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Abstract

The production of wrong sign charmed mesons b → D̄(s)X, D(s) = (D0, D+, Ds),
is studied using the data collected by the DELPHI experiment in the years 1994
and 1995.
Charmed mesons in Z → bb̄ events are exclusively reconstructed by searching
for the decays D0 → K−π+, D+ → K−π+π+ and D+

s → φπ+ → K+K−π+.
The wrong sign contribution is extracted by using two discriminant variables:
the charge of the b-quark at decay time, estimated from the charges of identified
particles, and the momentum of the charmed meson in the rest frame of the
b-hadron.
The inclusive branching fractions of b-hadrons into wrong sign charm mesons
are measured to be:

B(b → D̄0X) + B(b → D−X) = (9.3 ± 1.7(stat) ± 1.3(syst)± 0.4(B))% ,

B(b → D−

s X) = (10.1 ± 1.0(stat) ± 0.6(syst) ± 2.8(B))%

where the first error is statistical, the second and third errors are systematic.
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1 Introduction

Decays b → c̄ are expected to occur through the Cabibbo favoured transitions b →
cW− and W− → c̄s 1. Hence, neglecting b → u transition and D0 mixing, b-hadron
decays to wrong sign charmed mesons are in fact double charm transitions. The double
charm rate is related to nc, the mean number of charm quarks (and anti-quarks) produced
per b-decay:

nc = 1 − B(b → no open charm) + 2B(b → charmonium) + B(b → double charm) (1)

which can be predicted by Heavy Quark Effective Theory (HQET) based calculations of
the semileptonic B meson branching fraction [1].

Evidence for wrong sign charm production and double charmed b-decays has been
found both at the Υ(4S) and at LEP. ARGUS [2] and CLEO [3] have shown evidence

for the two-body transitions B → D
(∗)+
s D̄(∗) 2. From the analysis of the Ds momentum

spectrum, these decays are found to contribute about half of the total Ds production at

the Υ(4S), the remainder coming from either B → D
(∗)+
s D̄∗∗ or B → D

(∗)+
s D̄(∗)π, ρ, ω

(where D∗∗ denotes an orbitally excited D meson). By using D-lepton correlations,
CLEO has observed wrong sign D production [4]. ALEPH has reported evidence for b →
DD̄(s)X decays with both charmed mesons reconstructed [5]. The observed DD̄X signal

is shown to originate either from B → D(∗)D̄(∗)K(∗) or from B → D∗∗

s D̄ with a subsequent
decay of the orbitally excited state D∗∗

s into D(∗)K.
In this paper, the DELPHI data are used to measure the inclusive branching fractions

of b-hadrons into wrong sign charm mesons, B(b → D̄X) and B(b → D−
s X). D0, D+ and

D+
s mesons are exclusively reconstructed in Z → bb̄ events, recorded by DELPHI in the

years 1994 and 1995. The wrong sign contribution is extracted by using two discriminant
variables: the charge of the b-quark at decay time, estimated from the charges of identified
particles, and the momentum of the charmed meson in the rest frame of the b-hadron.

2 Experimental procedure

2.1 The DELPHI detector

A detailed description of the DELPHI detector and its performance can be found in
reference [6]. Only the subdetectors relevant to the present analysis are described in the
following.

The tracking of charged particles in the barrel region is accomplished with a set of
cylindrical tracking detectors whose axes are oriented along the 1.23 T magnetic field and
the direction of the beam.

The Time Projection Chamber (TPC), the main tracking device, is a cylinder of 30 cm
inner radius, 122 cm outer radius and a length of 2.7 m. For polar angles between 39◦

and 141◦, it provides up to 16 space points along the charged particle trajectory 3.
The Vertex Detector (VD), located nearest to the LEP interaction region, consists of

three concentric layers of silicon microstrip detectors at average radii of 6.3 cm, 9.0 cm
and 10.9 cm. Since 1994, the innermost and the outermost layers were equipped with
double sided silicon microstrip modules allowing both Rφ and z measurements.

1Charge conjugate reactions are implied throughout this paper.
2In the following, D (D(s)) denotes either D0 or D+ (D0, D+ or D+

s ).
3In the DELPHI frame, the z axis is defined along the electron beam direction, the x axis points towards the centre

of the LEP ring and the y axis points upwards. The polar angle to the z axis is called θ; the azimuthal angle around the
z axis is referred to as φ. The radial coordinate is R =

√

x2 + y2.
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Hadrons are identified using the specific ionization (dE/dx) measured in the TPC and
the Cherenkov radiation detected in the barrel Ring Imaging CHerenkov counter (RICH)
placed between the TPC and the Outer Detector (OD).

2.2 Event sample

For this analysis, the data collected by the DELPHI experiment in the years 1994 and
1995 at

√
s close to 91.2 GeV are used, corresponding to about 2.1 million hadronic Z de-

cays. Simulated hadronic events are generated with the JETSET 7.3 program [7]. Full
detector simulation is applied to Monte Carlo events which are subsequently processed
through the same analysis chain as the real data [6].

The decays B → D
(∗)+
s D̄(∗), B → D

(∗)+
s D̄∗∗, B → D

(∗)+
s D̄(∗)π, ρ, ω, B → D∗∗

s D̄ →
D(∗)KD̄ and B → D(∗)D̄(∗)K(∗) are used to model b-decay into wrong sign charmed
mesons. The b-hadron decay properties to right sign charm are adjusted to match the
latest experimental values [8]. In total, a sample of about 58,000 b → D̄(s)X and about
99,000 b → D(s)X events, with D(s) forced to decay into the modes used in the analysis,
has been generated. The background is modelled with about 3.2 million Z → qq̄ and
about 1.8 million Z → bb̄ Monte Carlo events.

Hadronic Z decays are selected by requiring at least five charged particles and a total
charged energy larger than 12% of the collision energy [6]. The tagging of b-quark jets is
based on four discriminant variables, the most important one being the probability for all
tracks to originate from the primary interaction vertex, calculated from the track impact
parameters with respect to this point [9]. The other variables are defined for jets with
a secondary vertex: effective mass of the system of particles attached to the secondary
vertex, rapidity of these particles with respect to the jet direction and fraction of the
charged energy of the jet included in the secondary vertex. All jet b-tags in the event
are combined and the cut on the event probability is chosen such that about 90% of
the reconstructed charmed mesons originate from b-hadron decay. Correspondingly, the
Z → bb̄ selection efficiency varies between 58% and 74% for the different charm modes.

Each selected event is divided into two hemispheres by the plane orthogonal to the
axis of the most energetic jet and passing through the primary interaction point.

2.3 Charmed meson reconstruction

Charged particles are selected as follows: momentum larger than 100 MeV/c, relative
error on the momentum measurement smaller than 100% and Rφ (z) impact parameter
with respect to the primary interaction vertex smaller than 4 cm (4 cm/sin θ).

Charmed mesons are searched for in the decay modes D0 → K−π+, D+ → K−π+π+

and D+
s → φπ+ → K+K−π+ by trying all possible combinations of charged particles in

the hemisphere. The dE/dx values of the kaon and pion candidates are required to be
consistent with the respective mass hypotheses. For D+ → K−π+π+ decays which suffer
from a high level of combinatorial background, the kaon must be tagged additionally by
the RICH. To allow for a precise reconstruction of the D(s) decay vertex, at least two
tracks in each combination are required to have associated hits in the Vertex Detector.

Track combinations satisfying these criteria are fitted to a common vertex. The χ2-
probability of the fit must exceed 0.01%. Combinations containing a fragmentation track
are rejected by requiring the D (Ds) vertex to lie at least three (two) standard deviations
away from the primary interaction point and imposing the requirement xE > 0.15 on the
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energy fraction xE = ED(s)
/Ebeam. For D+

s → φπ+, a selection at ±12 MeV/c2 around

the nominal φ mass is applied to the reconstructed K+K− mass.
D candidates are selected by using four discriminant variables: the RICH information

for the kaon candidate, the decay length from the primary to the charm vertex divided by
its error, the energy fraction xE and the cosine of the charm decay angle θD, defined as the
angle between the K momentum vector in the D meson rest frame and the D momentum
vector in the laboratory frame. The cos θD distribution is flat for the signal and peaked
at −1 for the combinatorial background. For Ds candidates, two additional variables are
used: the reconstructed K+K− mass and the cosine of the φ helicity angle θH . The latter
is defined as the angle between the K+ and the Ds direction in the φ rest frame. The
signal follows a cos2 θH distribution while the background is flat in cos θH . The different
variables xi are combined by using a likelihood ratio:

X(D(s)) =
R(D(s))

1 + R(D(s))
, R(D(s)) =

∏

i

Si(xi; D(s))

Bi(xi; D(s))
(2)

where Si and Bi are the normalised distributions of xi for the signal and the combinatorial
background, respectively, as obtained from the simulation. The combined variable is
defined such that the target value is X = 1 for the signal and X = 0 for the background.
For each decay mode, the selection cut on the variable X is adjusted on simulated events
to optimise the statistical significance of the signal. The following selections are found:
X(D0) > 0.8, X(D+) > 0.6 and X(Ds) > 0.95.

For each selected candidate, the invariant mass of the track combination is computed
(Figure 1). 7345 (6906, 984) D0 (D+, Ds) candidates are found in the signal window
corresponding to an interval of about ±2σ around the signal peak. The remaining com-
binatorial background is determined by a fit to the invariant mass distribution. The
fit uses a Gaussian function for the signal and a linear parametrisation for the com-
binatorial background. The satellite peak, due to the D+ → K+K−π+ decay, in the
D+

s → φπ+ channel is also fitted by a Gaussian function. In this way, the combina-
torial background is found to be 3038 ± 43, 4677 ± 66 and 404 ± 12 for D0 → K−π+,
D+ → K−π+π+ and D+

s → φπ+, respectively.

2.4 Discriminant variables

The discriminant variables used for selecting wrong sign decays are constructed by
using a common DELPHI analysis package called BSAURUS. Details on how the different
BSAURUS variables are formed can be found in reference [10].

The flavour of the D(s) meson, i.e., the charge of the c-quark confined in the charmed
meson, is determined from the charge of the kaon for the channels D0 → K−π+ and
D+ → K−π+π+, and from the charge of the pion for the channel D+

s → φπ+.
The charge of the b-quark at decay time in the hemisphere of the charmed meson is ob-

tained from the BSAURUS Decay Flavour Neural Network (BDFNN). The approach is to
first form the weighted sum of particle charges in the hemisphere excluding the particles
from the exclusive decay of the D(s), in order to avoid a possible bias. The weighting factor
is constructed from the conditional probability for the track to have the same charge as
the decaying b-quark, and is determined via a neural network technique based mainly on
particle identification variables for kaons, protons, electrons and muons and B−D vertex
separation variables. In order to use optimally the event information, the resulting hemi-
sphere charges are constructed separately to estimate the b-charge at both production
and decay time and this is repeated for each of the b-hadron types (B+, B0, B0

s , b-baryon).
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In a final step, these hemisphere charges form the main input variables to a neural net-
work trained to find the b-quark charge in combination with BSAURUS b-hadron type
tagging probabilities and also including charge correlation information from the opposite
hemisphere.

The wrong sign tag Y (D(s)), the first discriminant variable, is obtained by correlating
the BDFNN output with the flavour of the charmed meson:

Y (D(s)) =

{

BDFNN for D(s)

1 − BDFNN for D̄(s)
. (3)

The target values of the BSAURUS Decay Flavour Neural Network are BDFNN = 1 and
BDFNN = 0 for b and b̄-hadrons, respectively. Hence, the target value of the wrong sign
tag is Y = 0 for wrong sign decays and Y = 1 for right sign.

While wrong sign and Bs right sign decays contribute about equally to the Ds pro-
duction in Z → bb̄ events, the wrong sign production mechanism is strongly suppressed
in the case of D mesons. Hence, for selecting wrong sign D0 and D+ mesons, stronger
discrimination is required and a second variable, the momentum of the D meson in the
b-hadron rest frame, p(D), is used.

The b-hadron four-momentum in the hemisphere of the charmed meson is inclusively
reconstructed in BSAURUS using the following procedure. An initial estimate of the
b-hadron momentum ~praw, energy Eraw and mass mraw =

√

E2
raw − p2

raw is formed from
particles with high rapidity for events with more than two-jets and from the sum of “b-
weighted” four-vectors for the two-jet case. This weighting involves the use of neural
networks trained to identify tracks originating from the weakly decaying b-hadron in
the hemisphere. Eraw is then corrected, hemisphere-by-hemisphere, motivated by the
observation (in Monte Carlo simulation) of a correlation between the energy residuals
∆E = Eraw − Etrue and mraw (which is approximately linear in mraw) and a further
correlation between ∆E and xh = Ehem/Ebeam, where Ehem is the sum of the energies
of all particles reconstructed in the hemisphere, resulting from neutral energy losses and
inefficiencies. These effects are parametrised and corrected for, after which the resolution
obtained in p(D) is about ±300 MeV/c.

The two discriminant variables are shown in Figure 2.

2.5 The fit

For each charm decay mode, the numbers of wrong sign and right sign events, NW

and NR, are determined by a fit to the above-mentioned discriminant variables. The fol-
lowing components can contribute to the distributions of these variables in the real data:
wrong sign b → D̄(s)X mesons, right sign b → D(s)X mesons, D(s) meson background
(contamination by charmed mesons produced in Z → cc̄ events) and combinatorial back-
ground. The shapes of the distributions of these four components (F W , F R, F cc̄ and
F Bkgrd) are determined from the Monte Carlo simulation. In each fit, the number of
charmed mesons from Z → cc̄ events is fixed to the value calculated from the partial
width Rc = 0.1702± 0.0034, the fragmentation probabilities f(c → D0) = 0.552± 0.037,
f(c → D+) = 0.237 ± 0.016, f(c → Ds) = 0.121 ± 0.025 [11] and the acceptance deter-
mined from the simulation. The numbers are found to be 436± 30, 266± 19 and 73± 15
for D0 → K−π+, D+ → K−π+π+ and D+

s → φπ+, respectively. The normalisation of
the combinatorial background is fixed to the values quoted in Section 2.3.
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Sample Wrong sign evts. Right sign evts. ǫW /ǫR
B(b→D̄(s)X)

B(b→D(s),D̄(s)X)
(%)

D0 → K−π+ 383 ± 81 3, 396 ± 110 0.92 ± 0.02 11.0 ± 2.1 ± 1.5
D+ → K−π+π+ 186 ± 86 1, 811 ± 101 0.80 ± 0.03 11.4 ± 4.7 ± 3.5

D+
s → φπ+ 286 ± 42 221 ± 39 1.01 ± 0.03 56.2 ± 5.7 ± 3.3

Table 1: The fitted numbers of wrong sign and right sign mesons, the relative selection
efficiency of wrong sign and right sign mesons and the fraction of wrong sign events in the
charm signal. The error on the number of events is purely statistical. The error quoted
on ǫW /ǫR is just that due to Monte Carlo statistics. The first error on the wrong sign
fraction is statistical; the second one is the sum of all systematic uncertainties listed in
Table 2.

Selected Ds meson candidates are arranged in 10 bins, i, of Y (Ds) (bin width 0.1) and
the resulting one-dimensional histogram is fitted by the function:

Ni = NWF W
i + NRF R

i + Ncc̄F
cc̄
i + NBkgrdF

Bkgrd
i . (4)

The normalisations ΣiF
W
i = 1, ΣiF

R
i = 1, ΣiF

cc̄
i = 1 and ΣiF

Bkgrd
i = 1 are used. Selected

D0 and D+ candidates are arranged in 4 bins, i, of Y (D) (bin width 0.25) and 13 bins,
j, of p(D) (bin width 200 MeV/c) and the fit function:

Nij = NWF W
ij + NRF R

ij + Ncc̄F
cc̄
ij + NBkgrdF

Bkgrd
ij (5)

is used. The fit algorithm accounts for finite Monte Carlo statistics [12] and the total
number of selected candidates is used as a constraint. By applying the algorithm to
simulated Z → qq̄ events, no significant bias in the fit result is observed.

The results obtained by fitting the real data are shown in Figures 3, 5 and 6. The
Monte Carlo model of the combinatorial background is tested on real data D(s) candidates
selected outside the signal mass window (Figure 4). The numbers of wrong sign and right
sign events for each decay channel are given in Table 1. For the one-dimensional fit, the
value of the χ2 is 4.8 compared to 10−1 degrees of freedom. The two-dimensional fit has
52 − 1 degrees of freedom and the χ2 is 52.0 (62.3) for the D0 (D+) sample.

3 Results and systematic uncertainties

For each charm decay mode, the fraction of wrong sign events b → D̄(s)X in the
signal b → D(s), D̄(s)X is calculated from the numbers of wrong sign and right sign
events:

B(b → D̄(s)X)

B(b → D(s), D̄(s)X)
=

NW

NW + (ǫW /ǫR)NR

. (6)

The results are given in Table 1. The factor ǫW /ǫR in the denominator of Eq. 6 corrects for
the different selection efficiencies of wrong sign and right sign mesons and was obtained
from the simulation.

The wrong sign charm model used for the fit assumes a 50% contribution of two-body

decays B → D
(∗)+
s D̄(∗) to the wrong sign Ds signal and the same relative contribution

of B → D∗∗

s D̄ to wrong sign D. The corresponding modelling uncertainty (Table 2) is
estimated by varying these ratios within (50 ± 13)% and (50 ± 25)%, respectively.
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Source Value ∆ B(b→D̄0X)
B(b→D0,D̄0X)

(%) ∆B(b→D−X)
B(b→D±X)

(%) ∆B(b→D−
s X)

B(b→D±
s X)

(%) Ref.

Model dependence (w.s.)
B → D∗∗

s D̄ fraction (50 ± 25)% 0.12 1.15 [5,13]

B → D
(∗)+
s D̄(∗) fraction (50 ± 13)% 0.54 [2,3]

Model dependence (r.s.)
B(b → D0l−ν̄X) (6.60 ± 0.60)% 0.20 [14]
B(b → D+l−ν̄X) (2.02 ± 0.29)% 0.61 [14]
B(b → D+

s l−ν̄X) (0.87 ± 0.28)% 0.61 [8]
B(b → D0D−

s X) (9.10 ± 3.35)% 0.08 [5]
B(b → D+D−

s X) (4.00 ± 2.05)% 0.59 [5]
B(b → D+

s D−

s X) (1.17 ± 0.71)% 2.09 [5]
B(b → D0D̄X) (6.45 ± 2.08)% 1.40 [5]
B(b → D+D̄X) (1.80 ± 0.96)% 2.18 [5]
B(b → D+

s D̄X) (1.17 ± 0.71)% 2.39
Z → cc̄ background 0.09 0.05 0.56
Combinatorial background

normalisation 0.37 1.46 0.29
shape 1.56

ǫW /ǫR 0.41 1.04 0.13

Total 1.53 3.53 3.34

Table 2: Breakdown of the systematic error on the wrong sign fractions. For the total, the different components have been added in
quadrature.
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The different decays used to model the right sign component are collected into four
categories: b → D(s)l

−ν̄l(X), b → D(s)π, ρ, ω, . . . , b → D(s)D
−

s (X) and b → D(s)D̄(X).
To estimate the systematics related to the right sign modelling, the relative contributions
of b → D(s)l

−ν̄l(X), b → D(s)D
−

s (X) and b → D(s)D̄(X) to the signal are varied. The
ranges are obtained from recent measurements (Table 2). The weight of each category is
varied separately and, for the total, the different contributions are added in quadrature.

Further contributions to the systematic error are: normalisation of the Z → cc̄ back-
ground (uncertainty in Rc and in the fragmentation probabilities), normalisation of the
combinatorial background (uncertainty of the fit to the invariant mass distribution) and
uncertainty in ǫW /ǫR. For the D+ → K−π+π+ sample which is particularly affected
by the combinatorial background, instead of using simulated data in the signal window,
the fit is repeated using real data candidates selected outside the signal window. Both
approaches are statistically consistent and the difference in the fit result is interpreted as
a systematic uncertainty related to the combinatorial background shape.

4 Conclusion

The production of wrong sign charm mesons in b-hadron decay, b → D̄(s)X, D(s) =
(D0, D+, Ds), was studied using the DELPHI data collected in 1994 and 1995, leading
to a measurement of the fraction B(b → D̄(s)X)/B(b → D(s), D̄(s)X). Combining this
measurement with the branching fractions B(b → D0, D̄0X) = (60.5 ± 3.2)%, B(b →
D±X) = (23.7±2.3)% and B(b → D±

s X) = (18±5)% [8], the following result is obtained
for wrong sign D:

B(b → D̄0X) + B(b → D−X) = (9.3 ± 1.7(stat) ± 1.3(syst) ± 0.4(B))% .

The first uncertainty is statistical, the second one is the sum of all systematic errors listed
in Table 2 (accounting for correlated model systematics) and the last one corresponds to
the uncertainties in B(b → D0, D̄0X) and B(b → D±X) (note that the quoted statistical
error includes both real data and Monte Carlo statistics). This value is in good agreement
with previous measurements by CLEO [4] and ALEPH [5]. The inclusive branching
fraction for wrong sign Ds is found to be:

B(b → D−

s X) = (10.1 ± 1.0(stat) ± 0.6(syst) ± 2.8(B))% .

Again, the first uncertainty is statistical, the second one is the total systematic error of
Table 2 and the last one corresponds to the uncertainty on B(b → D±

s X). This value
agrees with the total Ds production rate at the Υ(4S), B(B → D±

s X) = (10.0±2.5)% [8],
where the dominant source of Ds production is double charm b-decay.
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Figure 1: The invariant mass of selected D0 → K−π+, D+ → K−π+π+ and D+
s → φπ+ → K+K−π+ candidates. The points with error

bars are the real data. The solid line is the result of the fit mentioned in the text. The signal window is shown by dashed vertical lines
and the dashed histogram represents the Monte Carlo expectation for the combinatorial background (arbitrary normalisation).
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Figure 3: The wrong sign tag Y (D(s)) and the momentum of the charmed meson in
the rest frame of the b-hadron p(D(s)). The data are the points with error bars; the
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Figure 4: Same as Figure 3 for candidates selected outside the signal mass window.
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Figure 5: The D0 momentum in the b-hadron rest frame p(D0) in bins of the wrong sign
tag Y (D0). The data are the points with error bars; the histograms are the components
of the fit function (as described in the text).



15

DELPHI

0

50

100

150

200

250

300

0 1 2

p(D+) (GeV/c)

E
nt

ri
es

 / 
20

0 
M

eV
/c

(a) 0 < Y < 0.25
Data
b → D– X
b → D+ X
c → D+ X
Comb. bkgrd.

0

50

100

150

200

250

300

350

0 1 2

p(D+) (GeV/c)

E
nt

ri
es

 / 
20

0 
M

eV
/c

(b) 0.25 < Y < 0.5
Data
b → D– X
b → D+ X
c → D+ X
Comb. bkgrd.

0

50

100

150

200

250

300

350

0 1 2

p(D+) (GeV/c)

E
nt

ri
es

 / 
20

0 
M

eV
/c

(c) 0.5 < Y < 0.75
Data
b → D– X
b → D+ X
c → D+ X
Comb. bkgrd.

0

50

100

150

200

250

300

350

400

0 1 2

p(D+) (GeV/c)

E
nt

ri
es

 / 
20

0 
M

eV
/c

(d) 0.75 < Y < 1
Data
b → D– X
b → D+ X
c → D+ X
Comb. bkgrd.

Figure 6: Same as Figure 5 for D+.


