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1 Introduction and Summary

The cosmological constant has been an enigma in theoretical physics since it was
first realized that in any simple field theoretic notion of quantum gravity, power
divergences lead to large renormalization, sensitive to the largest scales available in
the theory [1]. In terms of naive power-counting, the vacuum energy corresponds to
a relevant operator. One might go further to say that a lack of understanding of
power divergences is at the root of each of the basic theoretical problems in particle
physics including the various hierarchy problems and the aforementioned cosmological
constant problem. It is important to realize that in the case of power divergences, it
is not enough to come up with a mechanism for canceling the parameter at a given
scale; rather, it must be canceled all the way into the infrared (IR).

The cosmological constant problem has become perhaps even more acute given
the recent astronomical data suggesting the existence of a positive but small vacuum
energy density, being roughly in proportion to the present mass density of the universe
[2]. Thus we are faced with a two-fold cosmological constant problem [1]: first, why
is the vacuum energy small and second, why is the vacuum energy in proportion to
the current mass density? In this article we will address the first question.

Field theories that are non-renormalizable (and hence ill-defined in the ultraviolet
(UV)) may be defined through a certain process of dimensional reduction referred to
as deconstruction [3]. This has been demonstrated in theories with internal gauge
symmetries, for example, in the context of five-dimensional Yang-Mills theories. One
dimension of the IR theory is put on a lattice and the resulting theory may be thought
of as a Goldstone realization of a UV four-dimensional gauge theory. In this way, the
continuum higher dimensional theory is thought of as the infrared limit of a lower
dimensional theory. An important aspect of these constructions then is motivating
why the theory has this infrared behavior.

It is enticing to think of gravity in this context: from a four-dimensional field
theoretic point of view, Einstein’s general relativity is famously perturbatively non-
renormalizable. In order to extend the deconstruction ideas to gravity, we must con-
front the spacetime general coordinate and Lorentz symmetries. Thus in this paper,
we explore the idea that four-dimensional quantum gravity may be defined through
deconstruction. It is particularly convenient to work in the vierbein formalism. It
was shown [4] long ago that three-dimensional gravity is a Chern-Simons (CS) gauge
theory and thus is a well-defined quantum theory. In particular its UV character
is sensible because it is topological. The deconstruction to 3 + 1 dimensions would
follow the path of regarding a three-dimensional theory (a close cousin of CS gravity
coupled to matter) as a lattice version of a four-dimensional theory.

Of course, there exists a rather large body of evidence that gravitational theories
should be thought of, in some way, as local theories in one fewer dimension. First,
a purely gravitational theory has no local degrees of freedom in the usual sense of
a local quantum field theory. In the work of 't Hooft [5] and Susskind [6], it was
realized that an interpretation of this is that a gravitational theory is holographic



— the observables are not extensive, but related to co-dimension one structures.
This is of course supported by the thermodynamics of black holes, where entropy is
proportional to the area of the event horizon [7]. But most impressively, the idea has
been given a concrete realization in the AdS/CFT construction and its relatives [8].

In the case of four-dimensional gravity, we might then try to follow this path
directly and construct its physics in terms of a three-dimensional field theory. In
realistic models with positive cosmological constant, this might mean some version
of a de Sitter/Euclidean CFT correspondence [9]. Although the existence of such a
correspondence has not been established conclusively, a variety of consequences have
been considered in Refs. [10].

Note that the existing holographic duals of gravity, provided by the AdS/CFT
correspondence, are defined in terms of non-gravitational theories. On the other
hand, there are proposals for a non-perturbative definition of gravity which involve
gravitational degrees of freedom. Perhaps the most notable example of this type
is Matrix theory [11], which in some sense can be viewed as an example of “bulk”
holography.

Finally, more than twenty years ago Weinberg suggested the idea of “asymptotic
safety” which essentially advocates the existence of a UV fixed point for (3 + 1)-
dimensional gravity [12], in the sense of a Wilson-Fisher e-expansion." One of the
main points of this article is precisely the claim that (3 + 1)-dimensional gravity does
indeed have a short distance fixed point given in terms of (24 1)-dimensional gravity
coupled to (2 + 1)-dimensional matter.

One might be initially puzzled by a suggestion that (3 + 1)-dimensional gravity
can be defined in terms of (2 + 1)-dimensional gravity coupled to (2 + 1)-dimensional
matter. After all, (3 4+ 1)-dimensional gravity has local degrees of freedom. How-
ever, (2 + 1)-dimensional gravity, viewed as a CS gauge theory, is purely topological.
There are no propagating, local gravitational degrees of freedom. How can then a
(2 + 1)-dimensional theory of matter coupled to gravity account for the local, prop-
agating, (3 + 1)-dimensional degrees of freedom, such as gravitational waves? What
our proposal suggests is that “most” of the degrees of freedom of (3 + 1)-dimensional
gravitational theory arise from the non-gravitational part of its (2 + 1)-dimensional
UV completion. The UV completion of (3 + 1)-dimensional gravity is “holographic”
in this sense.

If four-dimensional gravity may be thought of as a three-dimensional theory in
a useful way, what of the cosmological constant? Several years ago, Witten [13]
observed that peculiar properties of (24 1)-dimensional gravity can lead to vanishing
vacuum energy in 2 + 1 dimensions. No precise mechanism for connecting this to
four dimensions has been presented, although Witten’s context was firmly rooted in
the duality between M-theory and the strong coupling limit of Type IIA or heterotic
strings [14]. Can this mechanism be used instead in our context to provide insight
into the vacuum energy in four dimensions? In this note we argue that Witten’s

In particular, by considering (2 + ¢)-dimensional gravity.



reasoning can be deconstructed to 3 4 1 dimensions under very specific conditions.?

The crucial observation we make in this paper is that provided one can define a
UV completion of (3 4 1)-dimensional gravity in terms of purely (2 + 1)-dimensional
gravitational and matter data, then the argument of Witten can be deconstructed
to 3 + 1 dimensions. We motivate our argument by recalling a remarkable fact from
classical general relativity which states that in the presence of a space-like Killing
field, 3 + 1 vacuum general relativity is equivalent to (2 + 1)-dimensional general
relativity coupled to an SO(2,1) non-linear o-model [16, 17]. We then proceed to
provide a quantum analogue of this classical theorem and argue that a full quantum
theory of (3 4+ 1)-dimensional general relativity can be defined at short distance in
terms of (2 + 1)-dimensional gravity coupled to (2 + 1)-dimensional matter. This
then provides support for the claim that Witten’s observation about the vanishing
(2 + 1)-dimensional vacuum energy may be also valid in the world we observe.

2 The Cosmological Constant in 2+ 1 Dimensions

It was observed by Witten [13] that supersymmetry in 2 + 1 dimensions can lead to
vanishing vacuum energy in the absence of a mass degenerate spectrum of bosonic
and fermionic states. The vacuum state is supersymmetric, and therefore the cos-
mological constant is zero, but the excited states are not mass degenerate because
unbroken global supercharges do not exist. Having unbroken global supercharges in
the theory, which is what leads to the mass degeneracy of the bose-fermi spectrum in
the first place, necessitates the existence of spinor fields that are covariantly constant
at infinity. In 2+ 1 dimensions any excited state gives a conical geometry whose deficit
angle prohibits spinor fields with covariantly constant asymptotics. Thus, there is no
mass degeneracy of bose-fermi excitations. The non-degeneracy of the spectrum of
low-energy excitations is, however, suppressed by powers of the three-dimensional
Newton constant under the assumption of weak gravitational coupling [14].

Although a precise realization of Witten’s argument about a supersymmetric vac-
cum with non-supersymmetric excitations apparently does not exist in the literature,
Becker, Becker, and Strominger [18] provide an instructive construction with a soli-
tonic ground state.®> We briefly review their considerations.

Becker, Becker and Strominger considered an N = 2 abelian Higgs model in
2 4 1 dimensions [20] and studied a Nielsen-Olesen vortex [21] configuration in this
theory. The solitonic configuration breaks half the supersymmetry. When this model
is coupled to supergravity, the (2 + 1)-dimensional gravitational background of this
soliton has a particular asymptotic behavior describing a conical geometry

dzdz

2 342 e
ds* = —d* + Loy (1)

2This would perhaps imply alternative interpretations of the recent astronomical data [2]. Such
interpretations are explored in Ref. [15].
3For a related discussion see Ref. [19)].



where M = v*n, with v the expectation value of the Higgs field and n > 0, is pro-
portional to the soliton mass and Mp; is the three-dimensional Planck mass. The
geometry has deficit angle § = 27 M /Mp;, and the soliton saturates the BPS bound.
The gravitino gives rise to an Aharanov-Bohm phase that exactly cancels the geo-
metric phase associated to the deficit angle of the conical singularity. However, the
fermionic zero mode is not normalizable and is absent from the physical spectrum.
Thus, there is no N = 1 supermultiplet of the unbroken supersymmetry. In this
way, Witten’s observation holds and the bose-fermi degeneracy of the excited states
is lifted even though the solitonic ground state has zero vacuum energy.

3 Deconstructing GGauge Theories: A Summary

Before we discuss the case of (3 4+ 1)-dimensional gravity, let us review the gauge
theory case from a slightly different point of view than the original presentation [3].
Consider a gauge theory action

1
S = /dd Yedy trF3 (2, ). (2)
29d
We use the notation 24 = {z*,y}. We wish to arrive at a theory on the space

(R¥™! x T'). We then latticize y with lattice spacing a:
/dd letr =)+ 2F52VJ) (3)

In the continuum,

F5V,j — (95141, - 3,,A5 —|— i[A5, A,,] (4)
We define a link variable in the usual way:
Uj:j-l—l = exp (Z/dyA5(l',y)> ~1+ ’L.CLA57J‘ + ... (5)
Therefore
1 i 1 1
Fsvg = — (A = Auj) + -0 Uj gt~ (Upjn =D Avjir == Ay j(Ujja =1+ (6)
(the ellipses contains less relevant terms for small a) and so
1.
Fr; ~ a (10U jr1+ Uj i1 Avjor — AujUj 1) (7)
1
= DU (8)

As a result:

S =~ [ 1952‘51"( 2 \D U, ) (9)

di

= - /dd letr 2 —i—fz/dd_letr|DyU]~7j+1|2, (10)
gd 1 J




where

1 a 1 1
P Pl (

Let us redo this computation, as there is actually some trickery involved in the
above continuum calculation.

To achieve this, we put the entire theory on a lattice and take the continuum limit
in all but the y direction (which retains lattice spacing a):

1
Slatt:ZaP( 1+ﬁtr(Up+UT)) (12)
P

where tr1 = N and o is an appropriate numerical scaling factor. P denotes a pla-
quette, which we can think of as a sum over lattice points, and a sum over pairs of
directions A, B and

Uap(n) = Ua(n)Ug(n + AUk (n + B)UL(n), (13)

where Uy (n) is a link field, which in the continuum limit goes to the Wilson line. In
the present case, we split the index A into u,5 with lattice spacings €, a. There are
two types of terms in eq. (12):

1 1
Statt = ZU,W ( + ﬂtr(U + UL,)) + %:O',m (-1 + ﬁtr(U/ﬁ + U;5)> . (14)

The first term will go in the continuum limit to —%e*trF, 3V, while the second term
yields —%2e2trD,Us(D,Us)!, where

DNU5 - 8,LU5 + Z'(ANJ‘UE', - U5A;L,j+1)' (15)

Thus, we arrive at

Oy o
P 11;2{“1?3,” 5+ 2

1%

iQtr\DMUg)]Q} . (16)

By appropriate scalings of the parameters, we may obtain:

$ = —gg [P S @+ 2 [a S
J

di 1

with fr = 1/(gd—1a)‘

We note that the link field Us is a bifundamental, transforming as Us — V;Us jjrll.
The essential non-perturbative information used at this point is that fermion conden-
sation can induce the effective o-model action in the IR. This then points to the
degrees of freedom of an SU(N) quiver theory [3]. Thus the UV completion of a
non-renormalizable five-dimensional gauge theory is a very specific quiver theory [3].

Unfortunately, if we wish to obtain the continuum limit in the quantum theory,
we must take a — 0 holding g, fixed. This scales g4_1 — o0, and thus the infrared
dynamics is in fact significantly different than the classical theory would indicate.
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4 Towards a UV Completion of (3+ 1)-dimensional
Einstein-Hilbert Gravity

Now we are ready to address the question of deconstruction of (3 4 1)-dimensional
gravity from the point of view of Ref. [3]. As we have reviewed above, the scenario has
been initially applied to certain non-renormalizable gauge theories. Given a certain
set of similarities between pure gravity and non-abelian gauge theories it is natural to
wonder whether the deconstruction techniques can be successfully applied to gravity
22].

There exist many similarities between gravity and gauge theory. These are evident,
for example, in the MacDowell-Mansouri approach [23]; the approach to 3+ 1 gravity
based on Ashtekar variables [24]; the approach to (241)-dimensional general relativity
based on CS theory [4]; the close relation between the topological BF theory and
gravity in any dimension [25]; the appearance of an induced Chern Simons theory in
the context of (3 + 1)-dimensional gravity on manifolds with a boundary [26], etc.

Given the fact that deconstruction provides a procedure for defining UV comple-
tions of certain, in principle, non-renormalizable field theories, it is only natural to
ask whether a similar reasoning can be applied to (3 + 1)-dimensional gravity, while
remembering that the (2 + 1)-dimensional (pure gravity) theory is well defined. In
other words, is it possible to deconstruct (2 + 1)-dimensional CS coupled to certain
matter fields into a pure (3 + 1)-dimensional gravity?

Many things point out to the possibility that four-dimensional gravity can be
defined in terms of purely three-dimensional data. For example, three-dimensional
CS actions appear as natural boundary terms in the connection formulation of four-
dimensional theory [26], as well as in the relation between the BF topological theory
and (3 + 1)-dimensional general relativity.

There even exists a theorem in classical general relativity which states that for the
case of space-like Killing fields 3 + 1 gravity can be rewritten as 2 + 1 gravity coupled
to a non-linear SO(2,1) o-model [16, 17]. More precisely, in a classical background
with a space-like isometry, the metric can be put in the form

ds® = N*(x)dr® + gup(x)(dz® + N%(z)dr)(dz’ + N°(z)dr). (18)

For the case of 3 + 1 dimensions, the vacuum classical equations of motion are par-
ticularly simple [16, 17], and reduce to 2 + 1-dimensional gravity coupled to scalar
fields. Let us disregard the shift fields for the sake of simplicity. The equations of
motion can be written in the following form

RY(z) = 2V,.6(z) - Vio(2), GV Vb = 0. (19)

Here ﬁzf;) and V, are the Ricci tensor and the covariant derivative associated with
Gab, and ¢ is a scalar field arising after a field redefinition of N and ¢ [17]. By suitable

4Note also, that in the framework of the AdS/CFT correspondence four-dimensional Poincaré
supergravity data can be reconstructed from three-dimensional conformal supergravity data [27].
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rescalings, we can bring this to the form
N 1 A
Ry = 50a R = 87Gy T, (20)

where the covariantly conserved energy momentum tensor reads

~ ~ 1 ~ ~
T = Vo®Vi® — 24V VD, (21)

Therefore, the (3 + 1)-dimensional vacuum equations in the presence of a space-like
Killing field are equivalent to the (24 1)-dimensional gravity coupled to a scalar field,
illustrating the more general theorem stated in Ref. [16].

This is of course only an on-shell observation. We claim that in the quantum
theory, a similar condition holds locally and applies at the level of the action and the
path integral.

To argue this, we start from the classical formulation of gravity using the d-bien
and spin connection as variables, with action

1
Sen = & [ A Capag€ R, A Ry, (22)
where (note Gy has units of m?=4, as [w%] = [R%] = 1,[e?] = L as forms)
R=dw+wAw. (23)

We are careful to distinguish various indices: we are on a manifold M, with tangent
bundle 7M. The indices A, B, ... label vectors in T'M. We also have a vector bundle V'
with structure group SO(d—1, 1), which we will assume is (more or less) isomorphic to
TM. Indices for vectors in V will be given by a, b, .... These latter indices eventually
will be thought of as “gauge” indices.

Let us focus on d = 4. We then have

1 2
SEH = G_ / eabcde“ AN €b AN RCd = G_ / d4x€l“/)\€abcd (egGZRV)\Cd — €Z€Ib,R)\30d) . (24)
4 4

To go to the lattice, we have many options. In the gauge theory case, gauge covariance
was maintained throughout, and the lower dimensional theory had gauge group G*.
Analogously, the simplest lattice action to take in the case of gravity would be to
keep SO(3,1) invariance. We can regard w as an SO(3,1) connection and replace
it by plaquettes in the lattice version. To begin,® we will suppose that the vierbein
remains as a site field. The appropriate thing to do then is replace Sgy by a lattice
version in which the curvature R4p is replaced by Im Uap. Along the lines of the
calculations in the Yang-Mills theory, we find:

ImU;z = €, +..., (25)
ImU, = —2R,+... (26)

°Tt seems also that there could be a formalism where we treat e,w as connections for 1SO(3, 1),

and thus introduce link fields corresponding to e3 as well. We will not follow that approach here.



where

Ju(x,§) =i (DuUs - U = Us(D,Us)'). (27)

Taking ¢ — 0, we will obtain
2a 3 N a b cd a b 7 cd
Spy = G_4 /d T ZGabch (€3€HRV>\ +oepe,Jy ) ) (28)
J

Note that in writing this action, we have essentially forced SO(3,1);) invariance at
each site 7. Although Ujs is a link field, and thus transforms as Uz — AjU3Aj_j1, the
current is a tensor only under the local slice, SO(3,1)(;).

Thus, we have an action of the form

_ 1 a b cd a b cd
S—@Z/Mjeabcd[cpe AR+ fe* Ne? NJ } (29)

J

where we have dropped the index j on fields and written ¢ = ez and f = 1/a.
This action manifestly possesses Diffs3 x SO(3,1) invariance. We can introduce a
four-dimensional cosmological constant as well:

1
S =30 [ casa [ ART 4 NG N At fet AT (30)
Gs ;i IM

This looks like a (2 + 1)-dimensional “gauge theory” coupled to a current J. Note,
however, the Latin indices are (3 + 1)-dimensional, and thus this is not in any sense
“2 4+ 1 gravity”. Furthermore, there are N copies of the symmetry group.

The UV theory could also possess o-model terms such as

SU = zj: //\/1]- Eabed [Jac A *de} (31)

as well as other higher order terms. Our point of view here is that in the UV, we can
treat the theory as containing just a set of currents with kinetic terms if necessary.
As we go to the IR (the continuum limit), the current kinetic terms become irrelevant
(e.g., eq. (31) becomes a curvature-squared term), leaving only the Einstein-Hilbert
action.

Of course, an important aspect of this is that the continuum limit must exist in
some sense. In fact, the original four-dimensional action is an effective theory, which
is certainly only valid for probes at length scales® L >> Ly. Thus, if a < Ly, the
available probes cannot tell the difference between the lattice theory and the contin-
uum. Consequently, the region of strong three-dimensional coupling can be avoided,
while staying within the region of validity of the four-dimensional theory. Essentially,
classically the three and four-dimensional theories are equivalent, as constructed. We
conjecture that this remains true in the quantum theory. Furthermore, we will have
to suppose that the value of the four-dimensional cosmological constant is given by

6We use the notation L4 for the d-dimensional Planck length.



its limiting three-dimensional value. This seems obvious if we don’t have to strictly
take the continuum limit.

We could try to proceed further and reduce SO(3,1) to SO(2,1), to make the
theory look gravitational in 2 4 1 as well. We start by just segregating indices:

S = Z /M. €afy {((pgea — @A) A (R — WP AwY) — 20%P A (Dw)?
; i
+AP3 e NP Aet —3Np“ANeP Nt —2fre* NeP ATV + 2, ANe* A Jm} . (32)
where A = €3, (Dw)? = dw” + w5 Aw?, w® = w3, and J¥ = J3. Note that with
the assumed lattice, there are natural vevs:
(@) =1, (") =0, (4,)=0, (33)
which put the background metric in the form appropriate to the chosen lattice
ds? = a®(Aj)? + ds3 1 (j)- (34)
This metric is just a discretized form of the canonical “ADM” metric [28]
ds® = N*(z,7)dr* + g, (@, r)[dz" + N*(z,r)dr][dz” + N*(x,r)dr]. (35)

Here r denotes the continuum limit of the discretized lattice direction. In this dis-
cretized form the shift vector has been expanded around zero.

Thus it is natural to expand in fluctuations around this vev, (fluctuations in ¢, A,
correspond to modifications in the shape of the lattice) and we obtain:

where

1 « o
Sepn = e gj /M]- €apy [e AR 4+ xe®* NeP A 67} (37)
and

Sint =Y, /M. €08y [—e“ AWP AW 4 (PPe® — p*A) A (RPY — WP AwY) — 2¢%° A (Dw)?
7 J

+ApPe* NP Net — 3N AN NeY —2fe* NP ATV H2fA N A Jﬁ“’} (38)

In addition, we would add matter fields to S;,;.

Provided the (2 + 1)-dimensional currents J*” can be dynamically induced, via
some unknown non-perturbative mechanism, from some other well-defined degrees
of freedom, in the deep UV one would be left only with (N copies) of the (2 + 1)-
dimensional CS term coupled to these (2 + 1)-dimensional degrees of freedom. In
the intermediate range of scale we get N copies of linked (2 + 1)-dimensional CS
theories coupled to (2 + 1)-dimensional currents.” In the deep IR we recover the full
(3 + 1)-dimensional general relativity.®

TOur concluding picture resembles somewhat that of Ref. [29].
80ne could also entertain the possibility of simply starting with 2 + 1 gravity coupled to appro-
priate fields. In this case, SO(3,1) would have to be an accidental symmetry of the IR.
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Notice that we have the right number of degrees of freedom needed to reproduce
the (3+1)-dimensional theory. These degrees of freedom come from the matter fields
coupled to the CS theory. Thus our formulation does provide a quantum mechanical
version of the classical theorems discussed above [16, 17].

As we will argue in the next concluding section, the above observations are enough
to argue that Witten’s mechanism for vanishing of the (2+1)-dimensional cosmological
constant can be lifted to 3 + 1 dimensions.

5 The Vanishing Cosmological Constant Decon-
structed

Now we argue that Witten’s argument for the vanishing of (2+1)-dimensional vacuum
energy can be deconstructed as follows:

1) Assume a local spatial foliation of (3 + 1)-dimensional spacetime.

2) Deconstruct the vacuum part of pure (34 1)-dimensional gravity from (N copies
of) (2+1)-dimensional general relativity coupled to certain (2+1)-dimensional matter
fields represented in terms of currents as in the preceding section. Assume that 3+ 1-
dimensional sources can be defined in terms of a deconstructed 2 4 1-dimensional
theory. For sources represented by gauge fields this should be possible given the
discussion® of section 3.

3) In the deep UV we have (N copies of) 2 + 1 gravity coupled to some (2 + 1)-
dimensional sources. Whatever the matter content of this (2 + 1)-dimensional theory
is, we know that the resulting geometry has to be conical. Thus Witten’s argument
applies: the vacuum is supersymmetric, yet the excited states are not.

4) In the range of intermediate scales, we have N linked copies of 2 + 1 gravity
coupled to (2+1)-dimensional currents. Once again, the resulting (2+1)-dimensional
geometry is conical. Thus Witten’s argument holds in the region between UV and
IR.

Finally notice that based on dimensional grounds the mass splitting is directly
proportional to the deficit angle and inversely proportional to the three-dimensional
Newton constant. Thus as long as the three-dimensional Newton constant is of or-
der one as the continuum limit is taken, and the deficit angle (on each local three-
dimensional slice) is taken to scale as the inverse of the lattice spacing, the fermi-bose
splitting will be finite in the infrared. These remarks may be tested by examination
of the example of Ref. [18].1°

90One might ask why a (3 + 1)-dimensional theory with a well defined (3 + 1)-dimensional UV
behavior, such as the Standard Model, should be defined in terms of (2 + 1)-dimensional data. The
point here is that both the deconstructed (2 4 1)-dimensional and the intrinsic (3 + 1)-dimensional
UV definitions lead to the same IR physics, and as such are indistinguishable at long distances.

OFor example [18], the deficit angle produced by a mass M is § = 2rM Lz. Thus, the mass
difference (at one-loop) between fermions and bosons should be proportional to ¢2§/Gy = 27g*>M,

where g is the interaction strength. In a realistic model the mass M should be deconstructed to be
of the order of a TeV.
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According to the outlined argument the vacuum energy is zero in the UV, and
also some place in between UV and IR. But does it remain zero in the IR? That is
difficult to say, given the fact that the three-dimensional coupling has to be of order
one, but the physical picture would be that as one takes the lattice spacing to zero,
one still has in principle an infinite number of (2 + 1)-dimensional matter theories
strongly coupled to 2 + 1 gravity.

Essentially we have a deconstruction of (24 1)-dimensional conical singularities to
one-dimensional, string-like singularities in every local patch of 341 dimensions. Thus
we again end up with a claim that the vacuum state can be made supersymmetric and
yet the excited states do not fall into supermultiplets because of the non-existence of
the global supercharge due to the presence of the string-like defects which create a
deconstructed version of the asymptotically conical three-dimensional geometry.!

Within this framework the four-dimensional cosmological constant is essentially
determined by the value of the three-dimensional cosmological constant. In the su-
persymmetric scenario the latter is zero, and so is the four-dimensional one. Yet the
excited states are non-supersymmetric due to the non-existence of a global super-
charge.

In order to have vanishing vacuum energy, we really need to have supersymme-
try in four dimensions. The MacDowell-Mansouri approach [23] provides a unified
geometric formulation of supersymmetry and gravity with the curvature constructed
from the spin connection, the vierbein, and the gravitino. The analysis presented
in section 4 applies also in this situation. It would be very interesting to study the
deconstruction of this theory explicitly.

We conclude this article with an obvious question: assuming that the ultraviolet
completion of (3+1)-dimensional gravity is indeed given in terms of (2+1)-dimensional
gravity coupled to (2 + 1)-dimensional matter as we have argued above, what are the
most immediate observational consequences, in the sense of (3+1)-dimensional gravity
being modified at very short distances?
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