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Abstract

We explore models with additional right-handed gauge bosons that couple predominantly to the

third generation in the context of bb̄ production at LEP. In particular we investigate potential new

contributions to δgRb that are needed if the measured Ab
FB at the Z peak is interpreted as a signal

of new physics. We identify two sources of large δgRb corrections: Z −Z ′ mixing at tree-level, and

one-loop effects from a new SUR(2) triplet of gauge bosons. We find that the latter can contribute

to δgRb at the 1%-level. We place bounds on the mass of the additional Z ′ gauge boson that occurs

in these models using the Rb measurements from LEP-II. We find that even in cases where the Z ′

couples almost exclusively to the b and t-quarks, masses lighter than about 500 GeV are already

excluded.
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I. INTRODUCTION

The precision measurements at the Z resonance continue to exhibit a deviation from the

standard model in the observable Ab
FB by about −3.2 standard deviations [1, 2]. At the

same time Rb deviates from the standard model by only 1.4 standard deviations [2]. It

has been pointed out by Chanowitz [3, 4] that the deviation in Ab
FB presents a problem

for the standard model whether it is genuine or not. In particular, Chanowitz argues that

if the anomaly in Ab
FB is attributed to systematic error and dropped from the LEP fits,

then the indirect determination of the Higgs mass is in conflict with the direct limit [3, 4].

One possible interpretation of this result is that there is new physics associated with the

Zbb̄ couplings, and we explore this possibility in the context of non-universal right-handed

interactions.

We adopt the following notation for the effective couplings between the Z-boson and the

b and t quarks,

L = − g

2 cos θW

f̄γµ [(gLf + δgLf)PL + (gRf + δgRf )PR] fZµ, (1)

with PL,R = (1 ∓ γ5)/2, and tree-level standard model couplings gLf and gRf as in the

Appendix. In terms of these effective couplings, the results in Ref.[1] suggest that new

physics could be responsible for as much as δgRb ∼ 0.04, δgLb ∼ 0.004 . At the same time,

new physics contributions to the τ -lepton couplings are constrained to be at most at the

0.001 level.

Several discussions of new physics effects regarding Ab
FB or Rb have appeared in the

literature. Among them: light SUSY partners [5]; quark mixing with new fermions [6, 7, 8, 9];

top-color [10, 11, 12]; top-flavor [13, 14, 15, 16]; and non-universal left-right models [17]. Our

goal in this paper is to extend our results in Ref. [17] by computing the dominant one-loop

effects to δgRb, and by using the LEP-II data on e+e− → bb̄ to constrain the mass of the

new gauge bosons.

In the standard model the one-loop corrections to δgLb that are proportional to M2
t

are approximately 0.006 [18]. We can use this result as a benchmark for δgRb from new

physics, suggesting that if it is to occur at one-loop there must be an enhancement relative

to the standard model electroweak corrections. This is precisely what can occur in models

such as those we discussed in Ref. [17], where the coupling strength of the new right-handed
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interaction, gR, is significantly larger than the SU(2)L coupling gL. In this paper we calculate

these corrections in a simple case and find that δgRb from one-loop effects can be 1%.

Our paper is organized as follows. In Section II we describe models with additional

right-handed gauge bosons that could change the value δgRb significantly while respecting

other phenomenological constraints. In particular we discuss several ways in which the

predominant effects occur for the b and t-quark couplings but not for the τ -lepton couplings

through Z − Z ′ mixing. In Section III we show how, even in the absence of Z − Z ′ mixing,

one-loop contributions to δgRb can occur at the 1%-level. In Section IV we present bounds

on the mass of the new gauge bosons from the process e+e− → bb̄ at LEP-II. We state our

conclusions in Section V and relegate some details to the Appendix.

II. NON-UNIVERSAL LEFT-RIGHT MODELS

The models to be discussed are variations of left-right models [19, 20] in which the

right-handed interactions single out the third generation. Our basic model was introduced

in Ref. [17] and we start by recalling its salient features. The gauge group of the model is

SU(3)×SU(2)L×SU(2)R×U(1)B−L with gauge couplings g3, gL, gR and g, respectively. The

model differs from other left-right models in the transformation properties of the fermions.

The first two generations are chosen to have the same transformation properties as in the

standard model with U(1)Y replaced by U(1)B−L,

QL = (3, 2, 1)(1/3), UR = (3, 1, 1)(4/3), DR = (3, 1, 1)(−2/3),

LL = (1, 2, 1)(−1), ER = (1, 1, 1)(−2). (2)

The numbers in the first parenthesis are the SU(3), SU(2)L and SU(2)R group represen-

tations respectively, and the number in the second parenthesis is the U(1)B−L charge.

The third generation is chosen to transform differently,

QL(3) = (3, 2, 1)(1/3), QR(3) = (3, 1, 2)(1/3),

LL(3) = (1, 2, 1)(−1), LR = (1, 1, 2)(−1). (3)

The above assignments are unusual compared with the conventional left-right model, but

they enhance the difference between the right handed couplings of the first two and the third

generations. This model is anomaly free.
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The correct symmetry breaking and mass generation of particles can be induced by the

vacuum expectation values of three Higgs representations: HR = (1, 1, 2)(−1), whose non-

zero vacuum expectation value (vev) vR breaks the group down to SU(3)×SU(2)×U(1); and

the two Higgs multiplets, HL = (1, 2, 1)(−1) and φ = (1, 2, 2)(0), which break the symmetry

to SU(3)×U(1)em. For the purpose of symmetry breaking, only one of HL or φ is sufficient,

but both are required to give masses to all fermions. It is possible to introduce additional

Higgs representations as mentioned in Ref. [17], but we will not do so in this paper.

The introduction of φ causes the standard model WL and Zo to mix with the new WR

and ZR gauge bosons. Here WR is the SU(2)R charged gauge boson and ZR is a linear

combination of the neutral component of the SU(2)R gauge boson W3R and the U(1)B−L

gauge boson B. Specifically,

Zo = cos θW W3L − sin θW cos θRB − sin θW sin θRW3R,

ZR = cos θRW3R − sin θRB, (4)

where tan θR = g/gR.

In the bases (WL, WR) and (Zo, ZR) for the massive gauge bosons, the mass matrices

were given in Ref. [17] and we reproduce them here for later convenience:

m2
11W =

1

2
g2

L(|vL|2 + |v1|2 + |v2|2), m2
22W =

1

2
g2

R(|vR|2 + |v1|2 + |v2|2),

m2
12W = −gLgRRe(v1v

∗
2), m2

11Z =
1

2

g2
L

cos2 θW

(|vL|2 + |v1|2 + |v2|2),

m2
22Z =

1

2

g2
R

cos2 θR

(|vL|2 sin4 θR + (|v1|2 + |v2|2) cos4 θR + |vR|2),

m2
12Z =

1

4
gLgR

sin θR

cos θW

(|vL|2 tan θR − (|v1|2 + |v2|2) cot θR)). (5)

After diagonalization of the mass-squared matrices, the lighter and heavier mass eigen-

states (Z, Z ′) and (W, W ′) are given by







W

W ′





 =







cos ξW sin ξW

− sin ξW cos ξW













WL

WR





 ,







Z

Z ′





 =







cos ξZ sin ξZ

− sin ξZ cos ξZ













Zo

ZR





 , (6)

where ξZ,W are the mixing angles,

tan(2ξW,Z) =
2m2

12(W,Z)

m2
11(Z,W ) − m2

22(Z,W )

. (7)
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In this model there are new interactions between the massive gauge bosons and quarks.

For the charged current interaction, there are both left and right handed interactions. In

the weak eigenstate basis, the charged gauge boson, WL, couples to all generations, but

the charged gauge boson, WR, only couples to the third generation. There is a similar

pattern for the neutral gauge interactions. This pattern gives rise to interactions between

the fermions and the lightest physical gauge bosons that can be made to resemble the

standard model couplings plus enhanced right-handed couplings for the third generation. In

the mass eigenstate basis the quark-gauge-boson interactions are given by,

LW = − gL√
2
ŪLγµVKMDL(cos ξWW+

µ − sin ξWW
′+
µ )

− gR√
2
ūRiγ

µV u∗
RtiV

d
RbjdRj(sin ξWW+

µ + cos ξWW
′+
µ ) + h. c., (8)

where U = (u, c, t) and D = (d, s, b). VKM is the Kobayashi-Maskawa mixing matrix

and V u,d
Rij are unitary matrices which rotate the right handed quarks uRi and dRi from the

weak eigenstate basis to the mass eigenstate basis. The repeated indices i and j are summed

over three generations. For the neutral sector the couplings are,

LZ = − gL

2 cos θW

q̄γµ(gV − gAγ5)q(cos ξZZµ − sin ξZZ ′
µ)

+
gY

2
tan θR(

1

3
q̄LγµqL +

4

3
ūRiγ

µuRi −
2

3
d̄Riγ

µdRi)(sin ξZZµ + cos ξZZ ′
µ)

− gY

2
(tan θR + cot θR)(ūRiγ

µV u∗
RtiV

u
RtjuRj − d̄Riγ

µV d∗
RbiV

d
RbjdRj)(sin ξZZµ + cos ξZZ ′

µ).(9)

In this expression, gY = g cos θR = gR sin θR, q and qL are summed over u, d, c, s, t, b quarks,

and repeated i, j indices are summed over the three generations. The first line contains the

standard model couplings to the Z in the limit ξZ = 0. The first two lines also contain

couplings of the two Z bosons to quarks that arise through mixing of the neutral gauge

bosons.

Similarly, the couplings to leptons are given, in the weak eigenstate basis, by:

LZ(lepton) = − gL

2 cos θW

ℓ̄γµ(gV − gAγ5)ℓ(cos ξZZµ − sin ξZZ ′
µ)

+
gY

2
tan θR(−ℓ̄LγµℓL − 2ĒRiγ

µERi)(sin ξZZµ + cos ξZZ ′
µ)

− gY

2
(tan θR + cot θR)(ν̄Rτγ

µνRτ − τ̄RγµτR)(sin ξZZµ + cos ξZZ ′
µ). (10)

In this case, ℓ and ℓL are summed over e, µ, τ, νe, νµ, ντ and ER are summed over three

generations.
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The most interesting terms in Eqs. 9 and 10 occur in the third line and are potentially

large if cot θR is large. In the weak interaction basis they affect only the third generation

whereas in the mass eigenstate basis (as written in Eq. 9) they also give rise to flavor

changing neutral currents. To satisfy the severe constraints that exist on flavor changing

neutral currents we have to require that the V d
R and V u

R matrices be nearly diagonal.

In Ref. [17] we studied the case with ξZ 6= 0, in which Z−Z ′ mixing is responsible for the

shifts in the effective right-handed coupling of the b-quark. Within this scenario, the model

given above also induces large shifts in the right-handed coupling of the τ -lepton, making it

phenomenologically unacceptable. One finds for large cot θR[23],

δgRb ≈ − sin θW cot θRV d∗
RbbV

d
Rbb ξZ

δgRt ≈ sin θW cot θRV u∗
RttV

u
Rtt ξZ

δgRτ ≈ − sin θW cot θR ξZ . (11)

This last equation constrains the product cot θRξZ to be at the 10−3 level or less, whereas

one would need cot θRξZ ∼ 0.08 [17] to explain Ab
FB through this mechanism. Nevertheless,

there are several ways around this constraint. One possibility is to eliminate the relation

between the b-quark and τ -lepton couplings to the new gauge bosons. To maintain a model

that is anomaly free, this is accomplished by introducing additional fermions and can be

done in more than one way. Two examples are given below. A second possibility is to

require the Z −Z ′ mixing to be small (or zero) and in this way satisfy the constraints from

τ leptons. As we discuss in Section III, there is a second mechanism at the loop level by

which the model can induce significant shifts on δgRb and not on δgRτ .

We now discuss two ways to modify the model so that it remains anomaly free but does

not have enhanced couplings for the τ -lepton in the case of large cot θR

A. Modified lepton sector

In this first example we keep the quark sector as above but make some modifications to the

lepton content. The lepton sector consists of the usual three generations (all transforming

as in Eq. 2) plus

LR =







ν ′
R

e′R





 = (1, 1, 2)(−1), e′L = (1, 1, 1)(−2). (12)
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Compared with the particle content of Eq. 2 and 3, the net new particles are e′L and

ER(3). Their contributions to gauge anomaly cancel each other, and therefore the theory is

anomaly free.

The new particle e′ can be made heavy because HR provides its mass. The neutral new

particle ν ′
R can be made heavy by introducing a ∆R(1, 1, 3)(−2) Higgs representation with

large VEV. Therefore, at low energy one does not need to consider the effect of the new

fermions.

The couplings for the usual three generations of leptons become,

LZ(lepton) = − gL

2 cos θW

ℓ̄γµ(gV − gAγ5)ℓ(cos ξZZµ − sin ξZZ ′
µ)

+
gY

2
tan θR(−ℓ̄LγµℓL − 2ĒRiγ

µERi)(sin ξZZµ + cos ξZZ ′
µ). (13)

Once again ℓ and ℓL are summed over e, µ, τ, νe, νµ, ντ and ER is summed over three

generations. The couplings of the new leptons are

LZ(lepton) = − gR√
2
[ν̄ ′

Rγµe
′
RW µ

R + H.c.]

− gL

2 cos θW

(−2q sin2 θW )ē′γµe′(cos ξZZµ − sin ξZZ ′
µ)

+
gY

2
tan θR(−2ē′γµe′)(sin ξZZµ + cos ξZZ ′

µ)

− gY

2
(tan θR + cot θR)(ν̄ ′

Rγµν ′
R − ē′Rγµe′R)(sin ξZZµ + cos ξZZ ′

µ). (14)

B. Modified quark sector

In this case we have three generations of leptons transforming as in Eq. 2 with couplings

as in Eq. 13, and we introduce additional quarks to cancel the anomalies:

Q′
L =







u′
L

d′
L





 = (3, 1, 2)(1/3), u′
R = (3, 1, 1)(4/3), d′

R = (3, 1, 1)(−2/3). (15)

The usual three generations of quarks have the same quantum numbers as in Eqs. 2, 3 and

couplings as in Eqs. 8, 9. Again the above particle content gives a gauge anomaly free theory,

and the new particles can be made heavy because they receive their mass from the VEV of

HR. The new quarks have couplings,

LZ(quark) = − gL

2 cos θW

(−2q sin2 θW )q̄′γµq′(cos ξZZµ − sin ξZZ ′
µ)

7



+
gY

2
tan θR(

4

3
ū′γµu′ − 2

3
d̄′γµd′)(sin ξZZµ + cos ξZZ ′

µ)

− gY

2
(tan θR + cot θR)(ū′

Lγµu′
L − d̄′

Lγµd′
L)(sin ξZZµ + cos ξZZ ′

µ). (16)

C. Discussion

The previous two examples illustrate how it is possible to single out the b and t-quarks

with a new right-handed interaction without affecting the τ lepton very much. The price

paid is, of course, the introduction of additional fermions. The additional fermions can

be made heavy and this allows us to ignore them at this stage, where we are interested

only in the effect of potentially strong right-handed couplings of the b and t quarks in

LEP observables. The new heavy fermions are only used to illustrate that it is possible to

construct a renormalizable, anomaly free, model of this type.

The couplings of the b-quark to the new right-handed gauge bosons remain as in the

original model so that, according to Eq.11, we require ξZ cot θR ∼ 0.08 to explain Ab
FB [17]

through Z − Z ′ mixing. With cot θR large, the new physics effects mainly affect the third

generation of quarks; our model is in some sense “leptophobic”.

In Ref. [17], we pointed out that the process b → sγ severely constrains the mixing of

the charged gauge bosons ξW . This constraint is not in conflict with the mixing needed in

the neutral sector, ξZ , to fit Ab
FB as discussed in Ref. [17]. Here we point out that there is

another way to obtain Eq. 11 without affecting b → sγ. This involves a new model in which

the SU(2)R is replaced by a U(1)R with up quarks (leptons) and down quarks (leptons) in

SU(2)R doublets carrying 1 and -1 of U(1)R charges, respectively. This model will also give

δgRb ∼ ξZ cot θR as in Eq. 11, but it now arises in the context of models where (a) there are

no large contributions to Z → τ+τ−, and (b) there are no new charged gauge bosons W ′, so

that there are no constraints from b → sγ. The contributions to the parameter T that occur

through mixing of the Z and Z ′ are identical to Ref. [17] and lead to the allowed region of

Figure 1 in that reference.

The most important new feature common to all the models that we have discussed is the

existence of a new Z ′ gauge boson which has enhanced couplings to top and bottom quarks

(and perhaps to the τ -lepton provided its mixing with the Z is sufficiently small). In Sec-

tion IV we explore the bounds that exist on the mass of this Z ′ from LEP-II measurements.
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III. ONE-LOOP CONTRIBUTIONS TO δgRb

In models like the ones presented in Section II, with a new SU(2)R gauge interaction, there

is a one-loop contribution to δgRb that is present even when there is no mixing. A priori we

can expect this contribution to be similar in size to the standard model contribution to δgLb

proportional to M2
t . One can imagine a suppression of the form (MW /MWR

)2 with respect to

the standard model δgLb, but this can be compensated by an enhancement (gR/gL)2 ∼ cot2 θR

in the right-handed gauge couplings.

It would be impossible to present a complete one-loop calculation for Z → bb̄ in the gen-

eral case of Section II because we do not have sufficient information at present to determine

all the parameters in those models. At the same time, we are interested in exploring the

idea of a potentially strong right-handed interaction affecting the b and t-quarks more than

we are interested in the specific details of the models in Section II. For this reason, we

consider a slightly simpler calculation that has the ingredients we need. First, we will only

concern ourselves with the one-loop corrections that are enhanced by (gR/gL)2 with respect

to one-loop electroweak corrections. Second, we will require that there be no Z − Z ′ nor

W −W ′ mixing in the model. Finally, we will treat all standard model fermions as massless

except for the top-quark.

A. Model with no tree-level mixing

To eliminate the tree-level mixing in the models of Section II in a simple manner we first

require v2 = 0 in Eq. 5. This immediately makes ξW = 0 and allows us to simplify the

notation by calling the remaining VEV in φ v ≡ v1. We further make ξZ = 0 at tree-level

by imposing the condition,

vL = v cot θR (17)

in Eq. 5. The parameter ξZ describing the Z − Z ′ mixing is the only one (beyond those

already appearing in the standard model) that enters the result for the Z → bb̄ partial width

at tree-level. As such, it is the only new parameter that needs to be defined at one-loop in

our calculation of Z → bb̄, and we will return to this point at the end of the section.

In the simplified model, the gauge boson masses become,

M2
W =

g2
L

2

(

v2
L + v2

)

=
g2

R

2 tan2 θW

v2 , M2
Z =

M2
W

cos2 θW

9



M2
WR

=
g2

R

2

(

v2
R + v2

)

, M2
ZR

=
g2

R

2

(

v2
R

cos2 θR

+ v2

)

(18)

so that MWR
≈ MZR

for large cot θR (and equal to MW ′ and MZ′
since in this case there

is no mixing). Recalling the relation, gR sin θR = gL tan θW , we see that this sector of the

model is characterized by the two ratios of vevs

vL

v
= cot θR ,

vR

v
≈ MWR

MW tan θW

(19)

where the last expression follows for vR/v >> 1. It will also be convenient to define xv =

v2/(v2 + v2
R).

In the approximation mb = 0, the Yukawa Lagrangian necessary to generate the top-quark

mass is given by,

LY = −κ
(

t̄L b̄L

)

φ







tR

bR





 + h.c. (20)

All the couplings in this Yukawa potential can thus be written in terms of mt and v as in

Eq. A4.

B. Loops with right-handed gauge bosons

We are ready to calculate the one-loop corrections to δgRb that are enhanced by cot2 θR.

We start by considering the diagrams in Figure 1 that do not involve scalar mesons in

the loop. We work in unitary gauge with the vertices given in the Appendix, and we use

dimensional regularization with the notation,

1

ǫ
=

2

4 − n
− γ + log(4π) − log µ2 . (21)

Relegating details for each diagram to the Appendix, we can write a simple analytical

result for the sum of the diagrams in Figure 1 in the limit MZ = 0,

(δgRb)GB =
g2

R

16π2

M2
t

M2
WR

1

4

(

1

ǫ
− 7

2
− log

(

M2
t

µ2

)

− 3 log

(

M2
t

M2
WR

))

(22)

Later on we will show numerical results for MZ 6= 0. Unlike the counterpart of this calcu-

lation in the standard model, Eq. 28, Eq. 22 is divergent. This indicates the presence of

additional contributions to this process in our model.
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b

c

a

FIG. 1: Unitary gauge Diagrams for Z → bb̄ that do not involve scalars.

There are two additional diagrams of the form of Figure 1 that give corrections to the

right-handed coupling and that are enhanced by g2
R. They look like the diagrams (b) and (c)

with an exchange of a ZR (and therefore b-quarks in the intermediate lines). Both of these

turn out to be finite and their finite parts precisely cancel each other out in the MZ = 0

limit.

C. Loops with Scalars

We consider next the contributions from diagrams in which scalars appear in the loops,

as in Figure 2.

The finite part that results from these diagrams is model dependent. In particular it

depends on the details of the scalar potential, which we have not specified, and which

determines the masses of the physical scalar and pseudo-scalar mesons present in the model.

We are only interested here in estimating the size of the vertex corrections in Figure 1, and

wish to consider the diagrams in Figure 2 only insofar as they are needed to render the result

finite. For this purpose it is sufficient to identify a basis for the scalars that is orthogonal

to the would-be-Goldstone bosons that give the gauge bosons their mass. We consider all

11



dc

ba

FIG. 2: Z → bb̄ one-loop diagrams involving scalars

physical scalars to be degenerate and to have a large mass, of order MWR
. With details

relegated to the Appendix, we find that the sum of these diagrams contributes the following

terms that are enhanced by cot2 θR,

(δgRb)S =
1

16π2

(

mt

v

)2 (

−1

2
xv(1 − xv)

)

(

1

ǫ
− log

(

M2
H

µ2

)

+
5

2

)

=
g2

R

16π2

M2
t

M2
WR

1

4

(

−1

ǫ
+ log

(

M2
H

µ2

)

− 5

2

)

(23)

Notice that the left-handed coupling δgLb does not receive corrections from the sum of

diagrams in Figure 2. With this result, Eq. 23, we find that the divergent terms precisely

cancel the left-over ones from the gauge boson sector in Eq. 22 leaving us with a finite

answer.

D. Renormalization and Z − Z ′ Mixing

Finally we comment on the renormalization scheme used. At tree level, the Z → bb̄ decay

width (or Ab
FB) takes the same value as in the standard model in the absence of Z − Z ′

mixing. We can therefore express it in terms of the input parameters GF , the physical Z mass

and α(MZ) as is usually done for the standard model case. It is clear from the vertices given

in the Appendix, Section A3, that none of these quantities receives one-loop corrections
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that are enhanced by cot2 θR. The only input parameter that receives enhanced corrections

is the Z − Z ′ mixing angle ξZ through diagrams such as those in Figure 3. These diagrams

(and a few others), have an enhancement of cot θR through the Z ′tt̄ or Z ′bb̄ coupling in

the first case and through the W+
R W−

R Z ′ coupling in the second case. When the Z ′ line is

connected to bb̄, a second cot θR factor is picked up leading to corrections in Z → bb̄ that

are enhanced by cot2 θR. In view of this, our simplest option is to adopt a renormalization

−
R

W

+
RW

RZZRZ
t, b

Z

FIG. 3: Z − Z ′ Mixing at one-loop

scheme in which ξZ ≡ 0 at one-loop. That is, we absorb the corrections from Figure 3 into

the definition of ξZ . This completes the discussion of all the one-loop corrections needed to

yield a finite δgRb and we now turn our attention to its possible size.

E. Numerical Results

Adding the results from all diagrams discussed above, we find in the MZ = 0 limit,

δgRb =
g2

R

16π2

M2
t

M2
WR

1

4

(

−6 + 3 log

(

M2
WR

M2
t

)

+ log

(

M2
H

M2
t

))

. (24)

To illustrate the magnitude of this correction consider the case,

cot θR =
vL

v
≈ vR

v
∼ 10 (25)

which implies
g2

R

M2
WR

≈ g2
L

M2
W

(26)

and therefore

δgRb =

√
2GF M2

t

8π2

(

−3 +
3

2
log

(

M2
WR

M2
t

)

+
1

2
log

(

M2
H

M2
t

))

. (27)
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This is to be compared with the corresponding correction to δgLb in the standard model

which is given by [18]

δgLb =

√
2GFM2

t

8π2
. (28)

This shows that with large cot θR as in Eq. 25, δgRb in our model is of the same order as the

one-loop correction to δgLb proportional to M2
t in the standard model.

In order to include kinematic effects from MZ 6= 0, we compute the integrals over Feynman

parameters numerically. It is convenient to present the result in the form

δgRb =

√
2GF M2

t

8π2
F1(MWR

) (29)

for the case g2
L/M2

W ≈ g2
R/M2

WR
. We show F1 in Figure 4 a. In the more general case it is

convenient to write

δgRb =
g2

R

32π2
F2(MWR

) (30)

and we show F2 in Figure 4 b. These results indicate that a contribution to δgRb at the %

400 450 500 550 600 650 700 750
1

1.5

2

2.5

3

F
1(M

W
/ )

(a)

400 450 500 550 600 650 700 750
M

W
/ (GeV)

0.12

0.15

0.18

0.21

0.24

F
2(M

W
/ )

(b)

FIG. 4: Form factors F1(MWR
) and F2(MWR

) evaluated numerically to include kinematic effects

from a non-zero MZ for fixed MH = 700 GeV.

level is possible in models with cot θR ∼ 10.
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IV. CONSTRAINTS FROM LEP-II

The mass of additional Z ′ gauge bosons that occur in many models is constrained to be

larger than about 500 GeV [2]. These bounds arise mostly from processes involving four

first or second generation fermions and do not apply to non-universal Z ′ gauge bosons that

couple strongly to third generation fermions but very weakly to first and second generation

fermions. Roughly speaking, when a Z ′ like this is exchanged in a process such as bb̄ → bb̄

it generates an amplitude of order electroweak strength times cot2 θR. For the models that

we have in mind cot θR ∼ 10 this can be a very significant enhancement. On the other hand

when the same Z ′ is exchanged between fermions of the first two generations, in processes

such as uū → uū, it generates an amplitude of electroweak strength times tan2 θR which is

drastically suppressed.

The best bounds one can have at present on such a Z ′ come from a process in which a

first or second generation fermion pair produces a bb̄ pair. Since bb̄ production in hadron

colliders is mostly a strong interaction process, the most promising reaction to constrain

our Z ′ is e+e− → bb̄ studied at LEP-II. Notice that for a process such as this one, the

exchange of a Z ′ results in a correction of electroweak strength, suppressed only by the mass

of the Z ′. The cross-section for this process is largely independent of the value of cot θR. At

leading order, cot θR only appears through the width of the Z ′ that one must include in the

propagator for s-channel exchange.

In this Section we use the LEP-II data on e+e− → bb̄ and e+e− → τ+τ− to constrain

the mass of these non-universal Z ′ gauge bosons. The calculation is performed numerically

using the program COMPHEP [21] with the following strategy. We use COMPHEP to

calculate tree level cross-sections for e+e− → f f̄ at LEP-II energy both for the standard

model and for the standard model plus the Z ′ of Section II. We then use these cross-sections

to construct the ratios Rb/(Rb)SM−tree and similarly for Ab
FB. We then compare these ratios

to the corresponding ratios (Rb)EXP /(Rb)SM where (Rb)EXP are the averages of LEP-II

measurements as reported in Ref. [1] and (Rb)SM is the full standard model expectation

computed with ZFITTER as reported in Table 8.7 of Ref. [1]. Schematically for the cross-

section,

σTheory

σSM

=
σSM−tree + σSM−loop + σZ′

σSM−tree + σSM−loop
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≈ σSM−tree + σZ′

σSM−tree

= 1 +
σZ′

σSM−tree

. (31)

In this way the error that results from our using only the tree-level result for the standard

model prediction from COMPHEP becomes higher order in our comparison with data.

In models with Z − Z ′ mixing, we need to remove the enhanced coupling Z ′τ+τ− as

discussed in the previous section. In that case the only relevant LEP-II process to bound

the Z ′ is e+e− → bb̄. There are two observables that can be used: Rb and Ab
FB. In Figure 5

we show Rb/(Rb)SM for different values of M ′
Z . In this figure we have assumed no mixing

(ξZ = 0) and used cot θR = 15 [24]. The LEP-II data points are shown with their 1-σ and

3-σ error bars. It is evident already from this figure that MZ′ will be constrained to be

larger than about 500 GeV.
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FIG. 5: Rb at LEP-II energies for cot θR = 15 with no Z − Z ′ mixing. The different curves

correspond to MZ′ of 300, 400, 500 and 600 GeV. The data points from Ref. [1] are shown with

their 1-σ and 3-σ error bars.

In Figure 6 we show similar results for the forward-backward asymmetry. It is evident

from this figure that Ab
FB does not constrain the Z ′ as much as Rb does due to its larger

experimental error (in this case we only show the 1-σ error-bars).

As discussed in Section II, it is possible to allow Z − Z ′ mixing in models where the

couplings to τ± are not enhanced. We illustrate the effect of including this mixing in Figure 7.
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FIG. 6: Same as Figure 5 for Ab
FB. Only the 1-σ error bars are shown for the data points from

Ref. [1].

For each value of MZ′, we have allowed ξZ to vary between zero and ξZ = ±0.08/ cot θR, the

value required to fit Ab
FB from LEP-I. We see that mixing is a small effect on Rb at LEP-II

energies.

In Figure 8 we illustrate the effect of varying cot θR and thus the Z ′ width for MZ′ =

400 GeV. We use values cot θR = 10, 15 and also show the result of approximating the Z ′

exchange with a contact interaction. The results illustrate that below the resonance, the

bound on the Z ′ mass becomes slightly tighter for narrower resonances (smaller cot θR). In

our model, the interference between Z and Z ′ exchange amplitudes is always constructive

in the energy region between the two resonances. The figure also illustrates that for a Z ′ as

light as 400 GeV, a contact interaction is a reasonable approximation for effects at LEP-II

energies. We shall use this later when comparing our bounds with those extracted by the

LEP-II analysis group for contact interactions.

To quantify the bounds on the Z ′ mass we construct a χ2 for a fit to LEP-II data with our

model. In Figure 9 we present this result after subtracting the χ2 from a standard model fit

(using the ZFITTER results quoted in Ref. [1]). Once again we show the three cases cot θR =

10, 15 and a contact interaction approximation. It is important to notice, for example in
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FIG. 7: Same as Figure 5 but allowing for Z−Z ′ mixing. The bands shown correspond to cot θRξz

ranging from 0 to ±0.08 with cot θR = 15. For each mass, the upper end of the band corresponds

to ξZ = −0.005 and the lower end of the band corresponds to ξZ = 0.005. Once again the data

points are from Ref. [1].

Figure 5, that the LEP-II data are consistently below the standard model prediction. This,

combined with the fact that the interference between the Z and Z ′ amplitudes in our model

is always constructive in this energy region, implies that the standard model is always a

better fit than any of our Z ′ models. If we require that the new model not deviate from the

standard model by 2(3) standard deviations, we can place the bounds MZ′ > 700(540) GeV

for cot θR = 15. Given that the LEP-II data is consistently below the standard model

expectation, it is conceivable that there is some common systematic error not accounted for

in the quoted error bars. To account for this possibility, we naively rescale the data by a

common factor in such a way as to minimize the χ2 of the standard model fit. Doing this

results in lower bounds on the Z ′ mass. For example, for cot θR = 10 the 2(3) sigma bounds

move from 780 (595) GeV to 530 (460) GeV.

We can also use the contact interaction approximation to bound the Z ′ mass. The
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FIG. 8: Cross-section for e+e− → bb̄ with MZ′ = 400 GeV for cot θR = 10, 15 and for a contact

interaction approximating the Z ′ exchange amplitude.
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correspondence to Table 8.12 of Ref.[1] is (for no mixing),

MZ′ =
√

η
gL tan θW

4
√

π
Λ (32)

Our model of Section II generates both a LR contact interaction with ηLR = 1 and a RR

contact interaction with ηRR = 2. For constructive interference we thus infer the 95%

confidence level bounds MZ′ > 544 GeV from the RR interaction and MZ′ > 275 GeV from

the LR interaction.

From all this we conclude that in all cases the Z ′ is already restricted to be heavier than

about 500 GeV by LEP-II data.

Finally, since models without mixing also allow large couplings to the τ -lepton, we show

in Figure 10 the cross-section for e+e− → τ+τ− at LEP-II. A calculation of the χ2 for the fit

in this case indicates that the bounds on the Z ′ mass are slightly higher than those obtained

from studying Rb, but not significantly so.
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FIG. 10: σ(e+e− → τ+τ−) for cot θR = 15. The data points are from Ref. [1].
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V. CONCLUSIONS

Motivated by the 3-σ discrepancy between the standard model prediction and the mea-

sured forward-backward asymmetry Ab
FB at the Z peak we have studied models which can

generate a sufficiently large δgRb through new non-universal right-handed gauge interactions.

One possible mechanism to generate this δgRb is the mixing of the Z with a Z ′. We

had already discussed a model like this in Ref. [17]. In this paper we have illustrated

several variations on that model that are also renormalizable and anomaly free. At the cost

of introducing additional fermions, we showed two models that produce the required δgRb

while satisfying the LEP constraints on δgRτ . We have also indicated how it is possible to

modify these models so that they are not constrained by b → sγ.

We have identified a second mechanism to generate δgRb even in cases with no Z − Z ′

mixing. This occurs in models with an SU(2)R triplet of gauge bosons at one-loop, and can

give rise to δgRb at the 1% level. By itself, this mechanism is not sufficient to explain the full

δgRb ∼ 0.04 favored by the data. The simple model used to illustrate this effect, provides

an example of a renormalizable model that can give rise to relatively large new interactions

involving only the b and t quarks while respecting low energy constraints.

Finally we have used the LEP-II data for the process e+e− → bb̄ to place bounds on the

mass of the Z ′ in our models. This is a Z ′ that couples weakly (by a factor tan θR ∼ 1/10

weaker than standard electroweak couplings) to fermions of the first two generations. For

this reason, standard bounds on Z ′ gauge bosons do not apply. We find that the LEP-II

data constrains it to be heavier than about 500 GeV in all cases.

The contribution of the new gauge bosons in our models to the process e+e− → bb̄, is

of electroweak strength because the enhancement in the Z ′bb̄ coupling is compensated by

the suppression in the Z ′e+e− coupling. In this way, our model is an example of a kind

of new interactions that will only show their full strength in processes involving four third

generation fermions. It may be possible for the LHC to study certain processes of this type,

and we are currently investigating this possibility.
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APPENDIX A: VERTICES AND ONE-LOOP RESULTS

1. Basic conventions

The general conventions adopted are:

gLt = 1 − 4

3
sin2 θW , gRt = −4

3
sin2 θW ,

gLb = −1 +
2

3
sin2 θW , gRb =

2

3
sin2 θW ,

Γµ = −i
g

2 cos θW

γµ ((gLb + δgLb)PL + (gRb + δgRb)PR)

1

ǫ
=

2

4 − n
− γ + log(4π) − log µ2 (A1)

2. Scalar Sector

We start with the following parameterization for the scalars,

HL =







hL−iφL√
2

+ vL

φ−
L





 , HR =







hR−iφR√
2

+ vR

φ−
R





 ,

φ =







h1−iφ0

1√
2

+ v1 φ+
1

φ−
2

h2−iφ0

2√
2

+ v2





 (A2)

This parameterization contains both the would-be Goldstone-bosons that give mass to the

W, Z, WR, ZR and the remaining physical scalar (or pseudo-scalar) particles.

Since we do not specify a scalar potential, we cannot identify the scalar mass eigenstates.

Rather we work with a basis of physical scalars chosen to be orthogonal to the would-be

Goldstone-bosons, under the simplifying assumption that they all have the same large mass.

The physical scalars defined this way are,

H±
1 =

1
√

v2 + v2
L

(−vφ±
L + vLφ±

2 )

H±
2 =

1
√

v2 + v2
R

(−vφ±
R + vRφ±

1 )

H0
2 =

x√
1 + x2

(− sin θRφ0
L +

1

x
φ0

R + cos θRφ0
1)

H0
1 = φ0

2 (A3)

with x = vR/(v cos θR) and with H0
1,2 being neutral pseudo-scalars. The only neutral scalar

that enters the calculation is the original h2. Working with this basis we can identify the
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divergent contributions arising from diagrams with scalar exchange (they are independent

of scalar masses). The finite contributions that depend on the masses of the different scalars

can only be obtained after fixing all their masses.

3. Feynman Rules

In unitary gauge, the vertices γW+
L W−

L , γγW+
L W−

L , γZW+
L W−

L , ZW+
L W−

L and ZZW+
L W−

L

are as in the standard model. The analogous vertices with W±
R taking the place of W±

L can

be obtained by multiplying the corresponding vertex with W±
L by a factor of (− tan2 θW )

for each Z. In particular, these vertices are not enhanced by gR/gL. There are no “mixed”

vertices with one WL and one WR. For vertices involving a ZR, the ZRW+
R W−

R vertex is

given by tan θW cot θR/ cos θW times the corresponding vertex for ZW+
L W−

L and is, therefore,

enhanced with respect to the latter by a factor of cot θR. Finally the ZZRW+
R W−

R vertex

can be obtained by multiplying the ZZW+
L W−

L vertex by − tan3 θW cot θR/ cos θW .

The Feynman rules for couplings of gauge bosons to fermions are already given in

Eqs. 8 and 9. The Feynman rules involving the scalars which couple to top and bottom

proportionally to the top-quark mass can be extracted from the Yukawa Lagrangian:

LY = −mt

[

t̄t +
1√
2v

(t̄th1 + b̄bh2) −
i√
2v

(t̄γ5tφ
0
1 + b̄γ5bφ

0
2)

+
1

v

(

b̄LtRφ−
2 + b̄RtLφ−

1 + t̄LbRφ+
1 + t̄RbLφ+

2

)

]

(A4)

In terms of the physical scalars defined as in Eq. A3 the couplings we need become,

LY = −mt

v



cos θR

(

b̄PRtH−
1 + t̄PLbH+

1

)

+
vR

√

v2
R + v2

(

b̄PLtH−
2 + t̄PRbH+

2

)

+
1√
2
b̄
(

h2 − iH0
1γ5

)

b

]

. (A5)

The vertices of the form ZHH are obtained from the Lagrangian

L =
igL

2 cos θW

(

2 sin2 θW − v2
R

v2 + v2
R

)

Zµ
(

H−
2 ∂µH

+
2 − H+

2 ∂µH
−
2

)

−igL

2 cos θW

cos 2θW Zµ
(

H−
1 ∂µH

+
1 − H+

1 ∂µH
−
1

)

+
gL

2 cos θW

Zµ
(

h2∂µH0
1 − H0

1∂µh2

)

. (A6)
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Finally, the vertices of the form ZWH can be read from the Lagrangian

L = − g2
R√
2

sin θR

sin θW

vvR
√

v2 + v2
R

ZµW±
RµH∓

2 (A7)

4. Loops involving Gauge Bosons

Here we present results for the individual diagrams in Figure 1.

Diagram 1 a

To check our results we first evaluate this diagram for the case of the Standard Model in

Unitary Gauge. In this case the internal wavy lines are W+ and W− and one finds,

Γµ = −i
g

2 cos θW

γµ

g2 cos2 θW

16π2
(

1

ǫ

(

−M4
Z

12M4
W

− 4M2
Z

3M2
W

+
M2

t M2
Z

4M4
W

+
3M2

t

2M2
W

)

+ faL

)

PL (A8)

Notice that the first two divergent terms in Eq. A8 that are not proportional to M2
t are not

included in the finite quantity δgLb of Eq.28. These divergent terms cancel against other

contributions from the renormalization of GF , MZ and α when one calculates observables

such as the partial Z width [22]. It is possible to obtain a simple expression for the finite

part faL in the limit M2
W /M2

t << 1. It is given by,

faL ≈ − M2
t

8M2
W

(

1

cos2 θW

(

2 log

(

M2
t

M2
Z

)

− 3

)

+ 12 log

(

M2
t

M2
Z

)

− 10

)

(A9)

For our model, the terms that are enhanced by cot2 θR are obtained when the internal

wavy lines are W+
R and W−

R , resulting in,

Γµ = −i
g

2 cos θW

γµ

−g2
R sin2 θW

16π2
(

1

ǫ

(

−M4
Z

12M4
WR

− 4M2
Z

3M2
WR

+
M2

t M2
Z

4M4
WR

+
3M2

t

2M2
WR

)

+ faR

)

PR (A10)

The first two divergent terms in this expression, the ones not proportional to M2
t , do not

contribute to the vertex correction δgRb that we are computing because they are not enhanced

by cot2 θR. Although they appear to be proportional to g2
R, they really are not when one

considers the relations from Eq. 18. The finite part can be calculated numerically (we only

24



present these results for the sum of all diagrams). For example, for MWR
= 500 GeV, we

find faR = 1.32 with a renormalization scale µ = MZ .

It is possible to present approximate analytical results by taking MZ = 0 in the integrals.

Doing so and expanding the resulting expression in powers of M2
t /M2

WR
we find,

− i
gL

2 cos θW

g2
R

16π2
(− sin2 θW )

[

3

2

M2
t

M2
WR

1

ǫ
+

3

2
+

M2
t

M2
WR

(

11

4
− 3

2
log

(

M2
WR

µ2

))]

(A11)

Diagram 1 b

Once again we first evaluate Diagram b in Figure 1 for the Standard Model in unitary

gauge. In that case the internal wavy line is a charged W and the intermediate state quarks

are top. The result can be written in the limit M2
W /M2

t << 1 as,

Γµ = −i
g

2 cos θW

γµ

g2|Vtb|2
16π2

M2
t

M2
W

((

−1

ǫ
log

(

M2
t

M2
Z

)

− 1

2

)

gLt

+

(

1

4ǫ
− 1

4
log

(

M2
t

M2
Z

)

− 1

8

)

gRt

)

PL . (A12)

For our model the only terms enhanced by cot2 θR are obtained with the intermediate

wavy line representing a W±
R and the intermediate state quark being top. As before, we

present an approximate analytical result obtained by setting MZ = 0 in the loop integrals

and expanding the resulting expression in powers of M2
t /M2

WR
. This yields,

−i
gL

2 cos θW

g2
R

16π2

{

1

ǫ

M2
t

M2
WR

(

gLt

4
− gRt

)

− 3

4
gRt

+
M2

t

M2
WR

[(

log

(

M2
t

µ2

)

− 1

2

)

gRt −
1

4

(

log

(

M2
t

µ2

)

+ 3 log

(

M2
t

M2
WR

)

+
7

2

)

gLt

]}

(A13)

We only consider the case with MZ 6= 0 numerically and include it in the sum of all diagrams

in Figure 4.

Diagram 1 c

Finally we evaluate the wave-function renormalization diagrams of Figure 1 c. Once

again we begin by considering the Standard Model in unitary gauge. For this diagram we

can present an exact analytical result,

1 − Z−1
b =

g2

16π2
PL

(

3M2
t

4M2
W

1

ǫ
− 3M2

t

4M2
W

log

(

M2
t

µ2

)
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− 3M2
t M2

W

4(M2
t − M2

W )2
log

(

M2
W

M2
t

)

− 6M4
W + 5M2

t M2
W − 5M4

t

8M2
W (M2

t − M2
W )

)

(A14)

Similarly, for the case of our model, the terms that are enhanced by cot2 θR are obtained

from the exchange of charged W±
R gauge bosons and we find,

1 − Z−1
b =

g2
R

16π2
PR

(

3M2
t

4M2
W

1

ǫ
− 3M2

t

4M2
W

log

(

M2
t

µ2

)

− 3M2
t M2

W

4(M2
t − M2

W )2
log

(

M2
W

M2
t

)

− 6M4
W + 5M2

t M2
W − 5M4

t

8M2
W (M2

t − M2
W )

)

(A15)

As a check of our calculation we have evaluated the corresponding expressions for the

Standard Model in unitary gauge. From these we can obtain, by adding the three contribu-

tions, the vertex correction terms δgLb proportional to M2
t . This result, Eq. 28, is finite and

in agreement with the known result [18].

5. Loops with Scalar Mesons

We now turn our attention to the diagrams in Figure 2. As described in the main text

we use the basis of Eq. A3 assuming all scalars to be degenerate and to have a large mass.

Diagram 2 a

This type of diagram involves one gauge boson and one physical charged scalar in the loop.

There is only a contribution to the right-handed coupling involving the W±
R H∓

2 intermediate

state. Our result in the limit where the Higgs masses are much larger than other masses is:

− i
gL

2 cos θW

1

16π2

(

mt

v

)2
(

1

ǫ
+

3

2
− log

(

M2
H

µ2

))

xv(1 − xv)PR (A16)

Diagram 2 b

This type of diagram involves two scalars in the intermediate state. The left-handed

coupling receives contributions from charged H1 scalars as well as from a diagram with one

neutral H0
1 pseudo-scalar and one h2 neutral scalar. The right-handed coupling receives

contributions from the same diagram with neutral scalars as well as from the diagram with
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charged H2 scalars.

−i
gL

2 cos θW

1

16π2

(

mt

v

)2
(

1

ǫ
+

1

2
− log

(

M2
H

µ2

))

[

(

sin2 θW + cos2 θW xv −
1

2
x2

v

)

PR +

(

−1

2
− cos2 θR

2
cos 2θW

)

PL

]

(A17)

Diagram 2 c

This type of diagram involves the exchange of a charged H1 or of a neutral H0
1 or H2

scalars for the left-handed coupling as well as exchanges of a charged H2 scalar or a neutral

A0
1 or H2 scalars for the right-handed coupling.

− i
gL

2 cos θW

1

16π2

(

mt

v

)2
(

1

ǫ
+

1

2
− log

(

M2
H
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[(

−1

3
sin2 θW + (−1

2
+

2

3
sin2 θW )xv

)

PR +
(

1

3
sin2 θW (1 − 2 cos2 θR)

)

PL

]

(A18)

Diagram 2 d

This diagram represents b wave-function renormalization through scalar loops. Once

again, for the left-handed coupling one obtains contributions from exchanging a charged

H1 and neutral H0
1 and H2, whereas for the right-handed coupling the contributions arise

through exchange of charged H2 and neutral H0
1 and H2 scalars.

− i
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2 cos θW

1

16π2
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(A19)
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