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Abstract

We briefly discuss the status of the NNLL QCD calculations in the inclusive rare
B decay B → Xs`

+`−. Two important ingredients, the two-loop matrix elements
of the four quark operator O2 and the bremsstrahlung contributions, were quite
recently finalised. The new contributions significantly improve the sensitivity of
the inclusive decay B → Xsl

+l− decay in testing extensions of the standard model
in the sector of flavour dynamics; for instance the two-loop calculation cuts the
low-scale uncertainty in half and the bremsstrahlung calculation leads to a 10%
shift of the position of the zero of the forward-backward asymmetry.
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Figure 1: The decay B → Xsl
+l− at one-loop.

1 The Decay B → Xs`
+`−

Inclusive rare B decays like B → Xsγ or B → Xs`
+`− are very important tools to understand

the nature of physics beyond the Standard Model (SM). The stringent bounds obtained from
B → Xsγ on various non-standard scenarios (see e.g. [1, 2, 3]) are a clear example of the
importance of theoretically clean FCNC observables in discriminating new-physics models.

In comparison with the B → Xsγ, the inclusive B → Xs`
+`− decay presents a comple-

mentary and also more complex test of the SM
since different contributions add to the decay rate, see fig. 1. Quite recently, BELLE

announced the first measurement of the inclusive mode [4].
Generally, inclusive rare decay modes of the B meson are theoretically clean observables.

For instance the decay width Γ(B → Xsγ) is well approximated by the partonic decay rate
Γ(b → sγ), which can be analysed in renormalization-group-improved perturbation theory.
Non-perturbative contributions play only a subdominant role and can be calculated in a model-
independent way by using the heavy-quark expansion. However, in the decay B → Xs`

+`−

there are also on-shell cc̄ resonances. While in the decay B → Xsγ (on-shell photon) the inter-
mediate ψ background for example, namely B → ψXs followed by ψ → X ′γ, is suppressed and
can be subtracted from the B → Xsγ decay rate, the cc̄ resonances in the decay B → Xsl

+l−

(off-shell photon) show up as large peaks in the dilepton invariant mass spectrum. These res-
onances can be removed by appropriate kinematic cuts in the invariant mass spectrum. In the
’perturbative windows’, namely in the low-dilepton mass region s = (p`+ + p`−)2/mb2 < 0.25
and also in the high-dilepton mass region with 0.65 < s, theoretical predictions for the invari-
ant mass spectrum are dominated by the purely perturbative contributions, and theoretical
precision comparable with the one reached in the decay B → Xsγ is possible. In the decay
B → Xs`

+`− kinematic observables such as the invariant dilepton mass spectrum and the
forward-backward (FB) asymmetry are particularly attractive, especially for the search for
physics beyond the SM. These observables are usually normalized by the semileptonic decay
rate in order to reduce the uncertainties due to bottom quark mass and CKM angles. The
normalized dilepton invariant mass spectrum and the FB asymmetry are defined as

R(s) =
d

ds
Γ(B → Xs`

+`−)/Γ(B → Xceν̄), (1.1)

AFB(s) = Γ(B → Xceν̄)× (1.2)

×
∫ 1

−1
d cos θ`

d2Γ(B → Xs`
+`−)

ds d cos θ`
sgn(cos θ`),

where θ` is the angle between `+ and B momenta in the dilepton centre-of-mass frame.
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The B factories will soon provide statistics and resolution needed for the measurements
of B → Xs`

+`− kinematic distributions. Precise theoretical estimates of the SM expectations
are therefore needed in order to perform new significant tests of flavour physics.

2 NNLL QCD Corrections

Within inclusive B decay modes, short-distance QCD corrections lead to a sizeable modifi-
cation of the pure electroweak contribution, generating large logarithms of the form αns (mb)
logm(mb/Mheavy), where m ≤ n (with n = 0, 1, 2, ...). A suitable framework to achieve the
necessary resummations of these large logs is the construction of an effective low-energy theory
with five quarks, obtained by integrating out the heavy degrees of freedom,

Heff = −4GF√
2
λt

10∑
i=1

Ci(µ)Oi(µ) . (2.3)

Compared with the decay B → Xsγ, the effective Hamiltonian (2.3) contains the two addi-
tional operators of order O(αem), O9 and O10:

O1 = (s̄γµT
aPLc) (c̄γµTaPLb)

O2 = (s̄γµPLc) (c̄γµPLb)
O7 = e/16π2mb(µ) (s̄σµνPRb)Fµν
O8 = gs/16π2mb(µ) (s̄σµνT aPRb)G

a
µν

O9 = e2/16π2 (s̄γµPLb) (¯̀γµ`)
O10 = e2/16π2 (s̄γµPLb) (¯̀γµγ5`)

(2.4)

The four-quark operators O3..6 are not given explicitly because of their numerically small
Wilson coefficients.

Within this framework, QCD corrections are twofold: corrections related to the Wilson
coefficients, and those related to the matrix elements of the various operators, both evaluated
at the low-energy scale µ ≈ mb. As the heavy fields are integrated out, the top-quark-, W -, and
Z-mass dependence is contained in the initial conditions of the Wilson coefficients, determined
by a matching procedure between full and effective theory at the high scale. By means of RG
equations, the Ci(µ,Mheavy) are then evolved at the low scale. Finally, the QCD corrections
to the matrix elements of the operators are evaluated at the low scale.

Because the first large logarithm of the form log(mb/mW ) arises already without gluons
due to the mixing of the four-quark operator O2 into O9 at one loop, the leading logarithms
sum (LL) and the next-to-leading logarithms sum (NLL) are given by

LL [αem log(mb/M)] αns (mb) logn(mb/M)

NLL [αem log(mb/M)] αn+1
s (mb) logn(mb/M) .

The complete NLL contributions to the decay amplitude can be found in [7, 8]. Since the
LL contribution to the rate turns out to be numerically rather small, NLL terms represent an
O(1) correction to this observable. On the other hand, since a non-vanishing FB asymmetry
is generated by the interference of vector (∼ O7,9) and axial-vector (∼ O10) leptonic currents,
the LL amplitude leads to a vanishing result and NLL terms represent the lowest non-trivial
contribution to this observable.

2



b

γ∗

s b

γ∗

s

c

O1;O2

+
`

-
` +

`
-

`

Figure 2: Typical diagrams (finite parts) contributing to the matrix element of the operator
O1,2 at the NNLL level

For these reasons, a computation of NNLL terms in B → Xs`
+`− is needed if one aims at

the same numerical accuracy as achieved by the NLL analysis of B → Xsγ. Large parts of
the latter can be taken over and used in the NNLL calculation of B → Xs`

+`−. However, this
is not the full story.

The full computation of initial conditions o the renormalization group equation to NNLL
precision has been presented in Ref. [10] some time ago - including a confirmation of the
b → sγ NLL matching results of [11]. The inclusion of this NNLL contribution removes the
large matching scale uncertainty (around 16%) of the NLL calculation of the b→ s`+`− decay
rate.

Most of the NNLL contributions to the anomalous-dimension matrix can be derived from
the NLL analysis of b→ sγ [9]. The missing entries are estimated to have a small numerical
influence on the dilepton mass spectrum [10] and do not contribute to the FB asymmetry.

There are two further important ingredients of the NNLL program which were recently
calculated, namely the two-loop matrix elements of the four-quark operators O1,2 and the
NNLL bremsstrahlung contributions which will be discussed in the following sections.

In principle, a complete NNLL calculation of the B → Xs`
+`− rate would require also

the calculation of two-loop matrix element of the operator O9. However, its impact to the
dilepton mass spectrum is also estimated to be very small. Similarly to the missing piece
of the anomalous-dimension matrix, also this (scale-independent) contribution does not enter
the FB asymmetry at NNLL accuracy.

3 Two-loop Matrix Elements of O1,2

Within the B → Xsγ calculation at NLL, the two-loop matrix elements of the four-quark
operator O2 for an on-shell photon were calculated in [12] using Mellin-Barnes techniques.
This calculation was extended in [5] to the case of an off-shell photon (see fig. 2) with the help
of a double Mellin-Barnes representation which corresponds to a NNLL contribution relevant
to the decay B → Xs`

+`−. This leads to a double expansion in the dilepton mass s and the
mass ratio m2

c/m
2
b . Thus, the validity of these analytical results given in [5] is restricted to

small dilepton masses s < 0.25.
An independent check of these results has been performed by us [15]. Moreover, our NNLL

calculation [15] is also valid for high dilepton masses for which the experimental methods have
much higher efficiency compared to the one at low dilepton masses [4].

In our approach [15], the following calculational method was used: First all diagrams were
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Figure 3: Two gauge-invariant subset, without (up) and with (down) a nontrivial cc̄ threshold.

converted into sums of sun-set type integrals and their mass derivatives,

∫
dnp dnq

pµ1 . . . pµiqµi+1 . . . qµj

((p+ k)2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

where r = p + q. The effective masses m2
1,2,3 and the effective momentum k are polynomial

functions of physical masses, external kinematics, and Feynman parameters associated with
the diagrams. Integrations over the Feynman parameters are understood. After the internal
momenta p and q are integrated over, one can show that the results can be spanned by a
finite set of ten scalar kernels, which are functions of m2

1,2,3 and k2 in one-dimensional integral
representations, multiplied by tensors made of the metric and k. The Feynman parameters are
extended into the complex plane to effect rapid numerical convergence. In principle, possible
IR singularities have to be isolated and substracted. However, an important simplification
within this specific calculation is given by the fact that all relevant two-loop diagrams are IR
finite.

It is clear that a nontrivial cc̄ threshold behaviour at the NNLL level cannot be reproduced
by the expansion method used in [5]. This easily explains our results of the comparison of
the two independent calculations, [5] and [15], within the low-s-region. The Mellin-Barnes
expansion of the gauge-invariant subset shown in fig. 3 are in excellent agreement with our
numerical results. We found that the expanded results given in [5] are even valid beyond the
claimed validity range s < 0.25. In contrast, this is not true for the second gauge-invariant
subset given in fig. 3 because of the nontrivial cc̄ threshold in that case. In [5] it was already
shown that in the low-dilepton mass region these NNLL contributions reduce the perturbative
uncertainty (due the low-scale dependence) from ±13% down to ±6.5% and also the central
value is changed significantly, ∼ 14%.

There is no additional problem due to the charm mass renormalisation scheme ambiguity
within the decay B → Xs`

+`− because the charm dependence starts already at one-loop in
contrast to the case of the decay B → Xsγ. The charm dependence itself leads to a∼ 7% uncer-
tainty. These small uncertainties in the inclusive mode should be compared with the ones of the
correspondung exclusive mode B → K∗µ+µ− given in [13]; ∆BR = (+26

−17,±6,+6
−4 ,

−0.7
+0.4 ,±2)%.

The first dominating error represents the hadronic uncertainty due to the formfactors.
A phenomenolgical NNLL analysis including the high dilepton mass region will be presented

in [15].
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Figure 4: Virtual (up) and real (down) QCD corrections.

4 Bremsstrahlung Contributions

The NNLL bremsstrahlung contributions were also recently calculated for the dilepton mass
spectrum (symmetric part) in [6, 14] and for the FB asymmetry in [14, 16], see fig. 4.

In [14] we have separated the bremsstrahlung corrections into universal and nonuniversal
pieces. We defined the terms σ7,9(s) which take into account universal O(αs) bremsstrahlung
corrections as O(αs) corrections of the effective Wilson coefficients by demanding that the re-
maining (finite) non-universal bremsstrahlung corrections of the rate (encoded in the functions
τ77 and τ99) vanish in the limit s → 1. Then the universal contributions take into account
the truly soft component of the radiation, which diverges at the s→ 1 boundary of the phase
space. This is because in the s→ 1 limit only the soft component of the radiation survives and,
according to Low’s theorem, the latter gives rise to a correction proportional to the tree-level
matrix element. In [14] we then found that all nonuniversal bremsstrahlung corrections τi, to
the rate and to the FB asymmetry, are rather small all over the phase space, and particularly
for large values of s (|τi(s)| < 0.5 for s > 0.3), in comparison with the dominating universal
corrections.

In the case of the forward–backward asymmetry there are ambiguities arising for d 6= 4 in
the definition of γ5 but in the case of the decay rate, the problematic γ5 contribution vanishes
because of the p1 ↔ p2 permutation symmetry of the leptonic phase space. To circumvent
this problem, we employed the following hybrid regularization scheme [14]: the Dirac algebra
of IR-divergent pieces is strictly treated in four dimensions (dimensional reduction), while the
virtual UV-divergent pieces, which do not involve any γ5 ambiguity, are still computed in näıve
dimensional regularization. For example, the hybrid wave function renormalization constant
for a massless quark is given by Zm=0

ψ = 1− αs

4π
4
3

(
1
εUV
− 1

εIR
− 1

)
. At this level of the pertur-

bative expansion, this hybrid regularization scheme is gauge invariant. Using this scheme we
were able to explicitly verify the cancellation of IR divergences in our bremsstrahlung calcu-
lation [14]. However, anticipating the cancellation of IR-divergences, one also can circumvent
the γ5 ambiguity by calculating only finite bremsstrahlung contributions [16].

Let us finally discuss the phenomenological impact of these bremsstarhlung calculations -
focusing on the position of the zero of the FB asymmetry. This quantity, defined by AFB(s0) =
0, is particularly interesting to determine relative sign and magnitude of the Wilson coefficients
C7 and C9 and it is therefore extremely sensitive to possible new physics effects.

The NLL result sNLL
0 = 0.14±0.02 where the error is determined by the scale dependence
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Figure 5: Comparison between NNLL and NLL results for AFB(s) in the low s region. The
three thick (red) lines are the NNLL predictions for µ = 5 GeV (full), and µ = 2.5 and 10
GeV (dashed); the dotted (blue) curves are the corresponding NLL results. All curves for
mc/mb = 0.29.

(2.5 GeV ≤ µ ≤ 10 GeV) is now modified by the discussed NNLL contributions to (see fig. 5)

sNNLL
0 = 0.162± 0.008 . (4.5)

In this case the variation of the result induced by the scale dependence is accidentally very
small (about ±1% for 2.5 GeV ≤ µ ≤ 10 GeV) and cannot be regarded as a good estimate of
missing higher-order effects. Taking into account the separate scale variation of both Wilson
coefficients Cnew

9 and Cnew
7 , and the charm-mass dependence, we estimate a conservative overall

error on s0 of about 5% [14]. In this s-region the nonperturbative 1/m2
b and 1/m2

c corrections
to AFB(s) are very small and also under control. Summing up, the zero of the FB asymmetry
in the inclusive mode turns out to be one of the most sensitive tests for new physics beyond
the SM.
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