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Abstract

We calculate dark matter scattering rates in the minimal supersymmetric extension

of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the

Higgs multiplets, m1,2, to be non-universal (NUHM). Compared with the constrained MSSM

(CMSSM) in which m1,2 are required to be equal to the soft supersymmetry-breaking masses

m0 of the squark and slepton masses, we find that the elastic scattering cross sections may

be up to two orders of magnitude larger than values in the CMSSM for similar LSP masses.

We find the following preferred ranges for the spin-independent cross section: 10−6 pb

>∼ σSI
>∼ 10−10 pb, and for the spin-dependent cross section: 10−3 pb >∼ σSD, with the

lower bound on σSI dependent on using the putative constraint from the muon anomalous

magnetic moment. We stress the importance of incorporating accelerator and dark matter

constraints in restricting the NUHM parameter space, and also of requiring that no unde-

sirable vacuum appear below the GUT scale. In particular, values of the spin-independent

cross section another order of magnitude larger would appear to be allowed, for small tanβ,

if the GUT vacuum stability requirement were relaxed, and much lower cross-section values

would be permitted if the muon anomalous magnetic moment constraint were dropped.
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1 Introduction

There have been many previous studies of the elastic scattering rates of supersymmetric

relic particles on matter in the minimal supersymmetric extension of the Standard Model

(MSSM) [1] - [6], assuming conservation of R ≡ (−1)3B+L+2S , where B is the baryon number,

L the lepton number and S the spin, so that the lightest supersymmetric particle (LSP) is

absolutely stable. As in most previous studies, we assume this to be the lightest neutralino

χ [7]. In this paper, we refine and extend previous calculations of the elastic scattering

rates when the input soft supersymmetry-breaking scalar masses for the Higgs multiplets

are allowed to be non-universal at the input GUT scale, the non-universal Higgs model

(NUHM).

As we discuss later in more detail, it is important to impose the constraints due to

accelerator experiments, including searches at LEP, b → sγ and (optionally) the muon

anomalous magnetic moment, gµ − 2. We assume also that most of the cold dark matter is

composed of LSPs, with relic density 0.1 < Ωχh2 < 0.3, while being aware that the lower

part of this range currently appears the most plausible [8].

In the constrained MSSM (CMSSM), in which all the soft supersymmetry-breaking scalar

masses m0 are assumed to be universal, including those for the Higgs doublets H1,2, the

underlying parameters may be taken as m0, the soft supersymmetry-breaking gaugino mass

m1/2 which is assumed to be universal, the trilinear supersymmetry-breaking parameters A0

that we set to zero at the GUT scale in this paper, and the ratio tanβ of Higgs vacuum

expectation values. In the NUHM [9] - [13], there are two additional free parameters, the two

soft Higgs masses or equivalently the Higgs superpotential coupling µ and the pseudoscalar

Higgs boson mass mA. These would be fixed by the electroweak symmetry-breaking vacuum

conditions in the CMSSM, up to a sign ambiguity in µ, in terms of the other parameters

(m0, m1/2, A0, tanβ). We use the parameters (m0, m1/2, µ, mA, A0, tanβ) to parametrize the

more general NUHM.

As we have pointed out previously [12, 13], this six-dimensional NUHM parameter space is

significantly restricted by the requirement that no undesirable vacuum appears when one uses

the renormalization-group equations to run the soft supersymmetry-breaking parameters

between the input GUT scale and the electroweak scale. This requirement constrains the

non-universalities of the Higgs masses: m̂i ≡ sign(m2
i )|mi/m0| : i = 1, 2, which in turn

restricts the range of elastic scattering cross sections that we find 1.

1This extended stability requirement would also exclude non-universalities for the input squark and
slepton masses that allowed their physical values to be similar, an assumption that might lead to much
larger elastic scattering cross sections than we find here.

1



The allowed regions in the (µ, mA), (µ, M2) and (m1/2, m0) planes for certain discrete

values of the other NUHM parameters have been described in [13]. Our first step in this paper

is to provide contours of the elastic scattering cross sections in selected planes, providing a

first comparison with the CMSSM points that appear in these planes. Secondly, we display

the ranges of elastic scattering cross sections that are allowed in these planes, as functions of

the LSP mass. In general, we find that the spin-independent elastic scattering cross sections

may be up to two orders of magnitude larger than values in the CMSSM for similar LSP

masses, and another order of magnitude larger if the GUT vacuum stability requirement is

relaxed. Thirdly, we display ranges of the elastic scattering cross sections as functions of the

LSP mass for all allowed values of the other NUHM parameters.

We review the NUHM in Section 2, including the experimental and phenomenological

constraints on its parameter space. Then, in Section 3, we summarize our treatment of the

elastic scattering matrix elements and display contours of the cross sections in various planar

projections of the NUHM parameter space. Section 4 presents and discusses the ranges of

the cross sections attainable in the NUHM. Finally, Section 5 draws some conclusions from

our analysis.

2 The NUHM and Constraints on its Parameter Space

We assume that the soft supersymmetry-breaking parameters are specified at some large

input scale MX , such as the supergravity or grand unification scale. Motivated by restrictions

on flavour-changing neutral interactions, we assume that squarks and sleptons with the

same Standard Model quantum numbers have universal soft supersymmetry-breaking scalar

masses at this input scale. With the weaker justification provided by some GUTs, we further

assume universality between the soft scalar masses of squarks and sleptons. However, in

the NUHM studied here, we allow the soft supersymmetry-breaking scalar contributions

to the masses of the Higgs supermultiplets at MX to be free non-universal parameters.

Their running from MX down to low energies relates m2
1(MX) and m2

2(MX) to the Higgs

supermultiplet mixing parameter µ and the pseudoscalar Higgs mass mA. Therefore, we use

as free parameters µ(mZ) ≡ µ and mA(Q) ≡ mA, where Q ≡ (mt̃R
mt̃L

)1/2, in addition to the

parameters (m0(MX), m1/2(MX), A0, tanβ) used in the CMSSM 2.

The electroweak vacuum conditions may be written in the form:

m2
A(Q) = m2

1(Q) + m2
2(Q) + 2µ2(Q) + ∆A(Q) (1)

2In this paper, we use the input A0 = 0 for definiteness, noting that the range of effective low-energy
values of A, after renormalization below the GUT scale, is quite limited.
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and

µ2 =
m2

1 − m2
2 tan2 β + 1

2
m2

Z
(1 − tan2 β) + ∆(1)

µ

tan2 β − 1 + ∆
(2)
µ

, (2)

where ∆A and ∆(1,2)
µ are loop corrections [14, 15, 16] and m1,2 ≡ m1,2(mZ). We incorporate

the known radiative corrections [14, 17, 18] c1, c2 and cµ relating the values of the NUHM

parameters at Q to their values at mZ:

m2
1(Q) = m2

1 + c1

m2
2(Q) = m2

2 + c2

µ2(Q) = µ2 + cµ . (3)

Solving for m2
1 and m2

2, one has

m2
1(1 + tan2 β) = m2

A(Q) tan2 β − µ2(tan2 β + 1 − ∆(2)
µ ) − (c1 + c2 + 2cµ) tan2 β

−∆A(Q) tan2 β −
1

2
m2

Z
(1 − tan2 β) − ∆(1)

µ (4)

and

m2
2(1 + tan2 β) = m2

A(Q) − µ2(tan2 β + 1 + ∆(2)
µ ) − (c1 + c2 + 2cµ)

−∆A(Q) +
1

2
m2

Z
(1 − tan2 β) + ∆(1)

µ , (5)

which we use to perform our numerical calculations.

It can be seen from (4) and (5) that, if mA is too small or µ is too large, then m2
1 and/or

m2
2 can become negative and large. This could lead to m2

1(MX) + µ2(MX) < 0 and/or

m2
2(MX) + µ2(MX) < 0, thus triggering electroweak symmetry breaking at the GUT scale.

The requirement that electroweak symmetry breaking occurs far below the GUT scale forces

us to impose the conditions m2
1(MX) + µ(MX), m2

2(MX) + µ(MX) > 0 as extra constraints,

which we call the GUT stability constraint 3. We have discussed in [13] issues related to the

NUHM renormalization group equations (RGE’s) and their solutions.

We assume that R parity is conserved, so that the LSP is stable and is present in the

Universe today as a relic from the Big Bang. Searches for anomalous heavy isotopes tell

us that the dark matter should be weakly-interacting and neutral, and therefore eliminate

all but the neutralino and the sneutrinos as possible LSPs. LEP and direct dark-matter

searches together exclude a sneutrino LSP [20], at least if the majority of the CDM is the

LSP. Thus we require in our analysis that the lightest neutralino be the LSP. We include in

3For a different point of view, however, see [19].
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our analysis all relevant coannihilation processes involving this LSP and sparticles that may

become near-degenerate in various regions of the NUHM parameter space. We restrict our

attention to regions of the NUHM parameter space where 0.1 < Ωχh2 < 0.3.

We impose in our analysis the constraints provided by direct sparticle searches at LEP,

including that on the lightest chargino χ±: mχ± >∼ 103.5 GeV [21], and that on the selectron

ẽ: mẽ
>∼ 99 GeV [22]. Another important constraint is provided by the LEP lower limit on

the Higgs mass: mH > 114.4 GeV [23] in the Standard Model4. The lightest Higgs boson h

in the general MSSM must obey a similar limit, which may in principle be relaxed for larger

tan β. However, as we discussed in our previous analysis of the NUHM [12], the relaxation in

the LEP limit is not relevant in the regions of MSSM parameter space of interest to us. We

recall that mh is sensitive to sparticle masses, particularly mt̃, via loop corrections [24, 25],

implying that the LEP Higgs limit constrains the NUHM parameters. We also impose the

constraint imposed by measurements of b → sγ [26], as discussed in [13].

We take an agnostic attitude towards the latest value of the anomalous magnetic moment

of the muon reported [27] by the BNL E821 experiment. The world average of aµ ≡ 1
2
(gµ−2)

now deviates by (33.7±11.2)×10−10 from the Standard Model calculation of [28] using e+e−

data, and by (9.4±10.5)×10−10 from the Standard Model calculation of [28] based on τ decay

data. On some of the subsequent plots, we display the formal 2-σ range 11.3×10−10 < δaµ <

56.1 × 10−10. However, in view of the chequered history of the theoretical Standard Model

calculations of aµ, we do not impose this as an absolute constraint on the supersymmetric

parameter space.

The results of applying the above constraints to various two-dimensional projections of

the NUHM parameter space were described in [13].

3 Contours of the Cross Sections for Elastic Scattering

The code we use to calculate the spin-independent and -dependent elastic dark matter scat-

tering cross sections σSI,SD was documented in [2, 3], together with the ranges of values

of the hadronic matrix elements that we use. The cross sections for protons and neutrons

are similar within the quoted uncertainties in these matrix elements. There are other codes

available [29] that include additional contributions to the scattering matrix elements, but a

comparison [4] showed that the improvements were not essential for the CMSSM, and we

believe they may also be neglected for our comparisons of the NUHM.

4In view of the theoretical uncertainty in calculating mh, we apply this bound with just three significant
digits, i.e., our figures use the constraint mh > 114 GeV.
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In [13], we analyzed NUHM dark matter in two ways: (i) fixing tanβ = 10 and µ > 0,

but choosing different values of µ and mA, rather than assuming the CMSSM values, and

(ii) varying tanβ for representative fixed values of µ and mA. We presented in [13] three

types of slices through the NUHM parameter space, along (m1/2, m0) planes, (µ, mA) planes

and (µ, M2) planes.

In this paper, we concentrate first on a few specific examples of these slices, presenting

later more general results. We choose two representative examples each of the (m1/2, m0)

planes, (µ, mA) planes and (µ, M2) planes shown previously. As we discuss later in more

detail, the dependences of the cross sections on tanβ are weaker than those on some other

parameters, so we concentrate on planes for tanβ = 10. The examples we choose are the

(m1/2, m0) planes for µ = 400 GeV, mA = 400 GeV and µ = 700 GeV, mA = 700 GeV,

corresponding to Figs. 2(a) and (d) of [13], the (µ, mA) planes for m0 = 100 GeV, m1/2 =

300 GeV and m0 = 300 GeV, m1/2 = 300 GeV, corresponding to Figs. 4(a) and (c) of [13], and

the (µ, M2) planes for m0 = 100 GeV, mA = 300 GeV and m0 = 300 GeV, mA = 500 GeV,

corresponding to Figs. 8(a) and (c) of [13].

3.1 Examples of (m1/2, m0) Planes

We display in Fig. 1 contours of (a,b) the spin-independent and (c,d) the spin-dependent

elastic scattering cross sections, in the cases tanβ = 10, and (a,c) µ = 400 GeV and mA =

400 GeV, and (b,d) µ = 700 GeV and mA = 700 GeV. We assume here and in the subsequent

figures that A0 = 0, mt = 175 GeV and mb(mb)
MS
SM = 4.25 GeV. Here and elsewhere, the

thickest contours denote decades in the cross-section values in pb, labelled by their exponents.

The medium and thinnest lines are intermediate contours in the cross-section values, namely

2× and 5× decades, as labelled.

We notice immediately that the cross-section contours are nearly vertical at large m1/2,

reflecting the fact that they become almost independent of m0 in the NUHM. We also notice

that, within the GUT stability range (inside the black dot-dashed curves), the cross sections

increase with m1/2. This is because the LSP becomes more Higgsino-like as m1/2 increases.

However, the cross sections do decrease again for very large m1/2 beyond the GUT stability

limit as the low energy scalar masses increase with m1/2 as does the light Higgs mass (though

slowly).

The GUT stability requirement imposes m1/2
<∼ 600(1100) GeV in panels (a,c) and (b,d),

respectively. Because of the increases in the cross sections with m1/2, there are in turn upper

bounds on the cross sections, that would not be respected if GUT stability were disregarded.
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Figure 1: Contours of (a,b) the spin-independent and (c,d) the spin-dependent cross sections
(solid black lines) are superimposed on the NUHM (m1/2, m0) planes for tanβ = 10 and
(a,c) µ = 400 GeV and mA = 400 GeV, and (b,d) µ = 700 GeV and mA = 700 GeV. The
near-vertical (red) dot-dashed lines are the contours mh = 114 GeV, and the near-vertical
(black) dashed lines at lower m1/2 are the contours mχ± = 103.5 GeV. The dark (brick red)
shaded regions is excluded because a charged particle is lighter than the neutralino, and the
darker (dark blue) shaded regions is excluded because the LSP is a sneutrino. The light
(turquoise) shaded areas are the cosmologically preferred regions with 0.1 ≤ Ωχh2 ≤ 0.3. The
dark (black) dot-dashed lines indicate the GUT stability constraint. There are two such lines
for each panel and only the areas in between are allowed by this constraint.
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Because the gµ − 2 constraint would provide even stronger upper bounds on m1/2, it would

also impose stronger upper bounds on the cross sections. In Figs. 1 - 3, we have left off the

gµ − 2 contours to avoid confusion with the cross section contours we are highlighting here.

For the case with µ = 400 GeV and mA = 400 GeV, the gµ − 2 constraint places an upper

limit on m1/2 of about 400 GeV and for the case with µ = 700 GeV and mA = 700 GeV, the

limit is m1/2 <∼ 450GeV.

As already remarked, the cross sections themselves do not vary greatly with tan β, but

the interplay of the other constraints is rather tanβ-dependent. In particular, at large tanβ

the gµ − 2 constraint would not reduce significantly the upper bounds on the cross sections.

3.2 Examples of (µ, mA) Planes

We display in Fig. 2 contours of (a,b) the spin-independent and (c,d) the spin-dependent

elastic scattering cross sections, in the cases tan β = 10, and (a,c) m0 = 100 GeV and

m1/2 = 300 GeV, (b,d) m0 = 300 GeV and m1/2 = 300 GeV. We see that there are large

suppressions in the spin-independent cross section for µ ∼ −100 GeV and mA
>∼ 500 GeV,

reflecting a cancellation in the matrix element. Apart from this, the cross sections generally

decrease with increasing |µ| and (to a lesser extent) mA. In this sense, the lower bounds on

|µ| and mA set an upper bound on the cross section in the allowed region.

In the CMSSM, cancellations which drive the cross section to extremely small values

occur only in the spin-independent case, and only for µ < 0. In the NUHM model, however,

we find that there is a new source for a cancellation which affects the spin-dependent cross

section for either sign of µ. The reason this occurs is as follows. In the CMSSM, the

spin-dependent cross section is dominated by the up-squark exchange term and, despite the

difference in the relative signs of the up-type and down-type contributions, the total cross

section remains reasonably large. On the other hand, in the NUHM case considered here,

low-energy sfermion masses are affected by the splitting between the soft supersymmetry-

breaking Higgs masses at the GUT scale, S = g2
1(m

2
1 − m2

2)/4. When S 6= 0, the up squarks

get somewhat heavier and the down squarks somewhat lighter as S increases (see [13] for

details on the effects of S in the renormalization-group equations), opening up the possibility

of a cancellation between the contributions. In Fig. 2(c,d), the cancellation occurs between

the two 10−7 pb contours very close to, but outside the GUT stability curve. The GUT

stability requirement, that bounds |µ| <∼ 700 GeV in the figures displayed, therefore provides

lower bounds on the spin-dependent cross sections. These are somewhat lower than the values

found at the CMSSM points indicated by crosses in Fig. 2. The same cannot be said for the
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spin-independent cross-sections, because the very small cross sections due to cancellations

occur within the GUT stability region, except when one applies the gµ − 2 constraint, which

excludes the µ < 0 region. The interplay of the other constraints is more complicated: as

usual, µ < 0 is disfavoured by the mh, b → sγ and gµ − 2 constraints. The upshot for µ > 0

is that the cross sections are bounded above by the Ωχh2 constraint, so that they cannot be

much more than a factor of ∼ 10 greater than the CMSSM values.

For the values of parameters chosen in Fig. 2 (a,c), we obtain a spin-independent cross-

section of σSI = 2.6× 10−9 pb and a spin-dependent cross-section of σSD = 5.4× 10−6 pb in

the CMSSM for µ > 0 (cf. the position of the crosses in the figures). In the NUHM, we find

that the range of possible cross sections (for this case) is 3 × 10−10pb <∼ σSI <∼ 3 × 10−8pb

and 3 × 10−8pb <∼ σSD <∼ 1.6 × 10−4pb when all constraints other than gµ − 2 are included.

For the parameters in Fig. 2 (b,d), we find the CMSSM spin-independent cross section σSI =

1.9×10−9 pb, while the spin-dependent cross section is relatively unchanged. Note, however,

that this CMSSM point would be excluded due to an excessive value for Ωh2 ( > 1). In the

NUHM, this parameter choice is allowed and gives the range 10−9pb <∼ σSI <∼ 8 × 10−8pb

and 9 × 10−9pb <∼ σSD <∼ 2 × 10−4pb for the elastic cross sections. In this case, there is

essentially no ‘bulk’ cosmological region, and the spread in σ is due to the region where the

relic density is due to the heavy Higgs s-channel exchange, allowing for a larger range in µ.

3.3 Examples of (µ, M2) Planes

We display in Fig. 3 contours of (a,b) the spin-independent and (c,d) the spin-dependent

elastic scattering cross sections, in the cases tan β = 10, and (a,c) m0 = 100 GeV and

mA = 500 GeV, (b,d) m0 = 300 GeV and mA = 500 GeV. Because the cross sections vary

relatively rapidly, we have not included all the decade cross-section contours in panels (c,d).

We see again in this case the suppression in the spin-independent cross section for µ ∼

−100 GeV and M2
>∼ 200 GeV, apart from which the cross sections decrease with increasing

|µ|, at least within the GUT stability region. The spin-dependent cross section, on the other

hand, starts rising again at large |µ|, reflecting the fact that one has traversed a cancellation

in the scattering matrix element of the type described in the previous subsection. Once

again, the cancellation is found between the 10−7 pb contours just outside the GUT stability

curve.

For the values of parameters chosen in Fig. 3 (a,c), we obtain a spin-independent cross

section σSI = 2 × 10−9 pb and a spin-dependent cross section σSD = 3 × 10−6 pb in the

CMSSM (cf. the position of the crosses in the figures). In the NUHM, we find that the
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Figure 2: Contours of (a,b) the spin-independent and (c,d) the spin-dependent cross sections
(solid black lines) are superimposed on the NUHM (µ, mA) planes for tanβ = 10, (a,c)
m0 = 100 GeV and m1/2 = 300 GeV, (b,d) m0 = 300 GeV and m1/2 = 300 GeV. The
shadings and line styles are the same as in Fig. 1. Here, we see in addition the constraint
from b → sγ. The excluded region is medium (green) shaded. The crosses denote the CMSSM
points for these choices of m0 and m1/2.
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range of possible cross sections for this case is 2.5 × 10−11pb <∼ σSI <∼ 9 × 10−8pb and

1.5 × 10−9pb <∼ σSD <∼ 2 × 10−3pb. For the parameters in Fig. 2 (b,d), the CMSSM spin-

independent cross section is σSI = 3 × 10−9 pb, while the spin-dependent cross section is

σSD = 10−5 pb. Note, however, that this CMSSM point would be excluded due to a excessive

value for Ωh2 ( >∼ 1). In the NUHM, this parameter choice is allowed and gives the range

10−13pb <∼ σSI <∼ 2 × 10−8pb and 9 × 10−9pb <∼ σSD <∼ 2 × 10−4pb for the elastic cross

sections.

4 Allowed Ranges of Elastic Cross Sections

Following our discussion in the previous Section of some important features in a few exam-

ples of parameter planes in the NUHM, we now display the ranges of elastic scattering cross

sections permitted by various theoretical and experimental constraints. We start with the

specific NUHM parameter planes discussed above, and then go on to generalize the discus-

sion. In each of the specific planes, we show the effect on the allowed cross section when the

phenomenological and cosmological constraints are applied successively. We start with the

very simple requirement that the LSP be a neutralino with mχ± >∼ 103.5 GeV and mẽ
>∼ 99

GeV. We then apply either the Higgs cut or the b → sγ cut. Our standard cut is defined to

include these two in addition to the appropriate value for Ωh2. Following the standard cut

we apply sequentially the GUT stability constraint and the constraint due to gµ − 2.

4.1 Specific Planes

We consider first the (m1/2, m0) plane for tanβ = 10 and µ = mA = 400 GeV that was

displayed earlier in Fig. 1(a,c). The horizontal axes in the various panels of Fig. 4 correspond

to the LSP mass mχ, and the vertical axes show the ranges of (a,c,e) the spin-independent

and (b,d,f) the spin-dependent elastic cross sections. The first row of panels (a,b) shows

the ranges allowed by our cuts on the LSP (dark lines), mh (lighter lines) and standard cut

(shaded), the second row (c,d) displays the further impact of the GUT stability constraint,

and the third row (e,f) implements all the cuts, including that on gµ − 2.

We see in Fig. 4(a,b) that the scattering cross sections rise monotonically with mχ,

except close to the upper limit on mχ, reflecting the increase with m1/2 that was already

commented in connection with Fig. 1. We also note that the ranges of cross sections allowed

for any fixed value of mχ is very restricted, reflecting the fact the the contours of equal cross

section in Fig. 1(a,c) are almost vertical in the parameter range of interest. The break that

appears in the middle of Fig. 4(a,b), and is seen more clearly in (c,d), reflects the range of
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Figure 3: Contours (a,b) of the spin-independent and (c,d) spin-dependent cross sections
(solid black lines) are superimposed on the NUHM (µ, M2) planes for tan β = 10, (a,c)
m0 = 100 GeV and mA = 500 GeV, (b,d) m0 = 300 GeV and mA = 500 GeV. The shadings
and line styles are the same as in Fig. 2, and the crosses denote the CMSSM points for these
choices of m0 and mA.
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Figure 4: Cross sections allowed in a slice through the NUHM parameter space provided by
the (m1/2, m0) plane for tan β = 10 and µ = mA = 400 GeV. Panels (a,b) are with our cuts
on the LSP (dark lines), mh (lighter lines) and standard cut (shaded), panels (c,d) also have
the GUT stability constraint imposed, and panels (e,f) apply all cuts, including the possible
gµ − 2 constraint. The right (left) panels show the spin-(in)dependent cross section, plotted
against mχ.
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m1/2 ∼ 500 GeV where Ωχh2 is suppressed below the preferred cosmological range by rapid

direct-channel χχ annihilation via the H, A poles.

The most relevant effect of the extra GUT and gµ − 2 constraints is to reduce the range

of m1/2 and hence mχ. As we see in Fig. 4(c,d), the GUT stability constraint removes the

points in this NUHM parameter plane that have the largest elastic scattering cross sections.

Finally, as we see in Fig. 4(e,f), the gµ − 2 constraint confines our attention to points in the

NUHM parameter below the rapid-annihilation channel. In this particular case, there is a

narrow preferred range of the spin-independent cross section around 3 × 10−9 pb, and the

preferred range of the spin-dependent cross section is around 6 × 10−6 pb.

Our second example is the (µ, mA) plane for tan β = 10, m1/2 = 300 GeV and m0 =

100 GeV, displayed previously in panels (a,c) of Fig. 2. As seen in Fig. 5(a,b), when one

imposes the standard Ωχh2, mh and b → sγ constraints, the cross sections generally decrease

with mχ. However, in the spin-dependent case the cross section reaches a locus of near

zeroes, after which it rises again. These cancellations are avoided in this case when the

Higgs and b → sγ constraints are applied. As then seen in Fig. 5(c,d), the GUT stability

constraint, which removes portions of this NUHM parameter plane at large |µ| and small

mA, strengthens in this case the lower bounds on the cross sections. The effect of the gµ − 2

constraint is less marked in this case, as seen in Fig. 5(e,f). The final allowed ranges of the

cross section are considerably wider than in the previous example: ∼ 10−9 to ∼ 10−8 pb in

the spin-independent case and ∼ 10−7 to ∼ 10−4 pb in the spin-dependent case.

Our final example is the (µ, M2) plane for tan β = 10, m0 = 100 GeV and mA = 500 GeV,

shown in Fig. 6. In this case, the standard cuts allow a particularly wide range of cross

sections, varying by infinite (over 3) orders of magnitude for the spin-(in)dependent case.

The different regions allowed by the standard cuts reflect the different branches of parameter

space in Fig. 3. We note that some of these branches are due to the differences between

positive and negative µ. We also note that some of the boundaries are due to our imposed

cutoff of |µ| ≤ 2 TeV. In particular, had we allowed for larger values of |µ|, we would

have found larger neutralino masses, and the lower bounds for both the Higgs and b → sγ

cuts (which differ for positive and negative µ) would also have been lowered. The general

tendency of the standard cuts is to decrease the cross sections with increasing mχ, though

with considerable variation. The GUT stability constraint in this case removes a region at

large M2 and hence mχ, that removes the points with the lowest cross sections. This effect

is particularly marked for the spin-dependent case, where the range is now reduced to (a

mere) 5 orders of magnitude. The gµ − 2 constraint further raises the lower bounds on the

cross sections, so that they vary through just over 3 (under 2) orders of magnitude in the
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Figure 5: Cross sections allowed in a slice through the NUHM parameter space provided by
the (µ, mA) plane for tan β = 10 and m1/2 = 300 GeV, m0 = 100 GeV. The selections of
points in the different panels are the same as in Fig. 4, as are their indications. In addition,
panel (a) also shows the b → sγ cut (dashed lines).
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spin-(in)dependent case.

Notice that there is an isolated point at mχ ∼ 80 GeV. This corresponds to a very narrow

region just to the right of the chargino mass-bound line in Fig. 3(a,c) at µ ∼ 120 GeV, M2 ∼

240 GeV, which is not visible because of the plotting resolution. What happens is that as µ

decreases, mχ falls below the mh threshold, and hence the annihilation cross section decreases

leading to an acceptable value of Ωχh2. However, as µ decreases further, neutralino-chargino

coannihilation becomes stronger, suppressing Ωχh2 again to be less than 0.1.

This brief survey shows the importance of implementing correctly the GUT stability

constraint, which may (in different cases) bound the cross sections either above or below. As

many authors have previously pointed out in the CMSSM case, the gµ − 2 constraint is also

potentially important. In certain cases, it can also strengthen significantly the lower limits

on the NUHM cross sections.

4.2 General Analysis

Equipped with the above information about some specific examples, we now make a general

analysis of the possible values of the elastic scattering cross sections. In the first place, we

concentrate on the case tan β = 10, but relaxing the previous restricted choices of other

parameters that we took as examples. To produce the plots, we generate random points

(about 30000 points for each plot) within the following ranges:

100 GeV ≤ m1/2 ≤ 1500 GeV,

0 ≤ m0 ≤ 1000 GeV,

−2000 GeV ≤ µ ≤ 2000 GeV,

90 GeV ≤ mA ≤ 1500 GeV. (6)

We first impose the same standard experimental and phenomenological constraints discussed

earlier, namely: a consistent electroweak vacuum, 0.1 < Ωχh2 < 0.3, mh > 114 GeV and the

b → sγ constraint. In a previous paper on the CMSSM [3], we rescaled the elastic scattering

cross sections for models that predicted Ωχh2 < 0.1 by the factor Ωχh2/0.1, so as to account

for the fact that the neutralino could constitute at most this fraction of the galactic halo.

In the results that follow, we show how this rescaling affects the upper limits on the cross

sections. Next we apply the GUT stability cut, and finally we show the implications of

imposing the cut on gµ − 2. The resulting ranges of the elastic scattering cross sections for

tan β = 10 are displayed in Fig. 7.

We note that the spin-independent cross section shown in Fig. 7(a) may be as large as
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Figure 6: Cross sections allowed in a slice through the NUHM parameter space provided by
the (µ, M2) plane for tan β = 10 and m0 = 100 GeV, mA = 500 GeV. The selections of
points in the different panels are the same as in Fig. 5, as are their indications.
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a few ×10−8 pb, decreasing only slightly as mχ increases, whilst values lower than 10−13 pb

cannot be excluded. The raggedness of the upper limit on the cross section reflects the fact

that our sampling produced very few points with such large cross sections: values in between

the crags cannot be excluded, but must be very rare. Between the crags there are valleys,

below which the density of points is significantly larger. The lowest values of the cross

section occur for µ < 0, where cancellations are possible in the spin-independent scattering

matrix element, as discussed in a previous paper [2]. The GUT stability constraints exclude

some low cross-section values at both small and large mχ, but do not provide an overall

lower bound. It does however, lower the upper bound by as much as a factor of about 5.

Negative µ, and hence very low cross-section values, would be excluded by the putative gµ−2

constraint, as shown in Fig. 7(a). For µ > 0, we find (not shown) spin-independent cross

sections only above 10−11 pb.

Fig. 7(a) also displays the region (pale shaded) which survives all standard cuts, except

that Ωh2 < 0.1. For points in this region, we have rescaled the cross section by a factor of

Ωh2/0.1, to allow for the fact that the LSP could not in this case make up all the cold dark

matter in the Universe, and hence a fortiori in the galactic halo. As one can see, many of the

spaces between the crags are now filled in with such points, but very few give significantly

larger cross sections.

In the case of the spin-dependent cross section shown in Fig. 7(b), the upper limit is better

defined, and decreases monotonically from ∼ 3×10−3 pb for mχ ∼ 80 GeV to ∼ 5×10−6 pb

for mχ ∼ 650 GeV. Cross sections lower than ∼ 10−10 pb are possible for either sign of

µ, even after imposing the GUT stability cuts. In this case, the points with rescaled cross

sections enhance the cross section by a factor of about 3 at low neutralino masses.

The isolated point in both panels at mχ ∼ 80 GeV now corresponds to a narrow region

around µ ∼ −110 GeV and large mA > 1000 GeV, which is between the mh = 114 GeV and

mχ± = 103.5 GeV lines. Its existence is very sensitive to the implementation of the Higgs

mass bound.

We note that the ranges allowed by gµ − 2 are relatively restricted. For a start, we find

that 110 GeV <∼ mχ
<∼ 200 GeV. Moreover, even within this range, very low cross-section

values are excluded. Overall, we find ranges between ∼ 2 × 10−8 pb and ∼ 2 × 10−10 pb for

the spin-independent cross section, and between ∼ 2 × 10−4 pb and ∼ 2 × 10−8 pb for the

spin-independent cross section.

Ranges for the spin-independent and -dependent cross sections for tanβ = 20 are shown

in Fig. 8. Looking first at the spin-independent cross section in panel (a), we see that

our standard cuts on mh, Ωχh2 and b → sγ would allow somewhat larger values than for
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tan β = 10. This difference is less marked when the GUT stability cut is also applied, except

for some exceptional parameter choices at small mχ. The jaggedness of the peaks is more

pronounced at this value of tanβ. Once again, we emphasize that while we do not expect

the area between the peaks to be empty, the density of points there is extremely low. When

one keeps the low-relic-density points (rescaled appropriately), we see that indeed the crags

are filled in to some extent. For tan β = 20 these points do not enhance the cross section

significantly. The values of mχ allowed by gµ−2 are larger for tanβ = 20 than for tan β = 10,

and lower cross sections are also attainable. Overall, the spin-independent cross section may

vary between ∼ 3 × 10−7 pb and 10−10 pb when tanβ = 20.

In the case of the spin-dependent cross section shown in Fig. 8(b), the upper and lower

bounds for tanβ = 20 are very similar to those for tanβ = 10 if only the standard and GUT

cuts are applied. However, slightly lower values of the cross section are allowed when the

gµ − 2 constraint is applied, without a strong dependence on the value of mχ (which may be

somewhat larger than in the case of tan β = 10). For tan β = 20, the spin-dependent cross

section ranges between ∼ 2 × 10−3 pb and ∼ 10−8 pb.

Continuing now to tan β = 35, as shown in Fig. 9, we see again that the spin-independent

cross section may be somewhat larger still than for tanβ = 20, though the same is not true

for the spin-dependent cross sections. Once again, the gµ − 2 constraint allows larger values

of mχ as tanβ is increased, opening up the possibility of a smaller cross section, particularly

in the spin-dependent case where a cancellation may occur, potentially suppressing the cross

section by a couple of orders of magnitude. Both these tendencies are accentuated in the

case tan β = 50, as shown in Fig. 10. For both tanβ = 35, 50, the spin-independent cross

section may, in some exceptional cases, rise above 10−6 pb, even after implementing all the

cuts. It may also drop as low as 10−10 pb. The maximal spin-dependent cross section is

above 10−4 pb in the tanβ = 35 case, and somewhat below 10−4 pb in the tanβ = 50 case.

In both cases, it may also drop as low as 10−10 pb.

Finally, in Fig. 11, we display the allowed ranges of (a) the spin-independent and (b) the

spin-dependent cross sections when we sample randomly tanβ as well as the other NUHM

parameters. We see no big surprises compared with the previous plots for individual values

of tanβ, but observe that the boundaries of the shaded regions are very ragged, reflecting

the finite sample size. After incorporating all the cuts, including that motivated by gµ − 2,

we find that the spin-independent cross section has the range 10−6 pb >∼ σSI
>∼ 10−10 pb, and

the spin-dependent cross section has the range 10−4 pb >∼ σSD
>∼ 10−10 pb, with somewhat

larger (smaller) values being possible in exceptional cases. If the gµ − 2 cut is removed, the

upper limits on the cross sections are unchanged, but much lower values become possible:
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Figure 8: Ranges of (a) the spin-independent and (b) the spin-dependent cross sections for
tan β = 20. The shadings are the same as in Fig. 7.
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Figure 9: Ranges of (a) the spin-independent and (b) the spin-dependent cross sections for
tan β = 35. The shadings are the same as in Fig. 7.
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Figure 10: Ranges of (a) the spin-independent and (b) the spin-dependent cross sections for
tan β = 50. The shadings are the same as in Fig. 7.
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σSI ≪ 10−13 pb and σSD ≪ 10−10 pb.

5 Conclusions

We have discussed in this paper the possible ranges of spin-(in)dependent elastic cross sec-

tions in the NUHM, in which the input soft supersymmetry-breaking masses of the Higgs

doublets are allowed to differ from those of the squarks and sleptons - which are still as-

sumed to be universal. Fig. 11 summarizes the results, including the flexibility of varying

tan β as well as the input scalar and fermion masses m0,1/2, the Higgs mixing parameter µ

and the the pseudoscalar Higgs mass mA. In this paper, we have not varied the trilinear

soft supersymmetry-breaking parameter A, whose effective low-energy value has in any case

a limited range when renormalized from the GUT scale downwards, so that it does not have

a large effect on the cross sections we study.

We have stressed in this paper the importance of incorporating consistently all the avail-

able phenomenological constraints from laboratory experiments and cosmology. We have also

stressed the importance of taking into account the running of the NUHM parameters over the

full range of scales between the GUT scale and the electroweak scale. As we have discussed

explicitly, the requirement that the effective scalar potential be stable at the GUT scale

restricts the allowed variations in the non-universalities of the soft supersymmetry-breaking

Higgs masses.

The effects of our phenomenological cuts and this GUT stability requirement can be

seen in Fig. 11, and also in the previous Figs. 7, 8, 9 and 10 for tanβ = 10, 20, 35 and 50,

respectively. Some examples of our analysis for specific slices through the NUHM parameter

space can be seen in earlier figures.

In general, we find that cross sections may differ by a few orders of magnitude from those

found in the CMSSM, in which the soft supersymmetry-breaking Higgs masses are assumed

to be universal with the slepton and squark masses at the GUT scale. However, the spin-

independent cross section normally lies well below the present experimental sensitivity. Only

in a few exceptional cases do we find a cross section as large as the present experimental

sensitivity σSI ∼ 10−6 pb, and a sensitivity σSI ∼ 10−10 pb would be required to cover

most of the preferred domain of NUHM parameter space. Even this sensitivity would be

insufficient if one disregards the indication from gµ − 2, which is the only constraint that

motivates a useful upper bound on the sparticle mass scale, and hence a useful lower bound

on σSI . In the case of the spin-dependent cross section, values of σSD as low as ∼ 10−10 pb

cannot be excluded even if one takes seriously the gµ − 2 constraint.
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Figure 11: Ranges of (a) the spin-independent and (b) the spin-dependent cross sections,
sampling randomly all allowed values of tanβ. The shadings are the same as in Fig. 7.
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The next logical step in the exploration of the MSSM, relaxing further the assumption of

full scalar-mass universality as in the CMSSM, is to allow the soft supersymmetry-breaking

slepton and squark masses to differ at the GUT scale. The allowed ranges of the effective

low-energy slepton and squark masses, after renormalization, will be restricted by analogues

of the GUT stability constraints we have applied in this paper. In particular, we note that

general choices of the effective low-energy slepton and squark masses may lead (in particular)

to tachyonic squarks below the GUT scale, when renormalized to higher scales. We will

explore in future publications the effects on the parameter space and the ranges of cross

sections of applying consistently the GUT stability constraints to the general non-universal

MSSM.
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