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ABSTRACT

The aim of these lectures is to give an introduction
to quantum field theory in the framework of the func-
tional integration method. We outline a functional
integral scheme of field quantization and its modi-
fication for systems with constaints. A general quan-
tization scheme is developed. This scheme is appli-
ed to quantum electrodynamics, Yang-Mills fields, W S
model . The role of anomalies in gauge theories is
discussed briefly, as well as the problem of exten-
ded objects.

LECTURE 1.

Systems with constraints and their quantization

Field theory can be looked upon as an infinite~dimensional analog of
a mechanical system. In such an approach the theory of gauge fields is an
anglog of mechanical systems with constraints[f, 2]

A classical action of the finite~dimensional system with constraints

is equal to

o L I

It contains besides coordinates 7 and momenta P the variables QAo
which come in linearly and play the role of Laegrange multipliers. The coef-
ficients ‘,oa(p,ci) have the meaning of constraints. The variables p, C]
generate the phase space of dimension 211 « The number of constraints shall
be denoted as M . We suppose that im <& "t and that the constraints (f"’

and Hamiltonian H are in involution, i.e. that they fulfill the conditi-

(o oy - 2cie’ gyt al
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Here CZ C4 are functions of P.q and {}, 3} is the Poisson bracket
2
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The system of equations of motion for action functional (1.1) contains

besides canonical equations

- OH = dp® Y AL
q._-——“"" 11@_.313“ ?P‘:—‘«——Z:{a_s—:

. (1.4)
9P¢' a= 39‘ a= ?
also the constraint equations
a
LF (P.v?) = O > a:1$* ,m (1.5)

In principle, we can exlude some variables p, 4 using constraint
equations. But in practice the solution of constraint equations often turns
out to be rather difficult. So it is desirable to have a formalism where
explicit solutions of constraint equations are not required.

Constraint equations (1.5) define the surface M| of the 2n-m dimens-
sions in phase space r . The involution conditions (1.2) guarantee, for
arbitrary functions )Q (t) the fullfillment of constraint equations (1.5),
provided those equations are satisfied for initial conditions. In other
words, a trajectory which starts on the manifold M does not leave it.

We shall regard as observables on the manifold IV] the variables
which are not influenced by arbitrariness in the choice of )Q (t). This

requirement is fulfilled by the functions ,S: (P, 9) > which obey the con-

7{5,‘1‘7(”] = %‘{:‘Fe (1.6)

Indeed, in the equations of motion for those functions

£ ={H.4) + 2 2190 4] .

the )a. -depending terms vanish on M .

ditions

The function .}(P, ¢/) , defined onM and satisfying conditions
(1.6) does not in fact depends on all variables. Conditions (1.6) can be
looked upon as a system of M differential equations of the first order
on M for which equations (1.2) are conditions of integrability. The
function .} is therefore unambiguously defined by its values on a sub-
manifold of the systems initial conditions which has the dimension (2n-m)-

l—.x

-m = 2(n-m). It is convenient to take as such a manifold a surface ,
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defined by constraint equations (1.5) and M additional conditions

XQ(P"’)—;O N a = ,’-' m (1°8)

2

The function X, must satisfy the condition

det || Za, 8}l = © (1.9)

*
because only in that case r' can play the role of an initial surface for
the equation (1.6). It is convenient to suppose that Ia. mutually commu-

te

{za Xe§ =0 (1.10)

We mean two functions -f ,3 commute, if their Poisson bracket is equal to

zero ( {.;,g} = 0 ). In such a case it is possible to introduce cano-
*

nical variables onto the manifold r' . Indeed, if condition (1.9) is

‘\_)

satisfied, then using canonical transformation in ,» We can introduce

a new set of variables where Zx take a simple form:

Ao lpg)= Po @ =1, ,m, (1.11)
where Pa_ (a=1, ,‘m’is a subset of canonical momenta of the new system
of variables. Condition (1.9) can be written in terms of the new variables

as

D a
det ”3-,;% | #o (1.12)

and the constraint equation (1.6) can therefore be solved with respect to

3
9“’ . Finally, the surface |  is given by the equations

Pa =0 , 9% = 9% (p*, 9%) (1.13)
on r , so that f* and 7*are independent variables on r* .

Now let us discuss the quantization procedure for finite-dimensional
systems in the functional integral framework. We begin with the one dimen-
sional dynamical system with Hamiltonian H (p,4) « The principle of ca-
nonical quantization for such a system consists of replacing the coordina-

A
te 7 and momenta P by operators C) and )3 according to the rule

A " ‘0
é}—»q:q ,P»P——(ﬁf)—é (1.14)
where tt is the Planck constant. In the following we shall use the sys-
tem of units with FI =1 . The operators act on Hilbert space of complex



functions \Fl 9.
The time evolution of a state is determined by the Heisenberg equa-

tion

9 A
Lﬁf = H ¥ (1.15)

where H is the energy operator, obtained from the classical Hamiltoni-
A

an function H(P,?) p end 01 with operators P and (j according to (1.14).

A

We can write down the formal solution of (1.15) as

\//[t) = C{(t,to) t,//({-o)’ (1.16)

where the evolution operator
A

A
Uit ) = exp(i(t. -t H) (1.17)
is the exponential of the energy operator H .

The method of functional integration allows us to express the matrix

element of the evolution operator as a mean value of the expression
exp ¢ St,., t] (1.18)

over trajectories in the phase space where

t
S[t%t] :f(P(T)qLT) — H(p(t))?(r)))c/'(‘ (1.19)
t,
is a classical action, corresponding to the trajectories F(T) N 7(7)
(t. eT <t CI(T)_—-{_(@C)‘

The mean value over trajectories is called Feynman functional integ-
ral. Usially this is defined as a limit of finite dimensional integrals.
We shall present here one of the possible definitions.

We devide the intervel [to,t] with T,,... T, points into A/ equal
parts. Let us consider the functions PLT) defined on the interval

which are constant on the intervals
[e,2), (5T, o, (T ]

and the continious functions C]l"(‘) linear on the intervals (1.20). We

fix the values of the function 7("() at the end points of the interval
[to,)t] , putting
glte) = 9. , qut) =g (1.21)

The trajectory (F(‘C), ?LT}) is determined by values of the
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piecewise linear function (](T) in the points T,,.. '(‘”_, (we denote

D

them ¢, 9~ ) and by values of the piecewise constant function pPeT)
-

>
on intervals (TK,TK“) « We denote those by Pi,... Py -

Let us consider the finite dimensional integral
(27()."/&4’)1 ‘J?t o 'J?AM JFN exP(‘ S [t°’f7) = JN ( ?‘U 7 ) t°= t )) (1.22)

where S[tc,f] is the action (1.13) for the described trajectory ( P,
7(‘()) defined by the parameters P,, Prv, 9, - 9”-’ + The basis asser-
tion says that the limit of the integral (1.22) for M —»c0 is equal to
the matrix element of the evolution operator
"

lim Iy (e, g1 ta,t) = Lq] exp (itte-tIH) 4, (1.23)

N-’m
Here we de not dwell on the proof of this statement. It is not hard to
check it in the case, when the Hamiltonian H is a function of the coor-
dinate or the momentum only. For the Schrodinger equation the proof is
known only if the emergy function H is a sum of a function of momentum

and a function of coordinate
Namely the Hamiltonians of the (1.24) type are used in nonrelativistic
quantum mechanics.

We denote the functional integral, defined as the N —=oco limit of

the expression (1.24) by the symbol
9ty

fe&pi Slt. t] HAP(ZJ"(U (1.25)
T

7T
q(to)
This form is convenient but it does not reflect the fact that in the pre-

limit expression (1.22) the number of integrations over momenta is higher
by one order than that over the coordinates.
The generalization of the functional integral formalism to a system
with an arbitrary finite number of degrees of freedom (5 st’laijht}oxwazd.
The action of a mechanical system with yU degrees of freedom has

the form +

S‘[tc,t] '—‘-J(i”? - H(P,q)) dt (1.26)
to !
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Here q; is the i-th canonical coordinate, '2. is the canonically conju-
gated momentum, }{(P,q) = L{(P,,‘ Pasdqt, L97) is the Hamiltonian.
By definition the functional integral for the evolution operator mat-
rix element is a limit of the finite~dimensional integral obtained from
(1.22) by the replacement
n
@)Y = @)™ 4y, — ﬂ‘{‘i dp, — (1dp.. , .2n)
= Ut}
where 7: are the values of the i-th coordinate at the point T, ( K=1,
- s M-1), and P«",x are the values of the i-th momentum on (T,_, 6 T« )
interval. It is necessary to keep all the coordinates ?4, ,7” simulta-
neously fixed at both ends of the time interval [tc,t?.

We will denote the functional integral defined in such a way by the

symbol . "
A 5 dpordgice)
S exp S l_”__? T (1.28)
9t =g ©

Let us study now what the functional integral for the finite dimen-
sional mechanical system with constraints looks like.

We shall introduce additionsl conditions ;Ka(qu) so that relations
(1.9) and (1.10) are satisfied.

The basis assertion is that the evolution operator matrix element is
given by the functional integral

Sexp{ (ZP 9 - H(P,‘i))d"(} HJ[«(P(T),?(’C}) (1.29)

c=y

where the integratlon measure is given by the formula

JNT} = @y et [, ¢l I’]é‘(za J\(tp“)ﬂmech () (1.30)

c’l
To proove the assertion we transform integral (1.29) with measure (1.30)
to the integral (1.28), where integration is taken along the trajectories
%
in the physical phase space | . Using the abovementioned coordinates

q q )’ we may transform (1.29) into the integral with the measu-

4)‘* ~ar e [ [0Sy Tl g aam

Ire



which can be rewritten as

[ T80 dtge- 9%, 4" e ﬂ 4

(1.32)

One need not integrate over F‘K and q"‘ thanks to the é\ -functions. As
a result the integral (1.29) takes the following form

.t n-m
je*‘l" S(Z P*gir — 1" (P*,9%)) l—\ﬂ d"*‘{"’i (1.33)

o 4=

which coincides with (1.28).

Let us note, that integral (1.239) can be rewritten as

, t n .
(exp J(S PG —H= Zap)de
to =/ G

(1.34)

<[ Tdet 12, ¢}l @™ [192, )ru,a dg: nuche

The symbol \_\g(b_c )(A }3 /2¢) shows that in the prelimit expression there
are integrals over ’Ae (Tt 1 ( T, are dividing points of the intervals

[tc t] ) of the type

ge)k,o(—x ZM(T ) ‘f’ (per, 9. ’)AT) r;lA'C d2e (1.35)

Expression (1.35) is equal to the product of d' -functions

@
[]8C¢“ (P, qz) (1.36)
.')a.
It means that in integral (1.36) we can carry out the integration over

).e and return egain to integral (1.29).
It is not difficult to proove, that functional integral (1.29) does

not depend on the choice of additional conditions (1.11).

LECTURE 2
Gauge Field Quantization

Field theory can be regarded as the theory of a mechanical system

with an infinite number of degrees of freedom. The functional integral in
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field theory can be constructed using various methods. Pirst, it is pos-
sible to start with field action written in the Hamiltonian form and cons-
truct the functional integral over the phase space of a system with an
infinite number of degrees of freedom. Second it is possible té start with
the action not written explicitly in Hamiltonian form and study the func-
tional integral over all fields. This approach enables us to construct
explicitly relativistic theory. In the Hamiltonian approach relativistic
invariance is often not explicite and requires special proof.

Let us consider an example the theory of scalar field with action

S =l (tar sl - e - 4¢°) )
2 Xt X 2 31

Here 50( X) are field functions depending on a point X = ()(‘:’7 x"’ xz, x3)
of pseudoeuclidean space \/L, and fj:‘y is the diagonal Minkovsgki ten-
sor (1,'1,'1,-1) . The action is the sum of the functional §Q - the
action of the free field theory, quadratic in L'D and the integral over
(_ 9/3!) kp3 that describes the selfinteraction with the coupling cons-
tant g .

To define the functional integral over all fields the finite-dimensio-
nal approximation is frequently used.

In the space VL, we take a big cubic volume \/ , divided into /\/L(
equal small cubes V. (e=1, -',Nq). We approximate function ('D(X) in
the volume \/ by a function constant in the volumes \/(. and the first

derivatives 3({/3)(" by the finite differences
. Ay .
_ALE_[L(?(XV«LJ al) — ‘P(XV)] , (2.2)

where A[ is the length of the edge of the cube V, . Approximating pie-
cewise constant function lf)(x, is defined through its values in volumes
\/l .

Let us consider the finite-dimensional integral
N
Se)('ois \_IJ‘P“() (2.3)
(=]

over the values of function Lplx ) is volumes V. . Here S is the ac-

tion integral for the approximating function \]0(X) (with (2.2) as an app-
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roximation for its first derivatives).
Finite-dimensional integrals of type (1.3) are present in the preli-
mit expressions used for the definition of functional integrals encounte-

red in field theory. We shall define the Green function as

C(x,w T - LYo fY) > =

w—

MY
- _ @ S‘(QKP (S) POy Dd\fux)

v-»oo

N7
Vi g(e"l’ (S) \-1 thlx ) (2.4)

We denote the limit on the r.h.s. of (2.4) by the symbol

(lexp S) tprer g )
S(exp <) \:\d({nx)

The method of functional integration over all fields can be explained

(2.5)

and justified if it is possible to transform the functional integral ob-
tained here into integrals of a Hamiltonian form which represent a field
theory generalization of the integrals obtained above, in the quantizati-
on of the finite-dimensional mechanical systems.

Continuing the examination of the scalar field example, we shall wri-

te down in Hamiltonian form the functional integral

SG)(P ¢S \"\At‘ow (2.6)

To proceed we congider the integral

ge,;(’,(g[\,o,n] ﬂJnP(xk[/T(iv) (2.7)

where the expression

g[‘ﬂﬂ] = E(naoaf - ”-'-f- é@‘/’)l“%"\fl-% ) (e

coincides with action (2.1) provided /Do(f(x\ is substituted for YU /(x) .
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Action (2.8) is of Hamiltonian form and the corresponding Hemiltoni-

an function is
- 2 3
H - gt’lsx (énl + é(v l{))l " %1"0 + %'_ ¥ ) (2.9)

where the functions flx) , T{ (x) have the meaning of coordinate and conju-
gated momentum densities respectively. We show that integral (2.7) over
variables Y’ and U results in integral (2.6) over all fields. To achie-
ve this, it is sufficient to notice that the integral over j{ in formula

(2.5) can be expressed explicitly if the shift
Y (X) —=> YTix) + QOLF/X) (2.10)

is performed which couses the integral to transform into the product of

integral (2.6)ovex*f and the integral over 7T

gex,)(-%gvr"c(*x> ﬂab'ux) (2.11)

leading to the product of normalization factors.

In such a way we have succeeded in expression the functional integral
of scalar field theory through the Hamiltonian form, ertifically introdu-
cing an integral over a new variable - the canonical momentum. Such an
approach turns out to be useful for the proof of the Hamiltonicity of gi-
ven systems of quantum field theory and statistical physics.

The scheme of functional integration over all fields produces a method
of quantization of Bose fields.

Quantization of Fermi fields can be performed using the functional
integral over anticommuting variables. The following basic facts are neces-
sary here.

The integral over Fermi fields (over an infinite Grassmann algebra)
is defined as a limit of the integral on an algebra with a unit element
end a finite number of generators Xc’ Xi* (¢=1,. ., n) obeying commu-

tation relations

) *  x * i(_ > *
X‘Xj'i- )(-)X‘:O , )((')\j +X). X, = 0 , )(. X)- + XJ X(:O (2.12)

Any of the elements of the algebra ; (X, Xx* ) is a polynomial of the

form
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Z q, € é
g(x)x* ) = CQ(;- ,Qh,eop .,e,, X" ~ . th" (Xl*) '- .. “:)h (2‘13)

Q;'e‘=0,1

On the algebra we can introduce the integral

S‘g(x,)‘* Jdx¥dy = fg(xh ,x,,,X,*, .X:)JX:“{)Q <o "/Xh* "/Xn (2.14)

This integral is defined through the relations

gdx‘ =0 gz{)((*.—. o ’(’X,Jx‘ = 1

y

(xrder =4 (2.15)

2

We demand also that the symbols clx{ , Jx'* anticommute with each
other and with the generators and we impose the natural condition of li-

nearity
X(c1 S+ C 5 ) dx*dx = ¢, j§,alx*d'x £ C, 5§ldx*v/x (2.16)

When we integrate the sum (2.13), only the contribution of the term with
G,= € =1 for all (={,...,n is different from zero.

The following two formulae will be used later on
fexr (-x* Ax) dx*dx = det A ’ (2.17)
gex,a(-x"A X 4+ X+ X ) dxKelx
Je&f (-X*Ax ) dx*dx

where

= e"l’('lk A" n) (2.18)

,
)(*/'\ X = Z_ql"( X" XK (2.19)
;,‘(

is a quadratic form of the generators X, 5 x:, corresponding to the mat-
rix A .

The expressions

* — * *h = X* .

nx = Z.'Z Xeo, 0 Z c A2 (2.20)
1 t

*

are linear of the generators X; , X , whose coefficients 2, 7‘,*
)
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anticommute with each other and with the generators. The elements 7., 7;*
together with the generators X, , x,* can be regarded as generators of

a larger algebra. The expression ?*/3-17_ in (2.20) is a quadratic form
of the matrix A" inverse to /-\ .

Now we are ready to discuss the gauge field quantization. Gauge fields
can be regarded as connections on a fibre bundle, its base being the spa-
ce time LQ and its fiber a finite-~dimensional space carrying a represen-
tation of a group.

The geometrical nature of gauge fields also demonstrates itself when
constructing the corresponding quantum theory. The most suitable way of
gauge field quantization is to use the functional integration approach.

The method of quantization is based on the following idea. The fields
obtained from other fields through gauge transformation (e.g. /%M and

A/‘* + 3,_ hY in electrodynamics) describe the same physical (geometri-
cal) situation and are therefore physically indistinguishable. This leads
to an idea that the classes of those fields which can be obtained from
other fields through gauge transformations should be the basic objects of
the theory. In such a way all fields of the type o 4.%ﬁ )\ are unified
into one class.

The action in the gauge field theory is the same for all fields obtai-
ned through gauge transformations. In order words the action is a functio-
nal defined on classes.

In the functional integral formalism it is possible to obtain a theory
whose basic objects are classes if we can write down the functional integ-
ral as an integral over all classes. It can be accomplished, e.g. if the
integration is taken over the surface in the manifold of all fields whose
elements intersect each of the classes once. Then each class will have
exactly one representative on that surface. The integration measure ari-
ging on such surfaces changes with variation of the surface, but all phy-
sical results must be independent of the choice ofthe surface.

We now formulate the quantization scheme of gauge fields in the for-
malism of functional integration over all fields.

We shall denote the gauge fields by /Q s, its components /%f‘ s wWhe-

re M= c,1,2,3 is a space-time index, and A is an isotopic index
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The gauge group is a direct product of the groups Go , operating at

every point X of gspace-time

Q = E‘Cctm (2.21)

Let Q be an element of the gauge group which is a function on \/L’
with functional values in Gc . We denote /—\ﬂ the result of action of
the element L) on the field A . The set of fields AIL with A fixed,
NOA ranning through gauge group G is called the gauge group orbit.

We have seen that quantization of a field with action S leads to
averaging exp ¢ S over all fields. In the theory of gauge fields the ac-

tion SLA] is gauge invariant, i.e.
SRS NeX s I

CLAT] = SLA] (2.22)

The measure in the functional integral exhibit the property of gauge inva-

J/‘\ [AT] = ‘//* [A] (2.23)

as well as the action S [A] . The invariance of action S [}-]] and the
measure c‘//\,. [ A7) with respect to gauge transformations A - A impli-

es that the corresponding functional integral

'(@(_P(S"[A] c//w[/%] (2.24)

becomes propertienal to the "orbit volume" i.e. to the functional integ-

g \]A-ﬂ x) (2.25)

over gauge group C . Here ﬂx A_Q (x) 1s an invariant measure on group

ral

G which is equal to the product of measures on GG s, operating at eve-
ry point of space-time V., .

The approach to the integration over classes consists of the explicit
factorization of that factor from the functional integral. Such a factori-
zation can be realized by several methods.

One of them consists of the transition from integral (2.24) over all

fields to the integral over the surface in the manifold of all fields,

whose elements intersect with each of the gauge-group orbits just once.
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Let the equation of the surface be

fary=o (2.26)
The equation f(An)=O should have a unique solution with respect to
L26xy for any Aflxy .
We introduce the functional A{_ [A] defined by the condition

i Vi C 2R
A{LA] S‘HJ\(-f(A (K)))P[-Q(X) = 1 (2.27)
X
Here the integration is carried out over gauge group Q of the infinite
nensional d-unction [1,8(§ (A™ § -tunction 1
dimensional C-function ﬂx ( A ("’)) . Such a O -function is a func-
tional defined by the specification of the rules for its integration with
other functionals. In the following we shall demonstrate several specific
examples of the evaluation of integrals of type (2.27). Let us notice that

the functional A&[A] is gauge invariant, i.e.

A}_[A"'J—.: A,;[A] (2.28)
To factorize factor (2.25) from functional integral (2.20) we insert the
left hand side of (2.27) (which is equal to one) into the integral and make
the substitution A_QavA . The measure C//\q [ A7 and functionals
< [ATl, a¢ [A] ere invarient under such a substitution. Integral
(2.24) leads to the multiplication of the group's volume SHK dR (x)
by the integral

(exp(cS[AT) a5 [ATT] E(50A)) dp [ A] (2.29)

Just this integral provides a starting point for the quantum theory of
gauge fields.

It is easy to demonstrate that integral (2.29) formally depending
on the choice of the surface -g- (A) =0 , is in fact invariant with
respect to the choice of the surface. To prove it we insert into the integ-

rand (2.29) "another unit element"
~ A2 '
{ = A%[Ajgﬂé (3 (A" ) d 200 (2.30)

where 3(A ) = 0 is an equation of another surface which, like the surfa-
ce f[A) =0 , intersects each of the orbits of group G only once.

Interchanging the integration over A and ) , performing then the
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o
shift A - A and finally interchanging esgain the integration over A
and ) we can express integral (2.29) as

V(W((S[A]) Ag[A] [18(4()) dm [A] (2.31)

The method described allows one to pass in the functional integral
from one surface to another or, we can say, from one gauge to another.
Especially, such a method is suitable for the transition from the Hamilto-
nian form of the functional integral to the integral in the relativistic
gauge. There exists a method for the factorization of the volume of a gau-
ge group from the functional integral which is more general than the met-
hod just described. Let us take the functional F[A]which is not gauge

invariant. We define a gauge invariant functional :P[ A7) by the equation

bLA] SF[A‘”‘] dL 6y =4 (2.32)

It is necessary, however, to require that the functional on the l.h.s. of
(2.32) really exists. Inserting the l.h.s. of (2.32) into integral (2.34)
and then performing the shift An-*»/-\ we obtain the product of the group
volume (2.35) with the integral

g&x,a({,g[/-\]> 4)[A] F[A] J/-«[A] (2.33)

Integral (2.29) is a special case of (2.33). The independence of
integral (2.33) on the choice of functional F[A] can be proved in the
some way as the independence of integral (2.29) on the choice of the sur-
face {(A) =0.

In the theory of gauge fields Green's function is defined as an ex-~
pectation value of the product of field functions at different points of
space-time \/,1 . The generating functional of Green's functions has the

;orm

Zln] =

fexp{eSIAT +¢fqadx} FLAY $LAT dp A
§exp( STAY) FLATSIAT dr14]

where S[A] is the action of the field A , q’/«., [A] is the local

>(2.34)

gauge invariant measure, the functionals F and <b are defined above.

The linear functional
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g(Zz:(x\A:(x!)c/"x

i M
is denoted as jlz/-\ d"x , where 2"- (x) are arbitrary test functions.

(2.35)

Green's functions - functional derivatives of function (2.34) - depend on
the choice of gauge i.e., on the choice of the functional F [A] « Phy-
sical results, obtained by averaging gauge-invariant functionals, however,

do not depend on the choice of gauge.

LECTURE 3

Examples of gauge theories. Electrodynamics, Yang-Millsg field.

The simplest example of gauge field is electromagnetic field. The ac-

tion of a free electromagnetic field

2
S =~ %S\(Dﬁ'qv —DVA,«‘) C/(’x (3.1)

is invariant under the Abelian group of gauge transformations

' — (3.2
A/“(x) Aﬂli) + Qﬂk(x;, )

We have seen that the quantization of gauge fields is realized using the
functional integral of the functional d) F exP « S where § is the ac-
tion, ': is an arbitrary nongauge invariant functional, and 4)" is the
expectation value of F averaged over the gauge group. The local integra-
tion measure

dp[A] = JRACUAR (3.3)

X M=o

is evidently gauge invariant. Functionals of the type

Filal = NEGLAx).
x (3.4)

RIAT = MN&divAm)

x

A3 2 .
. - \(2.A) c["x)
RIa = exp (- 32 S04
turn out to be most convenient for the construction of the perturbation

theory. The functionals \"1 and F3 lead to an explicitly relativistic
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quantization and the use of FJ. is convenient when passing to the Hamilton
theory. The corresponding gauge invariant functionals are given by the for-

mulae

<|>1.1'[A] = S T;l J(‘Bﬂ (A,_‘+3/,>\)>di>\/x) )

(3.5)

b'[A] = Sﬂ Ddiv (X +F ) ddm) |

$.'[a] = gex,;(—iﬁf(% (A,,+3/,A))&o/"x) s,

All these functionals do not, in fact, depend on the field ’A/«/K’ sy s ¢
cen be seen if we perform the shift )\ -> )\- 1O 'd A in the first and third
functionals and >\—>r\ N L{H/A in the second one. Thus, with precision

up to an (infinite) constant factor we can take

P, = P, = $; =1 (3.6)

Now the form of functional integral is defined in all 3 cases. The use of
the functional Fl means the integration over the fields satisfying the

equation
—>
0[ w A =o (3.7)
This is a well-known Coulomb-gauge condition. We shall show how the integ-
ral with the functional FIL can be transformed into the integral of an
explicitly Hamilton type. Such a transformation is possible if the integ-

ral over auxiliary fields is introduced. In our case we are led to the

functional integral of the form

gedif (\g L-A,‘ , F !—] A\ L{l\/A/)()) nl{/" (X, ‘7 ,«\)/’() (3.8)

/\«v
Ly

with the action

g [A/H,F/\\l] = S(j‘-( l‘:/‘ﬂ/ Fp-v —_% l:/‘w (QPAV - ?V/"ﬁ)>ﬂux (3.9)
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depending not only on the vector A/« {(x) , but also on the antisymmetric

tensor F/\W(x\ « In the classical theory F' are the electromagnetic
My
field strengths:

= -2

F/qy 2/,, AV VA/-' (3-10)
Here we regard A My F/‘av as independent variables and integrate over
them as over independent variables. The integral over F,_W in (3.9) can

be evaluated exactly. To accomplish this it is sufficient to perform a

shift
F,_,, - F,w + 9/_ A, -9, A, (3.11)

which transforms integral over A,,_ (nto the PIO““C’: cf the integzafl
ovex /-\,‘ and the integral ovex Fp-u

flerp (4 Bt (IT] 45

X plv
which is just a normalization constant.

We rewrite action (3.9) using 3-dimensional notations

((BoR - 4 E e 4 n — (I 2etB) 4 p diuE)de, 019
where
E“ = Fol‘ , ’—{1 = F23 5 "IL: F34 > "l'}: F’l?_ (3.14)

—9
We shall integrate over H in (3.8). This leads to the substitution
— —_
H — et A in action (3.13). Then we integrate over A° s which

yields the functional

1 fdiv E ) (3.15)

We obtain the integral
- - . 3 .
gexpﬁ‘ SLA, EJ) N i A ’XJ)J\(JFVE(X))ﬂJA;(xldE(’x) (3.16)
X (=

with a Hamiltonian-type-action

I(Eb?oﬁ—éfz— é(ut/.r)l)a/"x (3.17)
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Integral (3.16) is an analog of integrals considered in Lecture 1
when we quantized finite-dimensional systems with constraints. Here the
role of the constraint is played by divf:’, the role of the additional con-
dition by the Coulomb gauge equation (3.7). It is possible to use the tran-
sverse (in the 3-dimensionsal sense) components of vectors K and E as
independent variables.

The Lagrangian of spinorial quantum electrodynamics

Lf(x ( ?f,, (9 —¢eA,gx) ) fix) — Z’ (PﬂAV(x) -E)V/%),,/x;))‘)(an)

where b’ are Dirac matrices, also contains besides the electromagnetic
potential A (x| , the four-component spinors kf/x) ‘f (x) , descri-
bing the Fermi electron-positron field. Lagrangian (3.18) is invariant un-

der the Abelian group of gauge transformations
, ehx) - —  -e\)
- - e (
A,,/X\ /;’,g‘(x)‘.*a/‘}\ (x), tf'(xl e Foo, Y ixis e (3.19)

In the functional integration scheme we shall consider the components
of spinors %(x) R ?4(’() to be anticommuting elements of Grassmann al-

gebra and we shall integrate exp iS with the measure
FLA] ﬂ”lm,«(*)ﬂl(‘f—& (’”"/% (xy = F l_l‘{/‘)’/“fj‘/% (3.20)
X M ol X

Here F is equal to F,. or F). or W .

The form of Green's functions depends on the choice of functional

F[A] , but all the physical results do not depend on the gauge condi-

tion.

The theory of Yang-Mills fields is the simplest example of the theory
with a nonabelian gauge groupl 3]

The vector Yang-Mills field, connected with simple compact Lie group
C can be described by matrices B" (x ) acquiring values in the Lie al-
gebra of that group

B (x)y = Zerq(”“_‘l, (3.21)

M a =1

Here Ta. are linear independent matrices in the adjoint representation of
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the Lie algebra, normalized by the conditions

Vet = - 244, ’ (3.22)
. is the number of group parameters, éLQ(K) is a C -number function
with the vector index /M and the "isotopic"index @ . As is well known,

in the adjoint representation it is possible to use the latter index for

the enumeration of metrix elements, so that

(E%“>ag = (Te)ge é; = e g; ’ (3.23)

where ‘fagc are group-structure constants, antisymmetric in all three
indices.

The Lagrangian of the Yang-Mills field

%»fri Fao Frv (3.24)

where

F, =28 -2 B, + e[ RB. B (3.25)

MV /~

is invariant under the gauge transformations

-4 -1
B = (3.26)
— y
B.- QB Q" + 3.0 0
with the matrix _§2_ acting in the adjoint representation of the group.
The analogues of the functionals F~[/\], ugsed above for quantum

electrodynamics, are suitable also for quantization of Yang-Mills field.

Now they have the form

Flel = Nd0.8 ) = 1503 8%))

Flel = (18w Bm) = 7 809, g'am))
% X,&

(3.27)
LB = exp (3 J 20087 4% -

= exp (-— .Z;; Sg(‘})ﬁ&q)zal‘!x)
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Here, the functionals F‘ and Fl select among all fields, those satisfy-

ing the conditions

{, 18] = 9, B.=0 {ox F, ; § [B] —div B =0 Sov F,(3-28)

Each of these equations is a matrix equation and in fact it represents
additional conditions (according to the number of parameters of the group
Go.

The factor d>1 , corresponding to the functional F1 , will be de-
noted by AL « In the functional integral, this factor stands before
the (S ~function of D/- B/-. and it is therefore sufficient to know its
values only for the transverse fields ( 9,1 Bﬁ =0) . In such a case,

the whole contribution to the integral
-1 0 )
A [B] = gﬂ J(3, B 0) dLLix) (3.29)
X
comes from a neighbourhood at the unit element. Here the substitution

Dx)y = | + & wexy (3.30)
can be performed ( L(('x) is an element of the Lie algebra) and only the

terms linear in [ remain in

-(L jpend ' 3 | p—
9/1 B. = Qﬁ (B. + ¢ [u,B.] +ou) = s

= du - ¢ [Bﬁ")ﬁu]/

A

where 1) = Ao is the d'Alambert operator. Instead of the matrices U (x)

we introduce the column

n
Wy = D Ta Uqtx) (3.32)
a=j

A
which the operator A acts on according to the rule

A

Aw), = (Ou —€LB 3u]), = (O de - €(B)c? )y

= DUg — ¢ taee g,« 9/“‘%



-22 -

Integral (3.29) can be written as

8, [8] = gﬂg(@“)a)ﬂluaw) (3.34)

Formally AL[B] is the determinant of the operator A . Putting out
the trivial (infinite) factor det [J it is possible to expand the loga-

rithm AL into series in g :

bon,[B] = badet A/A, = T b (1-e0'BI.) =

°oQ £"' ™ [«
_ Z-? S[l X,~ _‘,J Xh '('/‘L(B,“' (X'q) RN B/“'h(x”)) x (3.35)
n=2

<3, Dlx-xa)- - 9, D(Xu-xs)

D(x‘)is the Green's function of the d'Alambert operator [J . T’z in
(3.35) means the trace in an operator sence in contradistinction to t~ -
the trace of a matrix.

The corresponding factor in the Coulomb gauge is denoted by AIZ .

Anslogous evaluation leads to the formula
o0l = Tob (1-¢a'Bo) =

©Q

i-—: dw, . d', f"L(Bc,“«) .- B.-,. (xa)) x (3.36)
n=2

x 0. Dti-x3) ... 9 DU-xq)
ty (n

where
~ 1 KX -
t J__'.(. e = — &) (417 !
(x) = — — —2 ° n )
y K (3.37)
)
The indices (y,- ,(n in (3.36) acquire the values 1, 2, 3.

It is not difficult to construct the perturbation theory in the Lo-

rentz gauge Dﬁ, B,H =0 , It arises as a result of the expansion of the
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functional

A, [8exp(¢S[B]) = exp(:SIB] + tun, [B]) (3.38)

into geries in € . The expression éL¢gL may be interpreted as an addi-
tion to the action S; « The term of n-th order in the expansion of 61 AL
into series in & 1leads to the diagram vertex with | outgoing lines.
The explicit expression for this term, which follows from (3.35), suggests
its interpretation as a circle with K. outgoing lines along which the
ghost scalar particle propagates. This statement can be interpreted exact-
ly if we write down the determinant as an integral over the anticommuting

variables

det (O- ¢ EQ,?A ) =

. - . i —a a (3.40)
= gexp((‘SL(B,,,“L,“z)J“X) Havlz odqto)
where
L[B,«,i»'?] = %h‘?(ﬂ— £ B*Dﬁ)? -
(3.41)

— "-Z-q DV( -~ € taec é«c ?‘19/1,2—3

Formula (3.40) is an infinite-dimensional integral of the (2 1?) type.

S0, oub system can be looked upon as a system of Bose fields é;“fx)
interacting with each other and with scalar Fermi fields Qflfx)) i‘l(r)_

The elements of the diagram technique in the Yang-Mills theory are
lines of two types, corresponding to the transverse vector and ghost sca-
lar particles, and also the vertices describing the interaction of vector
particles with the scalar ones and with each other.

We shall represent the vector particles with solid lines and the ghost

particles with dashed lines. The elements of the diagrams are the lines

and vertices of the form

ra P vE

p— — —— o m— -

vy
G, (P G p
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p,vE€ P:ra pyy € , P8
Pr h& — P ’
M T
Pifc P.v4 Pu<d o ¢
I3 (3.42)
\/ﬁe( a@ca’ \/Qe(
/‘,Vf M Vfg /°
The expressions of the diagram elements (3.42) are
(:aé 2 -2
v (P) = T 0Oa¢ (Pl‘s\/av‘ljf.f)v) (P +00) )
' . -
G (p = = &e Cprra”
a € .
rp = CE tiee (p, 9” = Py I, ) (3.43)

abd
= ¢* tage tede (é;«f ‘Pvé - J/Lé J\VJ’ );

/«VfG
a éc ce ¢ ( p
- — a é¢ l1'Pl)

To find the contribution of a given diagram it is necessary to integ-
rate over independent 4-momenta the product of expressions which correspond

to all its elements, sum over all independent discrete indices and multip-

ly the result by
b-v-q

' S
-1 ( _
T ( —l,> -2) (3.44)

@)
where V is the number of diagram vertices, Z is the number of its in-

ternal lines, S 1s the number of closed loops of ghost scalar particles

and T is the order of the symmetry group of the diagram. Let us remark
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that € -v-{= C is the number of independent contours of the diagram.
This perturbation theory is not the only possible one. Another form
of perturbation theory and diagram technique emerges in the so-called
first order formalism. This formalism can be obtained if Lagrangian (3.24)
is written as
~itf Rt Lt E (%8 -2,B +<LB BT

v pmv (3-45)

and the integration over B,.,‘ . F,w

performed. The expression "first order formalism" means that the symbol

as over independent variables is

of the derivative enters Lagrangian (3.45) in an order not higher than
the first.

Using the Lorentz gauge we obtain the functional integral of the form
(exp(iSte,71) 2,18] 186, 8) dB4F (516
X 2
where the expression

AB/X»JF/’M = ﬂ ﬂt{‘if(’”ﬂ‘{fﬁ,”‘) (3.47)
“ M

as well as c’B(x) y 1s gauge invariant.
The formalism of the first order is convenient for the passage to
the canonical quantization. We shall examine such a transition starting

from the integral oveerFﬁvin the Coulomb gauge
Sex’a((g):B,F] ) 8, [R] \:\ﬂwfv B)dBAF (3.48)

In 3-dimensional notation Lagrangian (3.45) acquires the form

tr (-

Foe P + 4 Fo Foy # 4 Fie (%8, -2,8, +£ [8,,8.])

1 4
8 ‘e Tk Y

‘;-.Lo“ao B" - ';‘ Bc (34',—:0/' - & [B")FO“] )) (3.49)
We can integrate over I%c s Ft'n . Integration over Bo is equivalent

to the appearance of op -functional

[ 180 R €8, F1) (3.50)

X
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The integration over F:.K reduces to the replacement F‘,K by

H =2.8 -2 8, +¢ [B, B] (3.51)

in the integral over the remaining variables B. , ‘:o.’

(R18

We shall insert into the integral (3.48) the factor

gn (F(AC-(-Q‘ (:Q.-)CIC(’X) (3.52)
x
which in fact foes not depend on Fo" » and then perform the shift
For = Fou — 2, C . The functional || d (6C +9,F,, )is

transformed into '\_l‘ J‘(?. Fo()and the functional ﬂx 8 { 9( Fc‘- - [13‘.,&‘ )
into the expression nx Hlac - 3| Fep —€ [8'.’3'C] + €[RB, . Ferl),

which is equal to 'ﬂ‘ Siae - ¢ [B,,9,¢1 + €[RB,, Fo]) aue to
P Fei=o,

Let C,(x) be a solution of the equation
AC-¢[B 9 ¢l = -¢[B, ol (3.53)

which can be expressed in terms of the Green's function depending on B :
3
C,(x) = —¢ SD(X”’B) [83*/), FOL(WJA y (3.54)

After the shift C —> C + C, the functional ﬂ,(c?(bf - ¢[R,,3¢])
originates and the function ( /x) can be put equal to zero everywhere ex-

cept in the argument of the c? ~functional. The integral
X

cancels with the factor ARIBJ. As a result, functional (3.45) takes the

form

S'EKP (¢SI8, Forl) \] d(3,8,) (3 F,) Y:"{B.“"FO«' , (3.56)

where

SIB, Fl = S‘[IXO(S‘{OQ{ % é?"’a" - H) (3.57)
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WL 1 £ (2 { 4 a
H:gA ’((T,Lin Lf& + 2{.04 50(‘ + ‘z 9/ (G 9[( o) (3.58)
In those formulae S[B, , Fo(] is the action corresponding to the Hamil-

tonian H , Where the transverse fields g( s

{cl\ have the meaning of
canonically conjugated coordinates and momenta.

As we have shown above, the functional integration over canonically
conjugated coordinates and momenta is equivalent to the canonical quantiza-
tion. When the canonical quantization is applied to the system described
by Hamiltonian (3.58), it results in the replacement of functions 6-Q s

e {
‘Sﬂj through which h

C% are expressed, by operators é‘a X )
w 5 o P » by op NESE

A

g e(;;")satisfying commutation relations
o
)
A A .
a - e _, . R R
[en'(X));cJ(\/)] = aéé\“)-(x 9 ) =

WR-D) (3.59)

Hamiltonian (3.58) becomes a self-conjugated and positive definite
energy operator. Such a quantization of the Yang-Mills field has been sug-
gested by Schwinger[s]lt has been shown how the functional integral forma-
lism leads to Schwinger's canonical quantization. Let us emphasise that
the existence of the factor AR [B] in the original integral (3.48) is

important in bringing the integral to an explicitly Hamiltonian form.

LECTURE 4
Electroweak Interactions , QCD, Extended Objecfs > Anoma é)"e-’"

Yang~-Mills field theory discussed above is a fundament for construc-
tion more realistic nonabelian gauge theories which can be applied to the
real high energy physics. Historically the first such theory was the Wein-
berg-Sala,m (W.S.) model of electroweak interactions.

The main idea of W.S. model is the spontaneous breaking of the origi-

nal invariance with respect to the gauge transformation of massless vector
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fields of the Yang-Mills type. The gauge group of the model is group L((l)
This group is isomorphic to the group of 2x2 unitary matrices and equal to
the product of the L{(?) group of phase transformations and the group of
2x2 unitary matrices with unit determinant.
The connection generated by group L{(Q) consists of two types of

vector fieldsszaé?f Ee! ;%i&}f multiplet /%:L ( Q<=1,2,3)and the field

'g . Besides these fieldsNthat induce the spontaneous symmetry breaking
of the L{{z) gauge invariance. The lepton fields involved in the W.S.mo-
del are the electron-type fields

[=i'(7+fs)(\$) R=301r) %, (4.1)
e

where 4@. is the electron field and V, is the electron neutrino field.

The scalar fields form the doublet

P = ( Y{l) (4.2)

The Lagrangian of the model is
I
L: ‘711 (9,«/‘)\/ ‘av/“)ﬁ +9[AN,AV]) - 1{,’ (9,48, —2\/ 8,.)1-

_ EXM(Q/«“‘@,BP)R _ LX’”/Q,.‘r"%%A,f%L' ﬁ'gﬁ)L )

, wond =
~1(%¢ - T AL 9By -

G (Lgp cRGL) -RI AT
(4.3)

where g ,ﬁf are the coupling constants of the multiplet /Qh and singlet
B{q respectively.
The mechanism of spontaneous symmetry breaking and mass generation,
which was first proposed by Higgs, is based on the appearance of the ano-

malous average value

>\ - (LP") (4.4)
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of the zeroth component of the ‘70 field. Such a mechanism is a well-known
in the superfluidity theory. Let us proceed from the original fields to
the "physical" ones substracting from the $0 fields their anomalous ave-

rage values. For the physical fields we take the Lf field and

¢ = (¢°+ P -20)A2 fo= (7= §°)/n (4.5)

>

In the first order of the perturbation theory the quantity ",\ is determi-
2 . 2 2

ned by the minimum of the expression - M,  (Y*¥ )" + hip*¢) sup-

posing that ‘]0“: N, P =0 . This leads to

2= M, /2h (4.6)

After these operations the ‘701 fields acquire the mass M,, and fields

‘f’l’ \P“ remain massless. The appearance of massless excitations in models
with spontaneous symmetry breaking was discovered by Goldstone. In this
case, however, the excitations have no immediate physical meaning and can
be removed by a gauge U (2) transformation.

The mass of the tﬂ meson appears to be too large (compared to the ele-
ctron mass me) and that is why the coupling of (f to other fields may be
neglected.

Eventually it became obvious that the effect of the appearance of
enomalous value (4.4) can be reduced in the first order to the substitu-
tion of the \f) field by its vacuum expectation value

<y>= x (1) (4.7)

(4]

By this substitution Lagrangian (4.3) transforms to

-17 (3% Ay =3, A, + 9 [N, A1)" - L (3.8 -2,8)
~RY¥(%-§'8)R - L y~(2 + GTAS-13'8)L (4.8)

2 2 f z -
—§A‘5"((/-),1)1+(A,f) ) - ¥ (34+9'8) -G, %
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The electron acquires the mass

Mg = X G, (4.9)

The charged vector field

W, = 2% (A.+(AD)

J (4.10)

describes an intermediate boson with the mass

M, = 24 (4.11)

2

3
From the neutral fields A, , B the combinations

Z

~1. 3 i
= (8 ) (34 +9'B)

]

(4.12)
) - 3
A= (579" (44 r358.)
with the masses
o I IPINY _
Mz. - i’A (9 +? ) > MA = o (4.13)

can be formed. In this way, one component of the vector field multiplet
has zero mass and it is therefore considered to be the photon field.

The interaction term of lepton and vector fields can be written as

9 eyvw, o+ 193 dy oA, 4
202 ¢ : a (9L+‘312},/L €O le —)ﬁ

(4.14)
N ST Y WL ST R — —
i - ) r ) .
« ((§+9") [%_(__ﬁz___?T Yo¥. % - fe ¥ te +V Xh(uys)y} 2
4 914
The second term in (4.14) implies that the electron charge e is
e — 9%1 ( 9z+6,1)-uz (4.15)

and is therefore smaller that any of the two original charges % » 9 /.
Supposing that \/\//“ is, as usual, coupled to hadrons and to a muon we ob-

tain
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~ 3* 1
- = X (4.16)
Gz = 35 RS

It follows from (4.12) and (4.16) that masses of intermediate bosons are

very large
M2 > 880 Gev | M, > Yo Cev (4.17)

compared not only to the electron mass but also to the hadron masses.

Nevertheless, such intermediate bosons were observed experimentally
on the GERN collider, as well as the neutral currents, representing the
other prediction of the W.S. model.

Strong interactions also can be included into the scheme of gauge theo-
ries. The best candidate for the theory of strong interactions is quantum
chromodynamics (Q C D . The main idea is that any strong interacting
fermion (hadron) congists of 3 other fermions (quarks) which a described
by the fundamental representation of SY/(('&)L "colour" group, and also un-~
der the "flevor" group C:;, so the full gauge group is the product S]((gkx
K\(;;' . The QCD Legrangien

At = Fln(d-€8) - m)y (4.19)

is invariant under the gauge transformations of the type of (3.26), where
VP is & quark spinor field, which has spinorial indices « and also
isotopic indices.

Such a Lagrangian describes satisfactorily high energy strong interac-
tion procegses. The main problem is how to deal with the low energy inte-
ractions, for example, how to evaluate masses of strong interacting par-
ticles and low energy scattering amplitudes. The hypothesis of guark con-
finement explains why quarks can be observed only in hadrons, but not se-
parately. This hypothesis can be justified in 3-dimensional field theories,
but not in the real 4-dimensional case.

Another hypothesis in QCD is that of quark and gluon condensates. It
states, that there exsist the "anomalous averages".

£y ¥> quark condensate

< F ,? v F:,, > gluon condensate (4419)
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This supposition allows to move to the quantative description of strong
interactions. Here I am not going to dwell on this subject.

At the conlusion let me touch two more aspects of gauge theories. The
first one is the presence of extendend objects in gauge theories. These
objects are connected with nontrivial clasgsical solutions of the field
equations. In the functional integral formalism we have to integrate over
fields, which are "close" to some classical solutions. May be the most
famous of such solutions is the Polyakov - t'Hoq;tmonopole, which exists
in the theory of the Yang-lills field é;? s interacting scalar isotopic

field ?&_ o The action of such a system is

-3g[%(%% T IRAL D RN 3 fa + g (%‘f’qz)z]f/"x

v . : , £ 5¢ |2
—lSZ_(Q/“ét‘/ - ak,egf‘ + € &qae gﬂ 2 ) dx ( (4.20)
2
R
We can look for a solution of the form
qQ -
P (x) = Xg U) ™" € (xi= € ¢ X () - €% ") (.2n)

It can be shown that this solution has a finite energy functional and con-
sequently can be treated as a new particle[s,éj

The other interesting solution is the so called ingtanton, which is
the solution of the Yang-Mills field equations in the euclidean space with
a finite action functional. Such field configuration gives a contribution
when performing functional integration over Yang-Mills fields.

Attempts to find out other more realistic field theoretical models with
vortex—line solutions belong to very actual problems. It is not excluded
that the key to the construction of a successive strong interaction theory
lies just on that path.

The last thing I should like to touch in these lectures is theyt%ﬁo-
maly". Anomalies were invented by Adler)Bardeen, Gross, and Jackiwés Recent-
ly a new approach to the anomalies was sugfested by L.D.Faddeev and S.L.
Shatashvili.[10]

Let us consider Lagrangian, describing left fermions interacting the

Yang-Mills field /q ( /q are matrices in the Lie algebra).



L= ¢y (3, +i(1-vo)A) ¥ (4.22)

This Lagrangian is invariant under gauge transformations
A AQ + 200 ¢ - 7Ty (4.23)
But, as it is well-known, the functional integral
Z[A] = S‘,D?lf exp ((j‘l_d"x ) (4.24)
is not gauge invariant, i.e. 2 | AT ] = Z2IA7.

In order to charactirize the behaviour of Z [/3] more p-ecisely,

let us introduce the generators of infinitezimaol gauge transformations

atc g4 &
Te-g. i - oL, e“nf )

Vr SAceo T Nt IpR .
i ! (4.25)
These operators obey the commutation relations
—Q 4 4€
[T (x), Ttv1] = TSy $lx-v (4.26)

The calculations which were performed by Bardeen, Gross and Jackiw show,

that

T4 ZLAY = (U 2 (A (4.27)

q
where b(q(Yl are polinomialson AL,(ﬁ) and its derivatives.

It is not difficult to show the following relation
a, ¢ ¢ U1 = 28 Cogy Pl xmn
Ty Uby) = T UNxT = €7 LSy dx-v) (4.28)

This is the so called Well-Zumino consistency condition.

Let us introduce operators
a, —4q . 4
)( (x) = [ (x) +p U7 (4.29)

where M are real. We have

— ¢
[ X% x8n] = tage X 00 dxey, (4.30)
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We can say that the operators )(q(i ) give us some new representation
of gauge group. Formula (4.27) implies that ZIH] is invariant under
this new representation, if we put M =-1.

These results imply the interpretation of the anomaly as the infini-
tezimal 1-cocycle. It is not suprising that it can be expressed via geo-

metrical constructions such as the second Chern-~Simons class.
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