which consist of at least 2 lead-glass blocks and fewer than 13
blocks are taken. If a track is associated with the cluster, the candidate is rejected. The
cluster has to be totally contained in the barrel part of the calorimeter; clusters with
blocks in the end cap calorimeter are rejected. The pseudorapidity of the photon, ηγ, is
required to be in the range −1 < ηγ < 1. The minimum transverse momentum of the
photon candidate with respect to the beam axis, pγ

T, is 3 GeV. The energy Eγ and the
polar angle θγ of the photon candidate are calculated from the energy and position of the
cluster.

• If hits in the time-of-flight (TOF) detector are associated with the cluster, the measured
time at the TOF is required to be less than 2 ns from the expected arrival time of a
photon originating from the beam crossing. This cut rejects cosmic ray events and also
removes background from antineutrons produced in photon-photon interactions.

• We apply the isolation criterion proposed in [26] to the photon candidate using all detected
particles based on the matching algorithm [24]. For each particle i, the distance

Riγ =
√

(φi − φγ)2 + (ηi − ηγ)2 (2)

to the photon candidate is computed in φη space, where φ and η are the azimuthal angle
and pseudorapidity, respectively. A photon candidate is kept if the condition

∑
particles,i

ET,iΘ(δ − Ri,γ) ≤ 0.2 · ET,γ
1− cos(δ)

1− cos(R)
, for all δ ≤ R (3)

is fulfilled, where ET,i is the transverse energy of the ith particle, Θ is the step function,
which ensures that only particles in the cone with opening half-angle δ contribute to the
sum, and the cone radius R = 1. Events with more than one isolated photon are rejected.

• The difference between the azimuthal angle φγ of the photon candidate and the azimuthal
angle of the remaining hadronic system is required to be between π − 1 and π + 1.

• Background from events with purely leptonic final states is further reduced by rejecting
events where more than 50% of all tracks are identified as electrons using the specific
energy loss, dE/dx, in the jet chamber. For this identification, the dE/dx probability for
the electron hypothesis should exceed 50%.

After applying all cuts 137 data events are selected.
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5 Determination of the number of photons

The main background to the prompt photon signal is from photons produced in π0 and η
decays, and from antineutrons, n̄. To separate signal photons from the background, a cluster
shape analysis is performed. The cluster shape analysis derives the background rate from the
data and is independent of the Monte Carlo predictions for the background rates. Two cluster
shape variables are used:

• The sum of the energy-weighted quadratic deviations of the lead-glass block coordinates
with respect to the coordinates of the cluster,

σcluster =

∑
blocks,i Ei((φi − φγ)

2 + (θi − θγ)
2)

Eγ
. (4)

• The ratio fmax of the energy of the most energetic block of the cluster to the total cluster
energy,

fmax =
Emax

Eγ
. (5)

To obtain the fraction of prompt photons in the sample of candidates, the normalised two-
dimensional distribution of fmax and σcluster is parametrised as a sum of signal and background
contributions:

g(fmax, σcluster) =

agγ(fmax, σcluster) + bgπ0

(fmax, σcluster) +

(1− a− b)(cgη(fmax, σcluster) + (1− c)gn̄(fmax, σcluster)), (6)

where gk(fmax, σcluster) denotes the normalised distribution obtained for particle type k; a and
b denote the γ and π0 fractions in the candidate sample while c is fixed to match the ratio of
events, N(η)/(N(n̄) + N(η)), predicted by PHOJET for photon-photon events with the same
selection criteria as are applied to the data. The one-dimensional distributions of fmax and
σcluster are shown in Fig. 4. The shape of the signal distribution is taken from the detector
simulation of the prompt photon signal using PYTHIA. The simulation of the shower-shape
variables for single photons has been compared to the shower-shape variables measured for
photons in radiative Bhabha events, e+e− → e+e−γ, selected from the OPAL data, and is
found to be consistent.

A binned maximum likelihood fit is applied to determine the fractions a and b, assuming
that the content of each bin follows a Poisson distribution. The fit yields a photon contribution
of a = 0.86±0.08 (stat) and a π0 contribution of b = 0.12±0.08 (stat), where the uncertainties
are due to the statistical uncertainties of the data. Within this uncertainty the π0 rate is
consistent with the π0 production cross-section predicted by PHOJET.
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6 Separation of single and double-resolved events

To study the relative contributions of single and double-resolved processes the variables

x±γ =
pγ

Te±ηγ
+ pjet

T e±ηjet

y±
√

see
≈ pγ

Te±ηγ
+ pjet

T e±ηjet

Σhadrons,γ(E ± pz)
. (7)

can be defined in γ plus jet events, where y± = Eγ/Ee are the fractional energies of the
quasi-real initial photons oriented towards the positive and negative z axis, and pT, η are the
transverse momenta and pseudorapidities of the jet and prompt photon, respectively. Since y±

cannot be measured directly, the denominator of Eq. 7 is approximated by summing over the
energies E and the z components of the momenta, pz, of all detected final state particles.

The variables x+
γ and x−γ are measures of the fractions of the initial photons momenta

participating in the hard interaction. In LO, x+
γ and x−γ should be smaller than 1 for double-

resolved events, whereas for single-resolved events only one of two variables is smaller than 1
and the other variable, related to the directly interacting photon, equals 1.

In this paper we use similar variables proposed in [9]

x±LL =
pγ

T(e±ηγ
+ e±ηjet

)

y±
√

see

≈ pγ
T(e±ηγ

+ e±ηjet
)

Σhadrons,γ(E ± pz)
. (8)

where the transverse momentum of the jet has been replaced by the transverse momentum of
the prompt photon. Since the transverse momentum is measured with better resolution for a
photon than for a jet, the experimental resolution for x±LL is better than for x±γ .

The jets are reconstructed using a cone algorithm [27]. They are required to have a trans-
verse momentum of pjet

T > 2.5 GeV, the pseudorapidity ηjet of the jet must be in the range
[−2, 2], and the radius of the cone in ηφ space is set to R = 1. A lower cut for pjet

T than for pγ
T is

chosen because a symmetric cut pjet
T = pγ

T leads to infrared instabilities in the NLO calculations.

About 64% of the selected events with a photon have exactly one jet and about 20% have
two or more jets. Events with two or more jets are included in the γ plus jet sample by
evaluating x±LL using the jet with the highest transverse momentum.

The fraction of single-resolved events in the γ plus jet sample is determined by a binned
maximum likelihood fit to the normalised two-dimensional x±LL distribution.

g(x+
LL, x−LL) = ragsr(x+

LL, x−LL) + (1− r)agdr(x+
LL, x−LL) + (1− a)gbg(x+

LL, x−LL). (9)

In the fit the sum of the Monte Carlo distributions for single (sr) and double-resolved (dr) events
is fixed to the number of prompt photons in the data, obtained by the shower-shape analysis.
The fraction 1 − a of π0, η, and n̄ background (bg) events is also fixed to the value derived
from the shower-shape fit. The shape of the x±LL distributions for the single and double-resolved
events is taken from PYTHIA and for the background events from PHOJET. The only free
parameter is the fraction r of single-resolved events in the selected data sample. The fit yields
a fraction of single-resolved events r = 0.47± 0.11 (stat).
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In the original PYTHIA simulation the rate of single-resolved events is predicted to be one
order of magnitude larger than the rate of double-resolved events. A good description of the data
by the Monte Carlo simulation is necessary to determine the correction factors for acceptance
losses and resolution effects. The rate of single-resolved events in PYTHIA after the detector
simulation and event selection is therefore adjusted to the fitted value r = 0.47 ± 0.11 (stat).
Fig. 5 shows the xmax

LL = max(x+
LL, x−LL) and xmin

LL = min(x+
LL, x−LL) distributions compared to the

PYTHIA simulation using r = 0.47±0.11 (stat). The sum of the signal and background Monte
Carlo distributions is normalized to the data. The fraction of the π0, η and n̄ background is
taken from the shower-shape fit.

The xmax
LL distribution is described well by the sum of signal and background Monte Carlo

after the fit, whereas the xmin
LL distribution has a slight enhancement of low values of xmin

LL , in
the region where both single and double-resolved events contribute.

A variable similar to x±LL which is defined for all prompt photon events, not just the sub-
sample with jets, is the scaled transverse momentum xγ

T of the prompt photon. It is given
by

xγ
T =

2pγ
T

W
. (10)

For events with a photon and a centrally produced jet (ηγ = ηjet = 0), the variable xγ
T is equal to

x±γ . This variable is therefore also sensitive to the fractions of the single-resolved and the double-
resolved processes. As with the x±γ distribution, the single-resolved contribution dominates at
higher values of xγ

T, whereas the double-resolved events are concentrated at smaller xγ
T, as

predicted by the Monte Carlo.

7 Systematic uncertainties

Several kinematic distributions are shown in Fig. 6 to demonstrate the general agreement
between the Monte Carlo and data distributions. The distributions of the charged multiplicity,
nch, the visible invariant mass, Wvis, the thrust in the rφ plane, Trφ, and the angle between the
prompt photon and the remaining hadronic system in the rφ plane are shown after the event
selection. The sum of the signal and background Monte Carlo is normalised to the data. The
transverse energy flow around the isolation cone, 1/Nγ · dET,i/dRiγ, is shown in Fig. 7. The
fraction of single-resolved events is taken from the fit to the x±LL distribution and the fraction
of π0, η and n̄ background is taken from the shower-shape fit (Eq. 6). The shape of the π0,
η and n̄ background distributions is simulated using PHOJET. The Monte Carlo simulation
describes the data well for all the distributions shown.

The following systematic uncertainties are studied in detail:

• The background from π0 decays with a single photon in the isolation cone is irreducible.
It is determined to be Ndata

π0→1γ = 14±10 (stat) using the fit to the shower-shape variables.
The uncertainty on this background is estimated using the following procedure:

– A π0 peak is reconstructed using data events with two photons in the cone. Taking
the ratio of π0 events with one and two photons in the cone from the PHOJET

10



simulation, the π0 background is estimated to be

Ndata
π0→1γ = Ndata

π0→2γ

NPHOJET
π0→1γ

NPHOJET
π0→2γ

= 18± 3 (stat). (11)

– Due to isospin conservation the cross-sections and fragmentation functions for π0

and π± production are expected to be proportional to each other. The analysis
is therefore redone with the same selection cuts except that an isolated track has
to be found instead of a photon. The track is identified as a charged pion using
the specific energy loss dE/dx measured in the jet chamber. With these cuts the
measured ratio of the number of charged to neutral pions is found to be 11±3 (stat)
for the PHOJET simulation and 12± 9 (stat) for the data.

An uncertainty of 50% is assigned to the π0 background rate which is mainly due to the
large statistical uncertainty of the tests performed. The resulting uncertainty on the total
cross-section is 8.3%.

• The influence of the calibration of the ECAL on the selection efficiencies is determined
by varying the energy of the lead-glass blocks by ±3% for the data [28]. The efficiencies
obtained are compared to the original values and the difference is assigned as systematic
uncertainty of 7.0%.

• The fraction of single-resolved events is determined with the variable x±LL to be r =
0.47 ± 0.11 (stat). The systematic uncertainty is determined by fitting the xγ and xγ

T

distributions defined in Section 6. These fits yield r = 0.64± 0.12 (stat) and r = 0.43±
0.08 (stat), respectively. The value of r is varied in the range 0.30 < r < 0.67 within
the full uncertainty given by the largest deviation of the two fit results from the value
r = 0.47 used in the analysis. Since the efficiencies are not very different for single and
double-resolved events, this leads to an uncertainty of only 4.0% for the total cross-section.

• The influence of the modeling of the parton density functions is studied by using Monte
Carlo samples generated with the GRV-LO and LAC-1 parametrisations of the parton
density functions. This yields a systematic uncertainty of 3.8%.

• Using HERWIG instead of PYTHIA for the simulation of single-resolved events changes
the measured prompt photon production cross-section by 3.8%.

• To estimate the effect of the fixed η to n̄ ratio, fits to the distributions of the shower-shape
variables are applied with either no n̄ or no η background. This affects the signal-to-
background ratio by 2.0%.

• The sensitivity of the shower-shape variables to the exponential weighting functions for
the distributions of the single particle generator events is estimated as follows. The
parameters of the exponential functions are determined by a fit of the single particle
generator pT distribution to the PHOJET pT distributions for the same particle type.
The parameters of the weighting function are scaled to (1 ± α), where α is the relative
error of the fitted weighting parameter. The shower-shape distributions are re-weighted
with the functions using the scaled parameter, and the analysis is redone. The resulting
systematic uncertainty is 2.8%.

11



• The dependence of the shower-shape variables on the number of required lead-glass blocks
is studied by increasing the cut on the number of lead-glass blocks from 2 to 3 in the
Monte Carlo but not in the data. This changes the signal-to-background ratio by 1.8%.

• The finite number of Monte Carlo events yields a systematic error of 1.6%.

• The fits to the distributions of the shower-shape variables are performed with various bin
sizes and upper and lower bounds of the histograms. The bins sizes were doubled/halved
and the histogram bounds were shifted by half a bin size. This changes the signal contri-
bution parameter a by 1.3%.

• The analysis is repeated using only the cluster shape variable C [29]. The variable C is
the result of a Monte Carlo fit which compares the measured to the expected energies.
The π0 : η : n̄ ratio is fixed to the values obtained in the shower-shape analysis above.
The measured signal contribution changes by 0.5%.

• The resolution of the angular distance in the rφ plane between the photon and the
hadronic system is approximately 5%. The systematic uncertainty is obtained by chang-
ing the cut on this variable by ±5% for the Monte Carlo events while leaving it unchanged
in the data. This changes the cross-section by 0.2%.

• The contribution from photon-photon events with a photon from initial state radiation in
the signal region was determined to be negligible using the BDK Monte Carlo [17]. The
contribution of events with final state radiation (FSR) to the data sample is estimated
to be about 10− 15% using PHOJET. The kinematic properties of these events are very
similar to the single-resolved signal events. Performing the measurement with and without
taking into account the FSR contribution leads to a negligible change in the measured
cross-section.

The resulting systematic uncertainties are summarised in Table 1.

8 Total cross-section

The total inclusive cross-section for isolated prompt photon production with pγ
T > 3 GeV and

|ηγ| < 1 is obtained using

σtot =

(
r

εsingle
+

1− r

εdouble

)
Nprompt

L . (12)

The number of remaining prompt photons after the subtraction of π0, η, and n̄ background
is denoted by Nprompt, and the single-resolved contribution r is taken from the result of the
fit to the two-dimensional x±LL distribution. The efficiencies εsingle and εdouble are defined as
the total number of selected events divided by the total number of generated events with an
isolated prompt photon in the range pγ

T > 3.0 GeV and |ηγ| < 1 for the single and double-
resolved PYTHIA Monte Carlo samples. The efficiencies are determined to be εsingle = (51.8±
0.7 (stat))% and εdouble = (61.8± 1.1 (stat))%. This yields the cross-section

σtot = 0.32± 0.04 (stat)± 0.04 (sys) pb (13)

in the kinematic range defined by the anti-tagging condition.
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9 Differential cross-section

To correct the measured differential cross-sections for acceptance losses and resolution effects
in the detector, correction factors are determined in each bin using the Monte Carlo simulation.
The variables are first corrected event by event for the average offset of the measured value
in each bin with respect to the generated value. The resulting distribution is then multiplied
by a bin-by-bin efficiency. The dependence of the corrected distributions on the shape of the
generated Monte Carlo distributions is studied by reweighting the generated distributions. The
changes are found to be small compared to the total uncertainties.

The inclusive differential cross-sections dσ/dpγ
T and dσ/d|ηγ| for isolated prompt photon

production are given in Table 2. The bin size is chosen to be significantly larger than the
experimental resolution, which is about 200-300 MeV for pγ

T. The ηγ resolution is much smaller
than the bin size due to the high ECAL granularity.

The fractions of single and double-resolved Monte Carlo events are determined using the
measured x±LL distribution (Section 6). The systematic uncertainties related to the determina-
tion of this ratio, to the ECAL calibration, and to the modeling of the parton densities have
been determined for each bin separately, whereas all other systematic uncertainties are added
globally.

In Figs. 8 and 9, the inclusive differential cross-sections dσ/dpγ
T and dσ/d|ηγ| are compared

to the prediction of the Monte Carlo generator PYTHIA and to the NLO calculation. For
the PYTHIA simulation the SAS-1D parametrisation [12] is used with the original ratio of
the single to double-resolved contribution given by PYTHIA. The NLO calculation uses the
AFG02 [30] parametrisation of the parton distributions of the photon with Λ

(4)

MS
= 300 MeV

and Q2
max = 10 GeV2. The factorisation and renormalisation scales are set equal to pγ

T. The
calculated cross-sections are integrals over the bins used in the analysis.

In both cases PYTHIA reproduces the shape of the distributions well but underestimates the
cross-sections, whereas the NLO calculation [9] describes well the shape and normalisation of
the data. The differential cross-section dσ/d|ηγ| is independent of |ηγ| within the experimental
uncertainties. This effect is mainly due to the event-by-event variation of the Lorentz boost from
the γγ system to the laboratory system. The NLO and LO calculations using the AFG02 [30]
and GRV-HO [13] parametrisations are also shown in Fig. 9. For this LO calculation the
Born terms are used for the subprocess cross sections together with the NLO strong coupling
constant, αs, and the NLO parton distribution functions.

The difference between the cross-sections using the two parametrisations is small in com-
parison to the uncertainty of the data.

The differential cross-section dσ/dxγ
T is shown in Fig. 10 and the values are given in Table 2.

The experimental resolution is in the range 0.05 to 0.15. At low values of xγ
T the data lie about

two standard deviations above the NLO calculation which indicates a higher double-resolved
contribution. The lowest kinematically accessible value is approximately xγ

T = 2pγ
T/W ' 0.1.

The differential cross-section dσ/dx−LL for the production of a prompt photon in association
with at least one jet in the kinematic range |ηγ| < 1, pγ

T > 3.0 GeV, |ηjet| < 2, and pjet
T > 2.5 GeV
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is shown in Fig. 11. The values are given in Table 3. If there are two jets associated with the
photon, the photon plus jets cross-section is defined by keeping the jet with the highest pjet

T .
The same procedure is used in the NLO calculation.

For the measurement of dσ/dx−LL an additional normalisation uncertainty of 10% due to
the jet requirement needs to be taken into account [1]. The main additional sources of this
uncertainty are the energy scale of the calorimeter, which is known to about 3%, and the model
dependence of the jet fragmentation [1].

All measured cross-sections are given at the hadron level, i.e., no hadronisation corrections
are applied to the data. The hadron level cross-sections are compared to the parton level
calculations by Fontannaz et al. [9] in Fig. 11. A comparison of the PYTHIA parton and
hadron cross-sections in Fig. 11 shows the size of hadronisation corrections for this particular
Monte Carlo model.

In the region x±LL > 0.625, the peak around x±LL = 1 in the LO calculations is smeared out
towards lower values of x±LL both by the hadronisation effects in the PYTHIA simulation and by
the higher order effects included in the NLO calculation. In this region PYTHIA and the NLO
calculation give a good description of the data within the large uncertainties. For x±LL < 0.625
hadronisation effects are expected to be smaller. The NLO cross-section is larger than the LO
cross-sections in this kinematic range, in better agreement with the data.

10 Conclusion

The inclusive cross-section for the production of isolated prompt photons in anti-tagged γγ
collisions is measured using the OPAL detector at LEP. Data with an integrated luminosity of
648.6 pb−1 with centre-of-mass energies

√
see from 183 GeV to 209 GeV are used.

The prompt photons are selected by requiring the isolation criterion of [26]. The signal and
the background from π0, η and n̄ production are separated by a cluster shape analysis. In the
kinematic region pγ

T > 3.0 GeV and |ηγ| < 1, a total of 110.8 events remain after background
subtraction. The total cross-section for inclusive isolated prompt photon production in the
kinematic range defined by these cuts and by the anti-tagging condition is measured to be

σtot = 0.32± 0.04 (stat)± 0.04 (sys) pb. (14)

The anti-tagging cuts corresponds to Q2
max ≈ 10 GeV2.

Single and double-resolved events are separated using photon plus jet events, where the jets
have been reconstructed with a cone jet algorithm. For the first time the differential cross-
sections as a function of the transverse momentum, dσ/dpγ

T, the pseudorapidity, dσ/d|ηγ|, and
the scaled transverse momentum, dσ/dxγ

T, are measured and compared to the predictions of
PYTHIA and to a NLO calculation. In addition, we measure the differential cross-section
dσ/dx−LL for the production of a prompt photon in association with at least one jet in the
kinematic range |ηjet| < 2 and pjet

T > 2.5 GeV. The NLO calculation gives a better description
of the data than the LO calculation and the PYTHIA Monte Carlo, especially at low x±LL.
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source uncertainty
π0 background 8.3%
ECAL calibration 7.0%
ratio single to double-resolved contribution 4.0%
parton density functions 3.8%
HERWIG instead of PYTHIA 3.8%
fixed η : n̄ ratio 2.0%
re-weighting of single particle MC 2.8%
minimum number of lead-glass blocks 1.8%
Monte Carlo statistics 1.6%
binning effects 1.3%
using C parameter 0.5%
resolution of φhadrons − φγ 0.2%
total systematic uncertainty 13.5%

Table 1: Relative systematic uncertainties on the total prompt photon cross-section, σtot.
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pγ
T [GeV] dσ/dpγ

T [pb/GeV]
3.0 – 4.0 0.153± 0.022± 0.023
4.0 – 5.0 0.036± 0.010± 0.005
5.0 – 6.0 0.045± 0.012± 0.006
6.0 – 8.0 0.016± 0.011± 0.003
8.0 – 13.0 0.006± 0.010± 0.001

|ηγ| dσ/d|ηγ| [pb]
0.0 – 0.2 0.25± 0.06± 0.03
0.2 – 0.4 0.33± 0.07± 0.06
0.4 – 0.6 0.18± 0.05± 0.03
0.6 – 0.8 0.44± 0.09± 0.06
0.8 – 1.0 0.35± 0.10± 0.05

xγ
T dσ/dxγ

T [pb]
0.00 – 0.26 0.53 ± 0.09 ± 0.07
0.26 – 0.52 0.41 ± 0.07 ± 0.05
0.52 – 0.78 0.30 ± 0.06 ± 0.05
0.78 – 1.04 0.06 ± 0.05 ± 0.01

Table 2: Differential cross-sections dσ/dpγ
T, dσ/d|ηγ| and dσ/dxγ

T for |ηγ| < 1 and pγ
T > 3 GeV

with the statistical and systematic uncertainties.

x−LL dσ/dx−LL [pb]
0.0000 – 0.3125 0.24 ± 0.05 ± 0.04
0.3125 – 0.6250 0.20 ± 0.05 ± 0.03
0.6250 – 0.8750 0.26 ± 0.05 ± 0.04
0.8750 – 1.1250 0.25 ± 0.08 ± 0.08

Table 3: Differential cross-section dσ/dx−LL for |ηγ| < 1, pγ
T > 3.0 GeV, |ηjet| < 2, and pjet

T >
2.5 GeV. The statistical and systematic uncertainties are also given.
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Figure 2: Diagrams of double-resolved processes. The double lines indicate the photon remnant
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Figure 4: Distributions of the shower-shape variables for data and Monte Carlo events: a) sum
of the energy-weighted quadratic deviations of the lead-glass block coordinates with respect to
the coordinates of the cluster, σcluster; b) ratio of the energy of the most energetic block of the
cluster to the total cluster energy, fmax. The ratio of signal to background is determined by a
binned maximum likelihood fit to the two-dimensional distribution.
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Figure 5: Distribution of the a) maximum and b) minimum of x+
LL and x−LL for the selected γ plus

jet events. The uncorrected data distributions are compared to the sum of the single and double-
resolved signal Monte Carlo distributions, and the background Monte Carlo distributions. The
sum of the signal and background Monte Carlo distributions is normalized to the data. The
background fraction is taken from the shower-shape fit and the fraction of single-resolved signal
events is taken from the fit to the x±LL distribution.
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remaining hadronic system in the rφ plane. The sum of the signal and background Monte
Carlo distributions is normalized to the data. The background fraction is taken from the
shower-shape fit and the fraction of single-resolved signal events is taken from the fit to the x±LL

distribution.
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Figure 8: Differential cross-section dσ/dpγ
T for inclusive prompt photon production in the

kinematic range |ηγ| < 1 and pγ
T > 3.0 GeV. The points represent data. The inner error

bars show the statistical uncertainty and the outer error bars the total uncertainty.
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Figure 9: Differential cross-section dσ/d|ηγ| for inclusive prompt photon production in the
kinematic range |ηγ| < 1 and pγ

T > 3.0 GeV. The points represent data. The inner error bars
show the statistical uncertainty and the outer error bars the total uncertainty.
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Figure 10: Differential cross-section dσ/dxγ
T for inclusive prompt photon production in the

kinematic range |ηγ| < 1 and pγ
T > 3.0 GeV. The points represent the data. The inner error

bars show the statistical uncertainty and the outer error bars the total uncertainty.
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Figure 11: Differential cross-section dσ/dx−LL for the production of a prompt photon in as-
sociation with at least one jet in the kinematic range |ηγ| < 1, pγ

T > 3.0 GeV, |ηjet| < 2,
and pjet

T > 2.5 GeV. The points represent the data. The inner error bars show the statistical
uncertainty and the outer error bars the total uncertainty.
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