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Abstract

It was recently pointed out that the physics of a single discrete gravitational

extra dimension exhibits a peculiar UV/IR connection relating the UV scale to

the radius of the effective extra dimension. Here we note that this non-locality

is a manifestation of holography, encoding the correct scaling of the number

of fundamental degrees of freedom of the UV theory. This in turn relates the

Wilsonian RG flow in the UV theory to the effective gravitational dynamics in

the extra dimension. The relevant holographic c-function is determined by the

expression for the holographic bound. Holography in this context is a result of

the requirements of unitarity and diffeomorphism invariance. We comment on

the relevance of this observation for the cosmological constant problem.
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1 Introduction and relation to previous work

Recently, we have argued that the vanishing of the vacuum energy of (2+1)-dimensional

gravity [1, 2, 3, 4] may be deconstructed [5] to 3 + 1 dimensions under certain condi-

tions [6]. Our discussion pointed towards a possibility that there exists a well-defined

UV completion of (3 + 1)-dimensional gravity. (For related discussions, see Refs. [7]

and [8].)

More recently it was pointed out by Arkani-Hamed and Schwartz [9] that the

physics of gravitational deconstruction exhibits a fascinating relation between the

characteristic UV and IR scales. This UV/IR relation was argued [9] to indicate the

presence of non-local interactions in the defining UV theory.

Here, we point out that the UV/IR relation found in Ref. [9] is nothing but a

manifestation of the holographic principle [10, 11, 12]. In particular the specific form

of the UV/IR correspondence found in the problem of deconstruction of gravity is

very analogous to a similar relation found [13] in a seemingly completely unrelated

topic - the AdS/CFT correspondence [14] (see also [15])!

As reviewed in Ref. [6], in (2 + 1)-dimensional theories it is possible [1] to have

vanishing vacuum energy in the absence of a mass degenerate spectrum of bosonic and

fermionic states. The basic point is that the vacuum state is supersymmetric, but the

excited states are not mass degenerate because unbroken global supercharges do not

exist in 2+1 dimensions [2]. Any excited state gives a conical geometry whose deficit

angle prohibits spinor fields with covariantly constant asymptotics. Thus, there are

no global supercharges and no mass degeneracy between Bose and Fermi excitations.

The size of the non-degeneracy of the spectrum of low-energy excitations scales as

the inverse power of the three-dimensional Newton constant under the assumption of

weak gravitational coupling [3].

The idea behind deconstruction [5] is that the UV region of a theory might be

described in terms of a co-dimension one theory. Motivated by this idea in Ref. [6]

we argued that the (2 + 1)-dimensional phenomenon described above can be decon-

structed as follows:

• (1) Assume a local spatial foliation of 4d spacetime.

• (2) Deconstruct the vacuum part of pure 4d gravity from (N copies of) 3d

general relativity [16] coupled to certain 3d matter fields represented in terms of

currents. Assume that the 4d sources can be defined in terms of a deconstructed

3d theory. For sources represented by gauge fields this should be possible given

the discussion in Ref. [6].

• (3) In the deep UV we have (N copies of) 3d gravity coupled to some 3d sources.

Whatever the matter content of this 3d theory is, the resulting geometry has to

be conical. Thus, provided we have 3d (but not 4d!) supersymmetry, Witten’s

argument applies: the vacuum is supersymmetric, yet the excited states are not.
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• (4) In the range of intermediate scales, we have N linked copies of 3d gravity

coupled to 3d currents. Once again, the resulting 3d geometry is conical. Thus

Witten’s argument holds in the region between the UV and IR.

Note that on dimensional grounds, the mass splitting should be inversely propor-

tional to the three-dimensional Newton constant and should vanish at zero deficit

angle.Thus as long as the three-dimensional Newton constant is of order one as the

continuum limit is taken, and the deficit angle (on each local three-dimensional slice)

is taken to scale as the inverse of the lattice spacing, the Bose-Fermi splitting will be

finite in the infrared.

According to the outlined argument the vacuum energy is zero in the UV, and

also some place in between UV and IR. But does it remain zero in the IR? In the

concluding part of this note, we remark that the UV/IR relation found in Ref. [9],

which as we argue is just the statement of the saturation of the holographic bound,

can be utilized to put an upper bound on the maximum value of the deconstructed

cosmological constant.

2 Holography and Deconstruction

Before we proceed to establish a relation between the UV/IR correspondence found

in Ref. [9] and the holographic bound it is useful to remember how holography arises

in the framework of our previous paper [6].

The Bekenstein-Hawking bound on entropy [12] arises as follows. Let us first

suppose that the (2 + 1)-dimensional matter fields are local. The coupling of (2 + 1)-

dimensional gravity to matter is of the general form

SEH =
1

G3

∫

d3x
√

−g(3) (R(3) + Lmatter). (1)

The entropy of local matter degrees of freedom scales as the two-dimensional area.

As there are N copies, we have

S ∝ NA

G3

. (2)

Obviously this expression does not have the correct mass dimension. The crucial step

at this point is to remember that the usual prescription for dimensional reduction

determines the pre-factor to be 1/G3L, where L = Na is the size of the fourth

(lattice) dimension. Thus, on dimensional grounds,

S ≃ NA

G3L
=

A

G3a
=

A

G4
, (3)

which reproduces the Bekenstein-Hawking scaling in 3 + 1 dimensions.

Note that this reasoning applies only in the case of 3d to 4d, where there are

no local gravitational degrees of freedom. We wish now to relate this scaling to

the UV/IR relation found in Ref. [9]. The latter result is stronger, applying in any

dimension.
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3 Deconstruction and UV/IR mixing

As argued by Arkani-Hamed and Schwartz in a recent paper [9], there exists a subtlety

in the implementation of deconstruction in the gravitational context. Namely, the

cutoff of the theory cannot be taken to be M4, the four-dimensional Planck scale, as

one would expect. A simple tree-level calculation indicates that instead, there are

amplitudes involving longitudinal components of gravitons which de-unitarize around

a scale

Λ ∼
(

M2
4

L5a2

)1/9

, (4)

where L = Na, a being the lattice spacing, and G4 = G3a, as in Ref. [6]. This result

seems to be indicative of a UV/IR mixing phenomenon. Indeed, when one looks more

closely at the details of the effective action for the interactions, one finds that one

may indeed interpret it as non-local.

In fact, if we require that the cutoff be above the most massive Kaluza-Klein states

but below the unitary threshold, one finds that the highest cutoff that the theory may

possess is of order

Λm ∼
(

M2
4

L

)1/3

. (5)

This scale has an important implication in terms of holography. To demonstrate this,

consider a calculation of entropy. In the four-dimensional theory, we would estimate

S ∼ ALΛ3, (6)

which would give the standard wrong result if Λ ∼ M4. With the cutoff of eq. (5),

we find instead1

S ∼ ALΛ3
m ∼ NA

G3L
∼ A

G4
, (7)

which is nothing but the holographic bound on the number of degrees of freedom in the

UV theory, as it should be if the theory is really expected to describe a UV definition

of gravitational 4d dynamics. The deconstructed theory resists the temptation to

lift its cutoff too high. It appears that unitarity plus diffeomorphism invariance are

sufficient to imply holography! As indicated above, this argument generalizes to any

number of dimensions.

As an aside, it is interesting to observe that the above expression for the holo-

graphic bound is reminiscent of the one obtained from the heuristic argument based

on the properties of gravitational focusing [11]. Given a boundary region of area A,

the number of UV degrees of freedom is estimated from the effective volume deter-

mined by the area and the Planck length ALP and the UV cut-off given by 1/L3
P

which combines into the holographic (Bekenstein-Hawking) bound A/L2
P .2

1Here we used the thermodynamic relation S ∼ V T 3 where the volume V ∼ AL and T ∼ Λm,

by construction.
2We thank Nemanja Kaloper for an enjoyable discussion concerning these heuristics.
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Notice that this kind of relation between a UV/IR correspondence and holography

is in complete analogy to what happens in the context of the AdS/CFT correspon-

dence, even though the two topics seem unrelated. Taking clues from the AdS/CFT

correspondence, we also see that the UV/IR mixing found in the context of gravita-

tional deconstruction can be interpreted locally. That is, the local rescaling in the

UV theory corresponds to the rescaling of the size of the extra dimension: the UV

Wilsonian evolution corresponds to the gravitational evolution in the extra dimension.

More explicitly, a local form of the UV/IR correspondence can be recast in the

form of a holographic RG formalism even in the present discussion of the deconstruc-

tion of gravity.

This formalism runs as follows [17, 18]. First we fix the gauge so that the bulk

metric can be written as

ds2 = dr2 + gijdxidxj . (8)

This is just the ADM gauge discussed both in Ref. [6, 9]: the shift vector is set to

zero and the lapse to one. As noticed above, the UV rescaling corresponds to the

rescaling in the size of the extra dimension, which in the chosen gauge is nothing but

the natural evolution parameter. Given the fact that the (3 + 1)-dimensional gravity

theory is reparametrization invariant, the local UV rescaling is encapsulated in the

IR by the four-dimensional Hamiltonian constraint

H = 0. (9)

More explicitly

H = (πijπij −
1

2
πi

iπ
j
j ) +

1

2
πIG

IJπJ + L. (10)

Here πij and πI are the canonical momenta conjugate to gij and φI

πij =
1√−g

δS

δgij
, πI =

1√−g

δS

δφI
. (11)

Here φI denotes some background matter fields coupled to (3+1)-dimensional gravity

— for example, the Standard model fields; L is a local Lagrangian density, and GIJ

denotes the metric on the space of background matter fields.

As in the context of the AdS/CFT duality [17, 18], the Hamiltonian constraint

can be formally rewritten as a renormalization group equation for the dual RG flow.3

In the Hamiltonian constraint

1√−g





1

2

(

gij δS

δgij

)2

− δS

δgij

δS

δgij
− 1

2
GIJ δS

δφI

δS

δφI



 =
√
−gL, (12)

assume that the local four-dimensional action S can be separated into a local and a

non-local piece

S(g, φ) = Sloc(g, φ) + Γ(g, φ). (13)

3Here we follow the formalism of Ref. [17].
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Given this rewriting of the four-dimensional action, the Hamiltonian constraint can

be formally rewritten as a Callan-Symanzik renormalization group equation for the

effective action [17] Γ of the UV theory at the scale Λ

1√−g

(

gij δ

δgij
− βI δ

δφI

)

Γ = HO, (14)

where HO denotes higher derivative terms of the expression for the four-dimensional

conformal anomaly. Here the “beta-function” is defined (in analogy with the AdS

situation) to be βI = ∂ΛφI , where Λ denotes the cut-off of the defining UV theory.

In the context of the holographic RG formalism developed in the AdS/CFT corre-

spondence, it is also possible to introduce a holographic “c-function” which measures

the number of accessible degrees of freedom and which decreases during RG flow.

When the spacetime is four-dimensional, one has [17, 18]

c ∼ 1

Gθ2
, (15)

where θ is the trace of the extrinsic curvature of the boundary surface.4 In the context

of the AdS/CFT correspondence the Raychauduri equation, that is, gravitational

focusing, implies monotonicity of the holographic “c-function”

dθ

dt
≤ 0, (16)

as long as a form of the weak positive energy condition is satisfied by the background

test matter fields.

The important point here is that the holographic “c-function” is determined by

the holographic bound, that is the Bekenstein-Hawking entropy. In our context the

Bekenstein-Hawking entropy is determined by ALΛ3
m. Thus at a scale Λ below the

maximal scale, the natural expression for the holographic “c-function” in the present

context is precisely the quantity

c ∼ ALΛ3 (17)

which measures the number of degrees of freedom in the UV theory.

4 Conclusion: UV/IR, cosmological constant, non-

local interactions and all that

The argument for the vanishing of the cosmological constant in (3 + 1)-dimensional

gravity as presented in Ref. [6] is obscured by the region of strong coupling in the

infrared. The question is whether the cosmological constant remains zero all the way

at long distances even in the presence of strongly coupled physics. In the conclusion

4The trace of the quasi-local Brown-York stress [19] tensor turns out to be 〈T i
i 〉 ∼ θ, up to

some terms constructed from local intrinsic curvature invariants of the boundary. Therefore the RG

equation of the defining UV theory is given by 〈T i
i 〉 = βI ∂Γ

∂φI .
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of this note, we argue that one can actually derive the upper bound on the value of

the induced four-dimensional vacuum energy based on the above discussion regarding

the relation deconstruction and holography.

The essential point is that the picture of vacuum energy based on deconstruction

[6] naturally presents us with two different energy scales in the IR. One scale is the

mass splitting between fermion and bosonic degrees of freedom Ms, indicating the

crucial importance of supersymmetry in our argument [6], and the other is the four-

dimensional Planck scale MP . These two scales come from the two dimensionful

parameters provided by the UV definition of the infrared physics via deconstruction:

the lattice spacing a and the three-dimensional Newton’s constant G3 [6].

Now, given these two mass scales and the requirement that in the limit when

the mass splitting of the bosonic and fermionic degrees of freedom goes to zero, the

four-dimensional vacuum energy should go to zero as well, we can associate one four-

dimensional scale m with Ms and MP . This scale will provide the natural cut-off in

the computation of the four-dimensional vacuum energy.

Dimensional analysis and the requirement that m → 0 when Ms → 0 dictates

that

m ∼ M2
s

MP
. (18)

This, we claim, is the only effective UV scale left in the problem in four dimensions.

Notice that this relation is also a manifestation of a UV/IR correspondence. The MP

is already an IR scale from the point of view of the defining UV theory. That follows

from the relation G4 = G3a. As we approach the continuum, the three-dimensional

scale is much higher than the effective four-dimensional gravitational scale. Now,

given the fact that the effective action contains fields coupled to four-dimensional

gravity, one expects that the natural cut-off scale m goes as an inverse power of the

IR scale, which is set by the Planck scale MP , and the scale Ms that governs the Bose-

Fermion mass splitting. The quadratic scaling of m with Ms is determined by the

gravitational coupling of the matter fields at the scale Ms. (By the deconstruction of

Witten’s argument [6], the vacuum energy is still zero at this scale.) Then the above

formula indeed follows by dimensional analysis.

When evaluating the vacuum diagrams in order to estimate the upper bound on

the vacuum energy in the infrared we should therefore use m as the only effective

cut-off scale. The naive expression for the vacuum energy is bounded by m4 or

λ ∼ M4
P

(

Ms

MP

)8

, (19)

which is a formula previously discussed in the literature [20]. Therefore, provided the

large ratio of the mass splitting to the Planck scale we get the observed bound on the

vacuum energy density!

Note that this argument is based on dimensional analysis, the UV/IR relation

discussed above, and the fact that the deconstruction of Witten’s argument for the

vanishing of the cosmological constant in three dimensions implies zero vacuum energy
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at a very low scale, set by the value of Ms. The violation of the usual effective field

theory reasoning comes from the UV/IR relation and the vanishing of the cosmological

constant at the scale determined by Ms, as implied by the deconstruction of Witten’s

argument.

Of course, we have not presented a detailed calculation, and it is not completely

clear if m4 really determines the cosmological constant. Also, one should carefully

consider radiative corrections. Given the fact that the cosmological constant vanishes

at the scale determined by Ms by deconstruction, the radiative corrections determined

by usual effective field theory, cannot be expected to be very large. It is desirable

therefore to provide an explicit calculation to show this.

In concluding, we raise the question of whether the non-local interaction expected

in the UV theory [9] should be of the type discussed in the “wormhole” program [21].

The idea here is that a guiding principle for the construction of a defining UV theory

should be the recovery of the full path integral over four-dimensional metrics in the

IR. This, at least at the level of Euclidean gravity, can be implemented by an insertion

of bilocal operators which create “wormholes”. It was shown in the late 80’s [21] that

such topology changing processes make all couplings in the Wilsonian effective action

describing the interaction of gravity and matter into true dynamical random variables.

It would be interesting to see whether there is a natural implementation of this idea

in the present context.
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