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1 Introduction and Summary

The cosmological constant has been an enigma in theoretical physics since it was

first realized that in any simple field theoretic notion of quantum gravity, power

divergences lead to large renormalization, sensitive to the largest scales available in

the theory [1]. In terms of naive power-counting, the vacuum energy corresponds to

a relevant operator. One might go further to say that a lack of understanding of

power divergences is at the root of each of the basic theoretical problems in particle

physics including the various hierarchy problems and the aforementioned cosmological

constant problem. It is important to realize that in the case of power divergences, it

is not enough to come up with a mechanism for canceling the parameter at a given

scale; rather, it must be canceled all the way into the infrared (IR).

The cosmological constant problem has become perhaps even more acute given

the recent astronomical data suggesting the existence of a positive but small vacuum

energy density, being roughly in proportion to the present mass density of the universe

[2]. Thus we are faced with a two-fold cosmological constant problem [1]: first, why

is the vacuum energy small and second, why is the vacuum energy in proportion to

the current mass density? In this article we will address the first question.

Field theories that are non-renormalizable (and hence ill-defined in the ultraviolet

(UV)) may be defined through a certain process of dimensional reduction referred to

as deconstruction [3]. This has been demonstrated in theories with internal gauge

symmetries, for example, in the context of five-dimensional Yang-Mills theories. One

dimension of the IR theory is put on a lattice and the resulting theory may be thought

of as a Goldstone realization of a UV four-dimensional gauge theory. In this way, the

continuum higher dimensional theory is thought of as the infrared limit of a lower

dimensional theory. An important aspect of these constructions then is motivating

why the theory has this infrared behavior.

It is enticing to think of gravity in this context: from a four-dimensional field

theoretic point of view, Einstein’s general relativity is famously perturbatively non-

renormalizable. In order to extend the deconstruction ideas to gravity, we must con-

front the spacetime general coordinate and Lorentz symmetries. Thus in this paper,

we explore the idea that four-dimensional quantum gravity may be defined through

deconstruction. It is particularly convenient to work in the vierbein formalism. It

was shown [4] long ago that three-dimensional gravity is a Chern-Simons (CS) gauge

theory and thus is a well-defined quantum theory. In particular its UV character

is sensible because it is topological. The deconstruction to 3 + 1 dimensions would

follow the path of regarding a three-dimensional theory (a close cousin of CS gravity

coupled to matter) as a lattice version of a four-dimensional theory.

Of course, there exists a rather large body of evidence that gravitational theories

should be thought of, in some way, as local theories in one fewer dimension. First,

a purely gravitational theory has no local degrees of freedom in the usual sense of

a local quantum field theory. In the work of ’t Hooft [5] and Susskind [6], it was

realized that an interpretation of this is that a gravitational theory is holographic
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— the observables are not extensive, but related to co-dimension one structures.

This is of course supported by the thermodynamics of black holes, where entropy is

proportional to the area of the event horizon [7]. But most impressively, the idea has

been given a concrete realization in the AdS/CFT construction and its relatives [8].

In the case of four-dimensional gravity, we might then try to follow this path

directly and construct its physics in terms of a three-dimensional field theory. In

realistic models with positive cosmological constant, this might mean some version

of a de Sitter/Euclidean CFT correspondence [9]. Although the existence of such a

correspondence has not been established conclusively, a variety of consequences have

been considered in Refs. [10].

Note that the existing holographic duals of gravity, provided by the AdS/CFT

correspondence, are defined in terms of non-gravitational theories. On the other

hand, there are proposals for a non-perturbative definition of gravity which involve

gravitational degrees of freedom. Perhaps the most notable example of this type

is Matrix theory [11], which in some sense can be viewed as an example of “bulk”

holography.

Finally, more than twenty years ago Weinberg suggested the idea of “asymptotic

safety” which essentially advocates the existence of a UV fixed point for (3 + 1)-

dimensional gravity [12], in the sense of a Wilson-Fisher ǫ-expansion.1 One of the

main points of this article is precisely the suggestion that (3+1)-dimensional gravity

may indeed have a short distance fixed point given in terms of (2 + 1)-dimensional

gravity coupled to (2 + 1)-dimensional matter.

One might be initially puzzled by a suggestion that (3 + 1)-dimensional gravity

can be defined in terms of (2 + 1)-dimensional gravity coupled to (2+ 1)-dimensional

matter. After all, (3 + 1)-dimensional gravity has propagating degrees of freedom.

However, (2+1)-dimensional gravity, viewed as a CS gauge theory, is purely topolog-

ical. There are no propagating, local gravitational degrees of freedom. How can then

a (2+1)-dimensional theory of matter coupled to gravity account for the local, prop-

agating, (3 + 1)-dimensional degrees of freedom, such as gravitational waves? What

our proposal suggests is that “most” of the degrees of freedom of (3 + 1)-dimensional

gravitational theory arise from the non-gravitational part of its (2 + 1)-dimensional

UV completion. The UV completion of (3 + 1)-dimensional gravity is “holographic”

in this sense.

If four-dimensional gravity may be thought of as a three-dimensional theory in

a useful way, what of the cosmological constant? Several years ago, Witten [13]

observed that peculiar properties of (2+1)-dimensional gravity can lead to vanishing

vacuum energy in 2 + 1 dimensions. No precise mechanism for connecting this to

four dimensions has been presented, although Witten’s context was firmly rooted in

the duality between M-theory and the strong coupling limit of Type IIA or heterotic

strings [14]. Can this mechanism be used instead in our context to provide insight

into the vacuum energy in four dimensions? In this note we argue that Witten’s

1In particular, by considering (2 + ǫ)-dimensional gravity.
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reasoning can be deconstructed to 3 + 1 dimensions under very specific conditions.2

The crucial observation we make in this paper is that provided one can define a

UV completion of (3 + 1)-dimensional gravity in terms of purely (2 + 1)-dimensional

gravitational and matter data, then the argument of Witten can be deconstructed

to 3 + 1 dimensions. We motivate our argument by recalling a remarkable fact from

classical general relativity which states that in the presence of a space-like Killing

field, 3 + 1 vacuum general relativity is equivalent to (2 + 1)-dimensional general

relativity coupled to an SO(2, 1) non-linear σ-model [16, 17]. We then proceed to

provide a quantum analogue of this classical theorem and argue that a full quantum

theory of (3 + 1)-dimensional general relativity can be defined at short distance in

terms of (2 + 1)-dimensional gravity coupled to (2 + 1)-dimensional matter. This

then provides support for the claim that Witten’s observation about the vanishing

(2 + 1)-dimensional vacuum energy may be also valid in the world we observe.

2 The Cosmological Constant in 2 + 1 Dimensions

It was observed by Witten [13] that supersymmetry in 2 + 1 dimensions can lead to

vanishing vacuum energy in the absence of a mass degenerate spectrum of bosonic

and fermionic states. The vacuum state is supersymmetric, and therefore the cos-

mological constant is zero, but the excited states are not mass degenerate because

unbroken global supercharges do not exist in 2+1 dimensions [18]. Having unbroken

global supercharges in the theory, which is what leads to the mass degeneracy of the

bose-fermi spectrum in the first place, necessitates the existence of spinor fields that

are covariantly constant at infinity. In 2 + 1 dimensions any excited state gives a

conical geometry whose deficit angle prohibits spinor fields with covariantly constant

asymptotics. Thus, there is no mass degeneracy of bose-fermi excitations. The non-

degeneracy of the spectrum of low-energy excitations scales as the inverse power of

the three-dimensional Newton constant under the assumption of weak gravitational

coupling [14].

Although a precise realization of Witten’s argument about a supersymmetric vac-

uum with non-supersymmetric excitations apparently does not exist in the literature,3

Becker, Becker, and Strominger [19] provide an instructive construction with a soli-

tonic ground state.4 We briefly review their considerations.

Becker, Becker and Strominger considered an N = 2 abelian Higgs model in

2 + 1 dimensions [21] and studied a Nielsen-Olesen vortex [22] configuration in this

theory. The solitonic configuration breaks half the supersymmetry. When this model

2This would perhaps imply alternative interpretations of the recent astronomical data [2]. Such

interpretations are explored in Ref. [15].
3Witten’s argument that there can be a supersymmetric vaccum with non-supersymmetric exci-

tations has not been lifted to four-dimensions. Most (3 + 1)-dimensional asymptopia, however, are

not consistent with the existence of globally conserved supercharges. For example, time-dependent

backgrounds usually do not allow covariantly constant spinors.
4For a related discussion see Ref. [20].
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is coupled to supergravity, the (2 + 1)-dimensional gravitational background of this

soliton has a particular asymptotic behavior describing a conical geometry

ds2 = −dt2 +
dzdz̄

|z|2M/MPl
, (1)

where M = v2n, with v the expectation value of the Higgs field and n > 0, is pro-

portional to the soliton mass and MP l is the three-dimensional Planck mass. The

geometry has deficit angle δ = 2πM/MP l, and the soliton saturates the BPS bound.

The gravitino gives rise to an Aharanov-Bohm phase that exactly cancels the geo-

metric phase associated to the deficit angle of the conical singularity. However, the

fermionic zero mode is not normalizable and is absent from the physical spectrum.

Thus, there is no N = 1 supermultiplet of the unbroken supersymmetry. In this

way, Witten’s observation holds and the bose-fermi degeneracy of the excited states

is lifted even though the solitonic ground state has zero vacuum energy.

3 Deconstructing Gauge Theories: A Summary

Before we discuss the case of (3 + 1)-dimensional gravity, let us review the gauge

theory case from a slightly different point of view than the original presentation [3].

Consider a gauge theory action

S = −
1

2g2
d

∫

dd−1xdy trF 2
AB(x, y). (2)

We use the notation xA ≡ {xµ, y}. We wish to arrive at a theory on the space

(Rd−1 × Γ). We then latticize y with lattice spacing a:

S = −
a

2g2
d

∫

dd−1x
∑

j

tr
(

F 2
µν,j(x) + 2F 2

5ν,j

)

. (3)

In the continuum,

F5ν,j = ∂5Aν − ∂νA5 + i[A5, Aν ]. (4)

We define a link variable in the usual way:

Uj,j+1 = exp
(

i
∫

dyA5(x, y)
)

≃ 1 + iaA5,j + . . . . (5)

Therefore

F5ν,j ≃
1

a
(Aν,j+1 − Aν,j)+

i

a
∂νUj,j+1+

1

a
(Uj,j+1−1)Aν,j+1−

1

a
Aν,j(Uj,j+1−1)+. . . (6)

(the ellipses contains less relevant terms for small a) and so

F5ν,j ≃
1

a
(i∂νUj,j+1 + Uj,j+1Aν,j+1 − Aν,jUj,j+1) (7)

=
i

a
DνUj,j+1. (8)
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As a result:

S = −
a

2g2
d

∫

dd−1x
∑

j

tr
(

F 2
µν,j(x) −

2

a2
|DνUj,j+1|

2
)

(9)

= −
1

2g2
d−1

∫

dd−1x
∑

j

trF 2
µν,j(x) + f 2

π

∫

dd−1x
∑

j

tr|DνUj,j+1|
2, (10)

where
1

g2
d−1

=
a

g2
d

, f 2
π =

1

ag2
d

=
1

a2g2
d−1

. (11)

Let us redo this computation, as there is actually some trickery involved in the

above continuum calculation.

To achieve this, we put the entire theory on a lattice and take the continuum limit

in all but the y direction (which retains lattice spacing a):

Slatt =
∑

P

σP

(

−1 +
1

2N
tr(UP + U †

P )
)

, (12)

where tr 1 = N and σ is an appropriate numerical scaling factor. P denotes a pla-

quette, which we can think of as a sum over lattice points, and a sum over pairs of

directions Â, B̂ and

UAB(n) = UA(n)UB(n + Â)U †
A(n + B̂)U †

B(n), (13)

where UA(n) is a link field, which in the continuum limit goes to the Wilson line. In

the present case, we split the index A into µ, 5 with lattice spacings ǫ, a. There are

two types of terms in eq. (12):

Slatt =
∑

µν

σµν

(

−1 +
1

2N
tr(Uµν + U †

µν)
)

+
∑

µ

σµ5

(

−1 +
1

2N
tr(Uµ5 + U †

µ5)
)

. (14)

The first term will go in the continuum limit to −σµν

2
ǫ4trF 2

µν , while the second term

yields −σµ5

2
ǫ2trDµU5(DµU5)

†, where

DµU5 = ∂µU5 + i(Aµ,jU5 − U5Aµ,j+1). (15)

Thus, we arrive at

Slatt = −
∑

µν

σµν

2
ǫ5−d

∫

dd−1x
∑

j

{

trF 2
µν,j(x) +

σµ5

σµνǫ2
tr|DµU5|

2

}

. (16)

By appropriate scalings of the parameters, we may obtain:

S = −
1

2g2
d−1

∫

dd−1x
∑

j

trF 2
µν,j(x) + f 2

π

∫

dd−1x
∑

j

tr|DνU5|
2 (17)

with fπ = 1/(gd−1a).

We note that the link field U5 is a bifundamental, transforming as U5 → VjU5V
−1
j+1.

The essential non-perturbative information used at this point is that fermion conden-

sation can induce the effective σ-model action in the IR. This then points to the
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degrees of freedom of an SU(N) quiver theory [3]. Thus the UV completion of a

non-renormalizable five-dimensional gauge theory is a very specific quiver theory [3].

Unfortunately, if we wish to obtain the continuum limit in the quantum theory,

we must take a → 0 holding gd fixed. This scales gd−1 → ∞, and thus the infrared

dynamics is in fact significantly different than the classical theory would indicate.

4 Towards a UV Completion of (3+1)-dimensional

Einstein-Hilbert Gravity

Now we are ready to address the question of deconstruction of (3 + 1)-dimensional

gravity from the point of view of Ref. [3]. As we have reviewed above, the scenario has

been initially applied to certain non-renormalizable gauge theories. Given a certain

set of similarities between pure gravity and non-abelian gauge theories it is natural to

wonder whether the deconstruction techniques can be successfully applied to gravity

[23]. Along the lines of Ref. [3], in this section we shall construct a lattice of coupled

(2 + 1)-dimensional theories, which in the IR exhibits the features of 3 + 1 gravity.

There exist many similarities between gravity and gauge theory. These are evident,

for example, in the MacDowell-Mansouri approach [24]; the approach to 3+1 gravity

based on Ashtekar variables [25]; the approach to (2+1)-dimensional general relativity

based on CS theory [4]; the close relation between the topological BF theory and

gravity in any dimension [26]; the appearance of an induced Chern Simons theory in

the context of (3 + 1)-dimensional gravity on manifolds with a boundary [27], etc.

Given the fact that deconstruction provides a procedure for defining UV comple-

tions of certain, in principle, non-renormalizable field theories, it is only natural to

ask whether similar reasoning can be applied to (3 + 1)-dimensional gravity, while

remembering that the (2 + 1)-dimensional (pure gravity) theory is well-defined. In

other words, is it possible to deconstruct (2 + 1)-dimensional CS coupled to certain

matter fields into a pure (3 + 1)-dimensional gravity?

Many things point to the possibility that four-dimensional gravity can be defined

in terms of purely three-dimensional data. For example, three-dimensional CS actions

appear as natural boundary terms in the connection formulation of four-dimensional

theory [27], as well as in the relation between the BF topological theory and (3 + 1)-

dimensional general relativity.5

There even exists a theorem concerning dimensional reduction in classical general

relativity which states that for the case of space-like Killing fields 3 + 1 gravity can

be rewritten as 2+1 gravity coupled to a non-linear SO(2, 1) σ-model [16, 17]. More

precisely, in a classical background with a space-like isometry, the metric can be put

in the form

ds2 = N2(x)dr2 + ĝab(x)(dxa + Na(x)dr)(dxb + N b(x)dr). (18)

5Note also, that in the framework of the AdS/CFT correspondence four-dimensional Poincaré

supergravity data can be reconstructed from three-dimensional conformal supergravity data [28].

7



For the case of 3 + 1 dimensions, the vacuum classical equations of motion are par-

ticularly simple [16, 17], and reduce to 2 + 1-dimensional gravity coupled to scalar

fields. Let us disregard the shift fields for the sake of simplicity. The equations of

motion can be written in the following form

R̂
(3)
ab (x) = 2∇̂aφ(x) · ∇̂bφ(x), ĝab∇̂a∇̂bφ = 0. (19)

Here R̂
(3)
ab and ∇̂a are the Ricci tensor and the covariant derivative associated with

ĝab, and φ is a scalar field arising after a field redefinition of N and ĝ [17]. By suitable

rescalings, we can bring this to the form

R̂
(3)
ab −

1

2
ĝabR̂

(3) = 8πG3 Tab, (20)

where the covariantly conserved energy momentum tensor reads

Tab = ∇̂aΦ∇̂bΦ −
1

2
ĝab∇̂cΦ∇̂

cΦ. (21)

Therefore, the (3 + 1)-dimensional vacuum equations in the presence of a space-like

Killing field are equivalent to the (2+1)-dimensional gravity coupled to a scalar field,

illustrating the more general theorem stated in Ref. [16].

This is of course only an on-shell observation. We claim that in the quantum

theory, a similar condition holds locally and applies at the level of the action and the

path integral.

To argue this, we start from the classical formulation of gravity using the d-bien

and spin connection as variables, with action

SEH =
1

Gd

∫

ddx ǫa1...ad
ǫA1...Adea1

A1
. . . e

ad−2

Ad−2
RAd−1Ad

ad−1ad , (22)

where (note Gd has units of m2−d, as [ωa
b] = [Ra

b] = 1, [ea] = L as forms)

R = dω + ω ∧ ω. (23)

We are careful to distinguish various indices: we are on a manifold M , with tangent

bundle TM . The indices A, B, ... label vectors in TM . We also have a vector bundle V

with structure group SO(d−1, 1), which we will assume is (more or less) isomorphic to

TM . Indices for vectors in V will be given by a, b, .... These latter indices eventually

will be thought of as “gauge” indices.

Let us focus on d = 4. We then have

SEH =
1

G4

∫

ǫabcde
a ∧ eb ∧ Rcd =

2

G4

∫

d4xǫµνλǫabcd

(

ea
3e

b
µRνλ

cd − ea
µe

b
νRλ3

cd
)

. (24)

To go to the lattice, we have many options. In the gauge theory case, gauge covariance

was maintained throughout, and the lower dimensional theory had gauge group GN .

Analogously, the simplest lattice action to take in the case of gravity would be to

keep SO(3, 1) invariance. We can regard ω as an SO(3, 1) connection and replace
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it by plaquettes in the lattice version. To begin,6 we will suppose that the vierbein

remains as a site field. The appropriate thing to do then is replace SEH by a lattice

version in which the curvature RAB is replaced by Im UAB. Along the lines of the

calculations in the Yang-Mills theory, we find:

Im Uµ3 = ǫJµ + . . . , (25)

Im Uµν = −2ǫ2Rµν + . . . (26)

where

Jµ(x, j) = i
(

DµU3 · U
†
3 − U3(DµU3)

†
)

. (27)

Taking ǫ → 0, we will obtain

SEH =
2a

G4

∫

d3x
∑

j

ǫabcdǫ
µνλ

(

ea
3e

b
µRνλ

cd + σea
µeb

νJλ
cd

)

. (28)

Note that in writing this action, we have essentially forced SO(3, 1)(j) invariance at

each site j. Although U3 is a link field, and thus transforms as U3 → ΛjU3Λ
−1
j+1, the

current is a tensor only under the local slice, SO(3, 1)(j).

Thus, we have an action of the form

S =
1

G3

∑

j

∫

Mj

ǫabcd

[

ϕaeb ∧ Rcd + fea ∧ eb ∧ Jcd
]

(29)

where we have dropped the index j on fields and written ϕ ≡ e3 and f ≡ 1/a.

This action manifestly possesses Diff3 × SO(3, 1) invariance. We can introduce a

four-dimensional cosmological constant as well:

S =
1

G3

∑

j

∫

Mj

ǫabcd

[

ϕaeb ∧ Rcd + λϕaeb ∧ ec ∧ ed + fea ∧ eb ∧ Jcd
]

. (30)

This looks like a (2 + 1)-dimensional “gauge theory” coupled to a current J . Note,

however, the Latin indices are (3 + 1)-dimensional, and thus this is not in any sense

“2 + 1 gravity”. Furthermore, there are N copies of the symmetry group.

The UV theory could also possess σ-model terms such as

Sσ =
∑

j

∫

Mj

ǫabcd

[

Jac ∧ ∗J bd
]

(31)

as well as other higher order terms. Our point of view here is that in the UV, we can

treat the theory as containing just a set of currents with kinetic terms if necessary.

As we go to the IR (the continuum limit), the current kinetic terms become irrelevant

(e.g., eq. (31) becomes a curvature-squared term), leaving only the Einstein-Hilbert

action.

Of course, an important aspect of this is that the continuum limit must exist in

some sense. In fact, the original four-dimensional action is an effective theory, which

6It seems also that there could be a formalism where we treat e, ω as connections for ISO(3, 1),

and thus introduce link fields corresponding to e3 as well. We will not follow that approach here.
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is certainly only valid for probes at length scales7 L >> L4. Thus, if a < L4, the

available probes cannot tell the difference between the lattice theory and the contin-

uum. Consequently, the region of strong three-dimensional coupling can be avoided,

while staying within the region of validity of the four-dimensional theory. Essentially,

classically the three and four-dimensional theories are equivalent, as constructed. We

propose that this remains true even in the quantum theory. Furthermore, we will have

to suppose that the value of the four-dimensional cosmological constant is given by

its limiting three-dimensional value. This seems obvious if we don’t have to strictly

take the continuum limit.

We could now try to proceed further and reduce SO(3, 1) to SO(2, 1), to make

the theory look gravitational in 2 + 1 as well. We start by just segregating indices:

S =
∑

j

∫

Mj

ǫαβγ

[

(ϕ3eα − ϕαA) ∧ (Rβγ − ωβ ∧ ωγ) − 2ϕαeβ ∧ (Dω)γ

+λϕ3eα ∧ eβ ∧ eγ − 3λϕαA ∧ eβ ∧ eγ − 2fπeα ∧ eβ ∧ Jγ + 2fπA ∧ eα ∧ Jβγ
]

, (32)

where A ≡ e3, (Dω)γ ≡ dωγ + ωγ
δ ∧ ωδ, ωα ≡ ωα,3, and Jγ ≡ Jγ,3. Note that with

the assumed lattice, there are natural vevs:

〈ϕ3〉 = 1, 〈ϕα〉 = 0, 〈Aµ〉 = 0, (33)

which put the background metric in the form appropriate to the chosen lattice

ds2 = a2(∆j)2 + ds2
2,1(j). (34)

This metric is just a discretized form of the canonical “ADM” metric [29]

ds2 = N2(x, r)dr2 + gµν(x, r)[dxµ + Nµ(x, r)dr][dxν + Nν(x, r)dr]. (35)

Here r denotes the continuum limit of the discretized lattice direction. In this dis-

cretized form the shift vector has been expanded around zero. In writing down eq.

(30), the lattice action for 3 + 1 gravity, we have set the shift vector to zero. Locally,

we can always do this, but, generically, we cannot turn this into a global choice.

Thus it is natural to expand in fluctuations around this vev, (fluctuations in ϕa, Aµ

correspond to modifications in the shape of the lattice) and we obtain:

S = S⊕EH + Sint (36)

where

S⊕EH =
1

G3

∑

j

∫

Mj

ǫαβγ

[

eα ∧ Rβγ + λeα ∧ eβ ∧ eγ
]

(37)

and

Sint =
∑

j

∫

Mj

ǫαβγ

[

−eα ∧ ωβ ∧ ωγ + (ϕ3eα − ϕαA) ∧ (Rβγ − ωβ ∧ ωγ) − 2ϕαeβ ∧ (Dω)γ

+λϕ3eα ∧ eβ ∧ eγ − 3λϕαA ∧ eβ ∧ eγ − 2feα ∧ eβ ∧ Jγ + 2fA ∧ eα ∧ Jβγ
]

.(38)

7We use the notation Ld for the d-dimensional Planck length.

10



In addition, we would add matter fields to Sint.

Provided the (2 + 1)-dimensional currents Jµν can be dynamically induced via

some non-perturbative mechanism from some other well-defined degrees of freedom,

in the deep UV one would be left only with (N copies) of the (2 + 1)-dimensional CS

term coupled to these (2 + 1)-dimensional degrees of freedom. In the intermediate

range of scale we get N copies of linked (2 + 1)-dimensional CS theories coupled to

(2+1)-dimensional currents.8 In the IR we recover the full (3+1)-dimensional general

relativity.9 It should be pointed out that the recovery of the full diffeomorphism group

in 3+1 dimensions from this construction is rather non-trivial given that we work on

the lattice and because the IR physics lies in the strong coupling regime. In the very

deep IR, i.e. when N is finite and the wavelength exceeds the lattice size, the physics

is, of course, again (2 + 1)-dimensional.

Notice that we have the right number of degrees of freedom needed to reproduce

the (3+1)-dimensional theory. These degrees of freedom come from the matter fields

coupled to the CS theory. Thus our formulation does provide a quantum mechanical

version of the classical theorems discussed above [16, 17].

Given that the theory is (2+1)-dimensional in the UV, one might wonder whether

the picture is compatible with the Bekenstein-Hawking bounds on entropy [7]. Let

us suppose that the (2+1)-dimensional matter fields are local. The coupling of 2+1

gravity to matter is of the general form

SEH =
1

G3

∫

d3x
√

−g(3) (R(3) + Lmatter). (39)

The entropy of local matter degrees of freedom scales as the two-dimensional area.

As there are N copies, we have

S ∝
NA

G3

. (40)

This expression does not have the correct mass dimension. The usual prescription for

dimensional reduction tells us that the pre-factor should be 1/G3L, where L = Na is

the size of the fourth (lattice) dimension. Thus, on heuristic grounds,

S ≃
NA

G3L
=

A

G3a
=

A

G4

, (41)

which reproduces the Bekenstein-Hawking scaling in 3 + 1 dimensions. Of course,

dimensional analysis does not reproduce the numerical factor of 1/4 in the entropy

formula.

As we will argue in the next concluding section, the above observations are enough

to argue that Witten’s mechanism for vanishing of the (2+1)-dimensional cosmological

constant can be lifted to 3 + 1 dimensions.

8Our concluding picture resembles somewhat that of Ref. [30].
9One could also entertain the possibility of simply starting with 2 + 1 gravity coupled to appro-

priate fields. In this case, SO(3, 1) would have to be an accidental symmetry of the IR.
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5 The Vanishing Cosmological Constant Decon-

structed

Now we argue that Witten’s argument for the vanishing of (2+1)-dimensional vacuum

energy can be deconstructed as follows:

1) Assume a local spatial foliation of (3 + 1)-dimensional spacetime.

2) Deconstruct the vacuum part of pure (3+1)-dimensional gravity from (N copies

of) (2+1)-dimensional general relativity coupled to certain (2+1)-dimensional matter

fields represented in terms of currents as in the preceding section. Assume that 3+1-

dimensional sources can be defined in terms of a deconstructed 2 + 1-dimensional

theory. For sources represented by gauge fields this should be possible given the

discussion10 of section 3.

3) In the deep UV we have (N copies of) 2 + 1 gravity coupled to some (2 + 1)-

dimensional sources. Whatever the matter content of this (2 + 1)-dimensional theory

is, we know that the resulting geometry has to be conical. Thus Witten’s argument

applies: the vacuum is supersymmetric, yet the excited states are not.

4) In the range of intermediate scales, we have N linked copies of 2 + 1 gravity

coupled to (2+1)-dimensional currents. Once again, the resulting (2+1)-dimensional

geometry is conical. Thus Witten’s argument holds in the region between UV and

IR.

Finally notice that on dimensional grounds, the mass splitting should be inversely

proportional to the three-dimensional Newton constant and should vanish at zero

deficit angle. We take ∆m ≃ δ/GN . Thus as long as the three-dimensional Newton

constant is of order one as the continuum limit is taken, and the deficit angle (on each

local three-dimensional slice) is taken to scale as the inverse of the lattice spacing,

the fermi-bose splitting will be finite in the infrared. These remarks may be tested

by examination of the example of Ref. [19].11

According to the outlined argument the vacuum energy is zero in the UV, and

also some place in between UV and IR. But does it remain zero in the IR? That is

difficult to say, given the fact that the three-dimensional coupling has to be of order

one, but the physical picture would be that as one takes the lattice spacing to zero,

one still has in principle an infinite number of (2 + 1)-dimensional matter theories

strongly coupled to 2 + 1 gravity.

Essentially we have a deconstruction of (2+1)-dimensional conical singularities to

one-dimensional, string-like singularities in every local patch of 3+1 dimensions. Thus

10One might ask why a (3 + 1)-dimensional theory with a well defined (3 + 1)-dimensional UV

behavior, such as the Standard Model, should be defined in terms of (2 + 1)-dimensional data. The

point here is that both the deconstructed (2 + 1)-dimensional and the intrinsic (3 + 1)-dimensional

UV definitions lead to the same IR physics, and as such are indistinguishable at long distances.
11For example [19], the deficit angle produced by a mass M is δ = 2πML3. Thus, the mass

difference (at one-loop) between fermions and bosons should be proportional to g2δ/GN = 2πg2M ,

where g is the interaction strength. In a realistic model the mass M should be deconstructed to be

of the order of a TeV.
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we again end up with a claim that the vacuum state can be made supersymmetric and

yet the excited states do not fall into supermultiplets because of the non-existence of

the global supercharge due to the presence of the string-like defects which create a

deconstructed version of the asymptotically conical three-dimensional geometry.12

Within this framework the four-dimensional cosmological constant is essentially

determined by the value of the three-dimensional cosmological constant. In the su-

persymmetric scenario the latter is zero, and so is the four-dimensional one. Yet the

excited states are non-supersymmetric due to the non-existence of a global super-

charge.

Our actual calculations in this paper have all been non-supersymmetric. They

may easily be generalized however — for example, the MacDowell-Mansouri approach

[24] provides a unified geometric formulation of supersymmetry and gravity with

the curvature constructed from the spin connection, the vierbein, and the gravitino.

The analysis presented in section 4 applies also in this situation. It would be very

interesting to study the deconstruction of this theory explicitly.

We conclude this article with an obvious question: assuming that the ultraviolet

completion of (3+1)-dimensional gravity is indeed given in terms of (2+1)-dimensional

gravity coupled to (2+1)-dimensional matter as we have argued above, what are the

most immediate observational consequences and constraints, in the sense of (3 + 1)-

dimensional gravity being modified at very short distances?
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