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Abstract

Searches for resonant ~� production in e+e� collisions under the assumption that
R-parity is not conserved and that the dominant R-parity violating coupling is
�121 or �131 used data recorded by DELPHI in 1997 to 2000 at centre-of-mass
energies of 183 to 208 GeV. No deviation from the Standard Model was ob-
served. Upper limits are given for the �121 and �131 couplings as a function of
the sneutrino mass and total width. The limits are especially stringent for sneu-
trino masses equal to the centre-of-mass energies with the highest integrated
luminosities recorded.
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1 Introduction1

In the Minimal Supersymmetric extension of the Standard Model (MSSM) [1], a dis-
crete symmetry called R-parity [2] predicts baryon number (B) and lepton number (L)
conservation which is an accidental feature of the SU(3)�SU(2)�U(1) Standard Model
(SM). The related quantum number Rp = (�1)3B+L+2S, where S is the spin of the par-
ticle, is multiplicatively conserved. However, from a theoretical point of view, R-parity
conservation is not needed. Allowing its violation leads to a more general superpotential
W which can include the following renormalizable gauge invariant additional terms:

W�L6=0 = �ijkLiLj
�Ek + �0ijkLiQj

�Dk + �iHuLi

W�B 6=0 = �00ijk
�Ui
�Dj

�Dk:

Here L (Q) are the lepton (quark) doublet super�elds, �E ( �U , �D) are the lepton (up2

and down quark) singlet super�elds, Hu is the Higgs superdoublet coupling to up-type3

quarks and leptons, i, j, k are generation indices; �i are parameters with dimensions4

while �ijk, �
0
ijk, �

00
ijk are dimensionless Yukawa-like couplings. The �ijk (�00ijk) couplings

are anti-symmetric in the �rst (last) two indices because of gauge invariance.5

Nevertheless, it is necessary to require that �L 6= 0 and �B 6= 0 terms are not both
present to avoid a fast proton decay. In this paper, it will be assumed that only one �ijk
coupling is non-vanishing.6

R-parity violation has two major consequences. It allows the decay of the lightest
supersymmetric particle (LSP), thus discarding it as a candidate to cold dark matter.
It also allows the supersymmetric particles to be singly produced, via �ijk couplings in
the case of e+e� collisions. It is this possibility that is explored in this paper. If �121 or
�131 is non-vanishing, a muon sneutrino or a tau sneutrino (an electron sneutrino cannot
be produced because �111 = 0), with spin 0, can be produced in the s-channel [3] (see
Figure 1). The simplest expression for the cross-section is [4]:

�(e+e� ! ~� ! X)(s) =
4�s

M2
~�

�(ee)�(X)

(s�M2
~� )

2 +M2
~��

2
~�

where �(ee) = �(~�j ! e+e�) =
�21j1

16�
M~�, j = 2, 3 and �(X) denotes the partial width

for ~�j decay to a �nal state X, with X = e+e� (sneutrino direct decay), ~�0� or ~��l�7

(sneutrino indirect decays). In the indirect decay mode, �(X) is independent of �1j1. The8

additional t-channel contributions and the interference terms, not shown in this formula9

for reasons of compactness, were included in the signal simulation [5] and �nal estimation10

of expected events. This cross-section is expected to be very high for M~� ' ps (of the11

order of 50 pb for instance for �1j1 = 10�2) and to remain large for masses below the12

centre-of-mass energy, due to initial state radiation e�ects, again not displayed by this
formula but taken into account in the analysis.13

Given the present (indirect) upper limits on �121 and �131 (�121 < 0:04 � M~eR

100 GeV/c2
,

�131 < 0:05� M~eR

100 GeV/c2
at 68% con�dence level (CL) [6]), the e+e� decay channel, having a14

cross-section proportional to �4, is suppressed compared to the other two (� / �2), unless15

all neutralinos and charginos are heavier than the sneutrino. The direct decay mode has16

already been investigated by the LEP collaborations [7] by looking for deviations from the17

Standard Model in the cross-sections and asymmetries of e+e� ! l+l�. The results were18

presented as an upper limit on �1j1 as a function of the sneutrino massM~� . The indirect19

decay modes are analysed explicitly here, taking into account any mass and width of the20
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Figure 1: Lowest order Feynman diagrams for single sneutrino production and decay: a)
direct decay, b) indirect decay (�j = ��; �� ; lj = �; � ; m = 1,4; n = 1,2).



3

sneutrino as a function of the MSSM parameters. The scheme chosen here is a constrained21

MSSM in which the SUSY breaking occurs via gravitational interactions (mSUGRA [1]).22

The relevant parameters are then: M2, the SU(2) gaugino mass at the electroweak scale;23

m0, the scalars common mass at the Grand Uni�ed Theories (GUT) scale; �, the mixing24

mass term of the Higgs doublets at the electroweak scale; and tan�, the ratio of the25

vacuum expectation values of the two Higgs doublets. The uni�ed trilinear coupling A026

is assumed to be zero. It is also assumed that the running of the � couplings from the27

GUT scale to the electroweak scale does not have a signi�cant e�ect on the running of
the gaugino and sfermion masses.28

In this model, the LSP is generally the lightest neutralino ~�01; with a �121 (�131)
coupling, it decays to e��e or ee�� (e��e or ee��). All other sparticles, like the sneutrino,29

can have both direct and indirect decays. In particular, the lightest chargino ~�+1 can30

decay either to ee�, e�e�� (�121) or to the Rp conserving channel ~�01W
?. The latter is31

generally clearly dominant over the former, unless the � coupling is very large or the32

mass di�erence between the chargino and the neutralino is very small. The decays of the33

heavier neutralinos and charginos are similar, with the additional possibility of longer
cascade decays always leading to the LSP decay.34

A complete review of the possible decays of the neutralinos and charginos showed
that the �nal states of all indirect decays of the sneutrino could be classi�ed into three
topologies (or channels):35

1) events with two leptons and missing energy;36

2) events with four or six leptons (with or without missing energy);37

3) events with at least two isolated leptons and at least two hadronic jets.38

The �rst topology mostly comes from ~� ! ~�01�, ~�
0
1 ! e�l��, leading to a 2l + � �nal

state. The second one is dominated by ~� ! ~�+1 l
�, ~�+1 ! ~�01l

+�, ~�01 ! e�l��, leading to39

4l+2�. The third topology, being relatively general, often has a high branching ratio. It40

can arise for example from ~� ! ~�+1 l
�, ~�+1 ! ~�01q�q

0, ~�01 ! e�l��, leading to 3l+2jets+�,41

or from ~� ! ~�02�, ~�
0
2 ! ~�01q�q, ~�

0
1 ! e�l��, leading to 2l + 2jets+2�.

42

The paper is organised as follows. Section 2 lists the data samples that were used in
the present search for resonant sneutrino production. In section 3, the selection criteria43

are described, as well as the results of the selection. Finally, in section 4 the limits on44

the �1j1 couplings are derived by comparing the Standard Model expectations and the
experimental results.45

2 Data samples46

A detailed description of the DELPHI detector can be found in [8]. The present47

analysis was mainly based on the capability of reconstructing charged particle tracks48

using the tracking devices, particularly the Time Projection Chamber (TPC) but also49

the silicon Vertex Detector, the drift chambers called Inner and Outer Detectors, and the50

forward detectors. The complete system was inside a solenoidal magnetic �eld of 1.2 T,51

parallel to the beam axis. The analysis also used the lepton identi�cation capabilities52

of the electromagnetic calorimeters (the barrel High density Projection Chamber HPC53

and the Forward Electro-Magnetic Calorimeter FEMC) for the electrons and of the muon
chambers for the muons. The hadron calorimeter was used to detect neutral hadrons.54

The data from 1997 to 2000 LEP runs were taken at centre-of-mass energies between
183 GeV and 208 GeV. The registered integrated luminosities after requiring the TPC55
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<
p
s>(GeV)

RL (pb�1)
182.7 52.2
188.6 153.8
191.6 25.1
195.5 75.9
199.5 82.8
201.6 43.2
203.7 6.3
205.0 67.2
206.5 78.2
208.0 7.3
All 592.0

Table 1: Average centre-of-mass energies and integrated luminosities.

and all the calorimeters (HPC, FEMC and hadron calorimeter) to be operational are56

given in Table 1. This quality requirement rejected 2% of the luminosity recorded in57

1997 to 1999 and 29% of 2000 integrated luminosity, because one of the twelve sectors58

of the TPC was o� before the end of the data taking. Runs with partly ine�cient muon59

chambers were kept, and the simulation was adjusted to reproduce the e�ective e�ciency.
60

To evaluate the background contamination, di�erent contributions coming from the
Standard Model were considered. The Standard Model events were produced by the61

following generators: BDKRC [9] for the e+e� ! e+e�l+l� four-fermion events of type 

,62

and WPHACT [10] for the other four-fermion events; KK2F [11] for the two-fermion events63

of type e+e� ! f �f (
), with f 6= e, � , BHWIDE [12] for the Bhabha events (f = e) and
KORALZ [13] for f = � events; PYTHIA [14] and WPHACT for the 

 ! hadrons events.64

Signal events were generated with the SUSYGEN 2.20 generator [5]. Samples of 3500
to 6000 events were generated for nine MSSM parameter sets (see Table 2).

65

Simulated events were produced from the generated samples with the standard
DELPHI simulation program DELSIM [8] and passed through the same reconstruction
chain as the data. These events were used to design the event selection.66

A faster simulation programme (SGV) [15] was applied to the same generated samples
in order to be validated for further use in the limits extraction.67

3 Event selection68

In order to select the three categories of �nal states de�ned above, a preselection was69

�rst applied. In the following, charged particles reconstructed from their trajectories in70

the tracking chambers were accepted only if their momenta were greater than 100 MeV/c71

and less than 1.5 times the beam energy. They also had to have a relative momentum72

error less than 100% and impact parameters of at most 4 cm both in the plane transverse73

to the beam and along the beam direction. On the other hand, a neutral particle is74

assumed to be detected as a cluster of energy deposits not associated to a track. In each
event, the following were required:75

� at least two charged particles;76
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Parameter set m0 � M2 �~� m(~�01) m(~�+1 ) Br1 Br2 Br3
1 150 175 125 1 37 68 0.39 0.23 0.38
2 190 275 155 1 65 116 0.42 0.24 0.34
3 200 195 175 1 64 106 0.41 0.20 0.38
4 207 125 385 0.2 87 104 0.57 0.15 0.28
5 207 -75 155 0.5 71 96 0.19 0.24 0.57
6 207 -125 115 1 63 127 0.10 0.17 0.72
7 207 305 135 1.5 57 105 0.37 0.24 0.39
8 207 -285 65 2 36 81 0.17 0.37 0.46
9 220 285 185 1 80 142 0.52 0.18 0.31

Table 2: Values of the SUSY parameters (in GeV/c2) used in the signal simulation,
and resulting width, masses and branching ratios (Bri is the branching ratio of channel
number i).

� the sum of all charged particle energies greater than 0:1�ps (and in any case, total
energy of all particles Etot greater than 20 GeV);77

� the total momentum transverse to the beam greater than 5 GeV/c;78

� the absolute value of total electric charge at most 1 if there are less than 7 charged
particles;79

� at least one charged particle in the barrel (polar angle between 40� and 140�);80

� the absolute value of the cosine of the polar angle of the missing momentum vector
below 0.95 (or 0.9 in case of exactly two charged particles);81

� at least one isolated (i.e. with no other track in a 5� half-cone centred on its direction)82

identi�ed lepton (electron or muon) with momentum above 5 GeV/c and with a
maximum angle of 170� with respect to the nearest track.83

The lepton identi�cation used standard DELPHI tools [8]. The electron identi�cation84

algorithm relied on two types of informations: the energy deposited in the electromagnetic85

calorimeters and the dE/dx measurement in the TPC. The muon identi�cation algorithm86

was based on the association of signals in the muon chambers with extrapolated tracks;
the most e�cient set of criteria, as described in [8], was chosen for this analysis.87

The above criteria de�ne the preselection. Then four more series of requirements were88

designed, in order to select the di�erent kinds of topologies. For the two acoplanar189

lepton and four or six lepton topologies, the criteria were the same for both �121 and �131
couplings; for the semi-leptonic topology, two slightly di�erent selections were applied.90

� For the two acoplanar lepton �nal states, it was required that:91

{ there be exactly two charged particles;92

{ not both identi�ed as muons;93

{ the acoplanarity be above 40�;94

{ the acollinearity2 be above 50�;95

{ the invariant mass of the two leptons3 be lower than 0:25�ps;96

{ the angle between the two leptons be lower than 100�.97

1The acoplanarity is 180� minus the angle between the transverse momenta of the two charged particles, or of the
two reconstructed jets (forcing the number of jets to be two with the LUCLUS algorithm [16]) if the event contains more
particles.

2The acollinearity is 180� minus the angle between the two charged particles (or the two jets, see the de�nition of
acoplanarity).

3When the second lepton was not identi�ed, it was assumed to be an electron.
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� For the four or six lepton �nal states, the requirements were:98

{ four or six charged particles;99

{ at least two identi�ed leptons (electrons or muons);100

{ the resolution parameter of the Durham algorithm [17] for which the event
changes from four to three jets y34 greater than 10�4.101

� For the semi-leptonic �nal states, �121 coupling:102

{ at least 7 charged particles and at most 25;103

{ at least two identi�ed leptons (electrons or muons);104

{ the transverse momentum of the second most energetic lepton had to be above
0:05 �ps;105

{ y34 had to be greater than 10�3;106

{ when the number of jets was forced to four, at least two of them were required
to be thin, that is to have a total (track + neutral) multiplicity not exceeding 4.107

� For the semi-leptonic �nal states, �131 coupling:108

{ at least 7 charged particles and at most 25;109

{ at least two identi�ed leptons (electrons or muons), including at least one iden-
ti�ed electron;110

{ y34 had to be greater than 10�3;111

{ when the number of jets was forced to four, at least two of them were required
to be thin;112

{ the missing energy (
p
s� Etot) had to be greater than 0:25 �ps.113

The numbers of data and of SM Monte Carlo events after the preselection are shown114

in Table 3. Distributions of some important variables are shown in Figures 2 and 3 at115

the preselection level. The plots were chosen so as to give at least an example of each116

centre-of-mass energy. The agreement between real data and simulated SM background
is good.117

Some examples of signal distributions are also given, for the following parameters:118

�1j1 = 0:05, m0 =
p
s, tan � = 1:5, � = �125 GeV/c2, M2 = 115 GeV/c2. The missing119

energy signal is given for the semi-leptonic channel, j = 3, and scaled by a factor of 5;120

the second lepton transverse momentum and the thin jet multiplicity signals are given121

for the semi-leptonic channel, j = 2, and scaled by a factor of 5 and 2 respectively; the122

log10 y34 signal is given for the four-lepton channel, j = 3, and scaled by a factor of 20;123

the acollinearity and the two-lepton angle signals are given for the two-lepton channel,124

j = 2, and scaled by a factor of 20; the acoplanarity and the two-lepton invariant mass125

signals are given for the two-lepton channel, j = 3, and scaled by a factor of 20 and 50126

respectively.
127

The e�ciency of the selections, including the preselection, depends on the SUSY pa-128

rameters. It is shown in Figure 4 for the nine parameter sets which were fully simulated129

with DELSIM (Table 2) using a �121 coupling and
p
s = 206:5 GeV. The Figure also shows130

the e�ciencies evaluated with SGV; they are compatible. The fact that SGV e�ciencies131

were systematically lower than DELSIM e�ciencies in the four or six lepton channel was not132

compensated for, �rst because this has a small impact on the global e�ciency and second133

because it gives conservative results. The e�ciencies for a �131 coupling are comparable,
although always lower.134

The expected background at the end of the selections is mainly composed of four-135

fermion events. The 

 background is totally negligible. The background coming from136

the two-fermion events is small and its proportion decreases when the centre-of-mass137
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p
s (GeV) SM Data
182.7 1003�11 1071
188.6 2909�16 2913
191.6 466�3 484
195.5 1387�8 1466
199.5 1487�8 1537
201.6 772�5 777
203.7 110�1 99
205.0 1180�7 1210
206.5 1345�6 1322
208.0 126�1 115

Table 3: Number of events after the preselection (SM= Monte Carlo simulated SM back-
ground normalised to the data luminosity). Errors are statistical only.

energy increases. For instance, it is 9% in the two-lepton channel at 183 GeV and 4% at
206.5 GeV.138

The number of data and of SM Monte Carlo events at the end of the selections is139

shown in Table 4. There is no signi�cant excess of data in any of the three channels and
in any of the centre-of-mass energy samples.140

4 Limits on �121 and �131 couplings141

Besides being used as an event generator, SUSYGEN was also used to scan a wide part142

of the MSSM parameter space and compute all the cross-sections of the signal, with143

�1j1 = 5 � 10�3. In the model adopted for this search and described in section 1, all144

SUSY phenomenology can be derived from the four parameters tan �, m0, M2 and �,145

plus the centre-of-mass energy for the kinematics. The parameter sets explored in the
scan were:146

� ps = 182:7, 188.6, 199.5 and 206.5 GeV,147

� tan � = 1:5 or 30,148

� m0= 100 to 230 GeV/c2 (170 to 215 GeV/c2 in steps of 1 GeV/c2, 100 to 170 GeV/c2

in steps of 10 GeV/c2, 215 to 230 GeV/c2 in steps of 5 GeV/c2),149

� M2 = 5 to 405 GeV/c2 in steps of 10 GeV/c2,150

� � = �305 to 305 GeV/c2 in steps of 10 GeV/c2.151

The cross-sections at
p
s = 191:6 GeV were taken from the

p
s = 188:6 GeV scan152

simply assuming
p
s+3 GeV; in the same way, the cross-sections at 195.5 and 201.6 GeV153

were taken from the 199.5 GeV scan and the cross-sections at 203.7, 205.0 and 208.0 GeV154

were taken from the 206.5 GeV scan assuming the corresponding centre-of-mass energy
shifts.155

The sneutrino mass M~� was assigned the value of m0, thus slightly departing from a156

strict mSUGRA model. This is a conservative hypothesis since the sneutrino mass tends
to decrease whereas the gaugino masses are left untouched.157

Very small values of the sneutrino total width (�~� < 150 MeV/c2) correspond to158

regions of the parameter space where the sneutrino is lighter than the gauginos; they can159

hardly be detected by the present analysis, however they are covered by e+e� ! l+l�
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Figure 2: Examples of data-simulation comparison at preselection level. The dashed lines
are examples of signal distributions (see text).
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Figure 3: Additional examples of data-simulation comparison at preselection level (the
log10 y34 and jet multiplicity distributions are given for events with at least four charged
particles). The dashed lines are examples of signal distributions (see text).
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Figure 4: SGV-DELSIM comparison for nine SUSY parameter sets with di�erent sneutrino
masses and total widths (see Table 2) in the case of a �121 coupling and for tan � = 1:5,p
s = 206:5 GeV. For this comparison, the same number of events was simulated with

SGV and DELSIM.
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2 leptons 4 leptons semi-leptonic all channelsp
s (GeV) �121 �131 �121 �131

182.7 SM 9.3�0.5 3.0�0.3 2.0�0.1 2.5�0.1 14.3�0.6 14.8�0.6
Data 7 2 4 0 13 9

188.6 SM 26.0�0.5 8.4�0.4 7.3�0.2 7.5�0.2 41.7�0.7 41.9�0.7
Data 26 7 8 2 41 35

191.6 SM 4.1�0.1 1.5�0.1 1.31�0.03 1.24�0.03 6.9�0.2 6.8�0.2
Data 2 2 2 2 6 6

195.5 SM 11.9�0.2 3.9�0.2 4.2�0.1 3.7�0.1 20.0�0.3 19.5�0.3
Data 10 5 5 2 20 17

199.5 SM 13.0�0.3 4.4�0.2 4.8�0.1 4.0�0.1 22.2�0.4 21.4�0.4
Data 11 4 5 2 20 17

201.6 SM 6.3�0.1 2.2�0.1 2.5�0.1 1.9�0.1 11.0�0.2 10.4�0.2
Data 3 1 3 3 7 7

203.7 SM 0.93�0.03 0.34�0.02 0.39�0.02 0.30�0.02 1.6�0.1 1.5�0.1
Data 0 0 0 0 0 0

205.0 SM 10.1�0.3 3.5�0.2 3.9�0.2 3.2�0.2 17.5�0.4 16.8�0.4
Data 14 4 4 3 22 21

206.5 SM 11.4�0.3 4.4�0.2 4.7�0.3 3.6�0.3 20.5�0.5 19.4�0.5
Data 12 1 7 3 20 16

208.0 SM 1.04�0.02 0.44�0.04 0.50�0.03 0.36�0.03 1.9�0.1 1.8�0.1
Data 1 0 0 0 1 1

Table 4: Number of events at the end of the selection (SM = Monte Carlo simulated
SM background). Errors are statistical only. Note that the sum of all channels is not
independent for �121 and �131 due to the common analysis for the �rst two channels.

analyses [7].160

Regions of the parameter space already excluded by the precision measurements161

at LEP1 were not further explored in the present scans. This condition was imple-162

mented in the following way. Using the expression for the cross-section at the resonance,163

�(e+e� ! Z ! X) = 12� �ee�X
M2

Z�
2

Z

, the limit �new < 6:6 MeV/c2 at 95% CL [18] can be
164

converted into an upper limit on the cross-section of new decay modes: �new < 157:2 pb165

at 95% CL. SUSY parameter sets for which the total cross-section of pair production166

of charginos and neutralinos at
p
s ' MZ was larger than this limit were considered as167

excluded by LEP1.
168

To derive the limits on one � coupling, each centre-of-mass energy was �rst considered169

separately. The three channels being totally independent due to the charged particle170

multiplicity criterion, they were summed up (Table 4). On the other hand, the (M~�;�~�)171

plane was divided into rectangular bins of size (1 GeV/c2, 50 MeV/c2). For each set of172

parameters entering a given bin, the output of two scans was used. First the SUSYGEN173

scan to get �, the total cross-section expected for e+e� ! ~� ! X, X representing all174

�nal states from indirect sneutrino decays. From the expression given in the introduction,175

� = �0 � �2. �0 is almost independent of � as long as � is reasonably small: for � = 0:1,176

�0 is at most a few percent lower than for � = 10�4. Second a SGV scan on the same177

parameters (however with wider steps, of 10 GeV on the full m0 range and of 20 GeV for178
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� andM2), to obtain the global e�ciency of the analysis, �, combining the three separate179

channel e�ciencies according to the branching ratios predicted by SUSYGEN. 1000 events
were simulated for each parameter set.180

An upper limit at 95% CL on the total number of signal events (Nup) compatible with
the data and expected background was then calculated for each (M~� ;�~�) bin, combining
the ten centre-of-mass energy samples considered as independent samples. This was done
using the Bayesian method described in reference [19]; the relative probabilities of each
centre-of-mass energy were taken as

wi =
(�0�)i

RL
i

10X
j=1

(�0�)j
RL

j

;

where (�0�)i is the lowest value of such a product in the considered bin and
RLi is the

integrated luminosity of the ith sample. The 95% CL upper limit on � in each bin was
then

� <

vuuuut
Nup

10X
j=1

(�0�)j
RL

j

:

The whole procedure was repeated for the second coupling.
181

The results are shown in Figures 5 to 8 corresponding to the two values of tan �182

considered. In a very large fraction of the (M~� ;�~�) plane the obtained upper limit on183

�1j1 is at most 0.1, and below 0.01 in still the major part of the area allowed by the
parameters range.184

There are two main sources of systematic errors on these results. One is the es-185

timation of the expected SM background. Uncertainties arise from the Monte Carlo186

statistics (at most �5%, see Table 4), from the detector response simulation and from187

the cross-sections evaluation and event modelling. In the last case, a comparison of dif-188

ferent generators gave at most �5% di�erence, mainly coming from the hadronisation189

modelling, for the four-fermion processes which are the dominant background. This un-190

certainty is smaller for two-fermion processes and larger for 

 events, which however do191

not a�ect the �nal results because very few events of that kind remain at the end of the192

selection. The resulting systematic uncertainty on the limit on �, evaluated separately193

for each centre-of-mass energy, is of the order of �2%. The second source of system-194

atic errors is the estimation of the selection e�ciency, performed with a fast simulation195

and however statistically limited (up to �5% on low branching ratio channels). Here an196

important uncertainty arises from the track reconstruction and the lepton identi�cation197

e�ciencies. Discrepancies between DELSIM and SGV are at the level of �4% for the global198

e�ciency (Figure 4). The resulting variation of the limit on �, using the prescription of199

reference [20], is �3% for the sample with highest luminosity, and at most �1% for the200

other samples. These e�ects were considered small and were not included in the plots of201

Figures 5 to 8.
202

In order to make the results easier to read, the upper limits on the � couplings were203

also derived as a function of the sneutrino mass only. This was simply done by keeping204

the most conservative limit for each sneutrino mass, assuming �~� > 150 MeV/c2. The205

results can be seen in the same Figures as for the two-dimensional limits. The limits206
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clearly show the centre-of-mass energy structure of the data samples; they are especially
stringent for M~� '

p
s.207

5 Conclusion208

The possibility of single production of supersymmetric particles was explored but none209

was seen. Upper limits at the 95% CL were derived in the mSUGRA constrained MSSM210

framework with low and high values of tan � for the two possible Rp violating couplings211

�121 and �131. They are at the level of 2 to 3�10�3, depending on M~� , when it is close212

to the centre-of-mass energy. They are slightly better for high tan � and slightly worse213

for �131 as compared to �121. In any case, they are one or two orders of magnitude better214

than the published indirect limit, even for sneutrino masses outside the centre-of-mass215

energies of the analysed data, due to the t-channel and, more importantly, to the initial
state radiation below the resonance.216
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Figure 5: For tan � = 1:5, upper limit on �121 as a function of M~� and �~� (top) and
as a function of M~� assuming �~� > 150 MeV/c2 (bottom). The white zone in the top
plot corresponds to non existing sneutrino widths given the � parameter range. The area
entitled `no limit on �' corresponds to upper limits larger than 0.1. The indirect limit
coming from precision measurements is drawn in the bottom plot assuming M~eR =M~� .
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Figure 6: For tan � = 30, upper limit on �121 as a function of M~� and �~� (top) and as
a function of M~� assuming �~� > 150 MeV/c2 (bottom). The white zone in the top plot
corresponds to non existing sneutrino widths given the � parameter range. The area
entitled `no limit on �' corresponds to upper limits larger than 0.1. The indirect limit
coming from precision measurements is drawn in the bottom plot assuming M~eR =M~� .



17

Figure 7: For tan � = 1:5, upper limit on �131 as a function of M~� and �~� (top) and
as a function of M~� assuming �~� > 150 MeV/c2 (bottom). The white zone in the top
plot corresponds to non existing sneutrino widths given the � parameter range. The area
entitled `no limit on �' corresponds to upper limits larger than 0.1. The indirect limit
coming from precision measurements is drawn in the bottom plot assuming M~eR =M~� .
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Figure 8: For tan � = 30, upper limit on �131 as a function of M~� and �~� (top) and as
a function of M~� assuming �~� > 150 MeV/c2 (bottom). The white zone in the top plot
corresponds to non existing sneutrino widths given the � parameter range. The area
entitled `no limit on �' corresponds to upper limits larger than 0.1. The indirect limit
coming from precision measurements is drawn in the bottom plot assuming M~eR =M~� .


