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1. Introduction

In quantum field theory there is a close connection between the short-distance behavior of

renormalized Green’s functions and the strong-field limit of associated quantities calculated

using the background field method. This phenomenon can be interpreted as an IR/UV con-

nection in the sense that the ultraviolet (UV) and infrared (IR) divergences are correlated.

This correspondence leads, for example, to a direct relation between the perturbative β

function and the strong-field asymptotics of the effective lagrangian. Ritus derived this

relation in the context of QED using the renormalization group, with the assumption that

the strong-field limit of the renormalized effective lagrangian is mass-independent [1, 2, 3].

Another, equivalent, derivation which invokes the scale anomaly [4, 5, 6] in a massless

limit, has been given in various forms by many authors [7]–[14]. Also, other approaches

have been developed for extracting the β function from the effective lagrangian, using ei-

ther the operator product expansion [15] or the worldline formalism [16]. These issues

have most often been investigated for magnetic or chromo-magnetic background fields,

or for self-dual backgrounds (such as instantons) at one loop. Here, in this paper, we

re-examine these issues at the two loop level for self-dual background fields. A self-dual

background is special because it gives rise to zero modes in a spinor theory [17]. Also,

for a self-dual background it is not possible to distinguish between the bare lagrangian,
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FµνF
µν , and the other Lorentz invariant combination, Fµν F̃

µν , which characterizes the

zero-mode contributions, so it is necessary to identify and separate the zero mode con-

tributions before taking the strong-field limit. Our analysis concentrates on QED, and

is motivated in part by the recent results that the two-loop effective lagrangian, in both

spinor and scalar QED, for a constant self-dual background field has a remarkably sim-

ple closed form [18, 19, 20]. However, since many of the simplifications we find are due

to the self-duality of the background, rather than due to the precise form of the back-

ground, another motivation is to learn which features might be applied to higher-loop

calculations in other self-dual systems, such as for example QCD with instanton back-

grounds.

In section 2 we review the IR/UV correspondence between the perturbative β function

and the strong-field limit of the effective lagrangian. We show that a naive application of

this correspondence fails for spinor QED with a self-dual background, at both one loop

and two loop. In section 3 we show how this apparent discrepancy is resolved at one loop

by the separation of the zero mode contribution to the effective lagrangian. In section 4

we show that at two loop the mechanism whereby the discrepancy is resolved is rather

different, coming instead from a zero mode contribution to the mass renormalization. In

this section we also provide an independent derivation of the two loop effective lagrangians

for a constant self-dual background which were found previously [18, 19, 20] using the

worldline formalism. The final section contains our conclusions and an appendix describes

the calculation of the finite part of the mass renormalization.

2. Strong-field limits and beta functions

2.1 General argument

We begin by recalling the general argument [1]–[14] relating the strong-field asymptotic

behavior of the effective lagrangian to the perturbative β function. As we are interested

here in QED, we present the argument for an abelian gauge theory, but it is more general.

Consider an abelian gauge field coupled to spinor or scalar matter fields, which are either

explicitly massless or which have a well-defined massless limit. Then the trace anomaly for

the energy-momentum tensor states that [4, 5, 6]

〈Θµ
µ〉 =

β(ē)

2ē

e2

ē2
(Fµν)

2 , (2.1)

where ē is the running coupling, and β(ē) is the β function, defined below in (2.5). The

expectation value of the energy-momentum tensor can also be related to the effective

lagrangian for a constant background field strength Fµν :

〈Θµν〉 = −ηµνLeff + 2
∂Leff

∂ηµν
. (2.2)
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These two relations, (2.1) and (2.2), determine the effective lagrangian to be of the form

Leff = −
1

4

e2

ē2(t)
FµνF

µν , (2.3)

where the ”renormalization group time”, t, is expressed in terms of the scale set by the

field strength, serving as the renormalization scale parameter µ2 ∼ e|F |,

t =
1

4
ln

(

e2|F 2|

µ40

)

, (2.4)

and µ0 denotes a fixed reference scale at which, for example, the value of the coupling may

be measured. Note that in this argument the field strength plays the role which is usually

associated with a momentum transfer Q2. This already suggests at a very basic level why

the strong-field and short-distance limits are related.

The β function is defined in terms of the running of the coupling as

β(ē(t)) =
dē(t)

dt
. (2.5)

To see how this solution (2.3) leads to an explicit connection between the strong-field

asymptotics of Leff and the perturbative β function, note that (2.5) can also be expressed as

t =

∫ ē(t)

e

de′

β(e′)
, (2.6)

where e ≡ ē(0). Making a perturbative expansion of the β function

β(e) = β1e
3 + β2e

5 + · · · (2.7)

the relation (2.6) determines the running coupling, ē(t), in terms of e as

1

ē2(t)
=

1

e2
− 2β1t− 2β2e

2t+O
(

e4t2
)

. (2.8)

Inserting this into (2.3), the strong-field asymptotics of the effective lagrangian is, to two-

loop order,

Leff ∼
1

16

(

2β1e
2 + 2β2e

4 + · · ·
)

FµνF
µν ln

(

e2|F 2|

µ40

)

, (2.9)

where, as is conventional, we have subtracted the classical lagrangian, − 1
4FµνF

µν , from

Leff .

In order to illustrate this correspondence explicitly, we recall that the QED β functions,

for spinor and scalar QED, to two-loop order, are

βspinor =
e3

12π2
+

e5

64π4
+ · · · (2.10)

βscalar =
e3

48π2
+

e5

64π4
+ · · · (2.11)
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The β function can also be expressed in terms of α = e2/(4π) instead of e by a change of

variables, β(α) = dα
dt = 2e

4πβ(e)
∣

∣

∣

e=
√
4πα

, leading to the form

β
(α)
spinor =

2α2

3π
+

α3

2π2
+ · · · (2.12)

β
(α)
scalar =

α2

6π
+

α3

2π2
+ · · · (2.13)

2.2 Explicit example: constant magnetic field background

Equation (2.9) gives a direct correspondence between the perturbative β function coeffi-

cients and the strong-field behavior of the effective lagrangian. We now compare this with

some explicit results where the effective lagrangian is known. First, consider the Euler-

Heisenberg effective lagrangian for a constant background magnetic field, of strength B.

At one loop, the on-shell renormalized effective lagrangians, for spinor and scalar QED,

are [22, 23]

L
(1)magnetic
spinor = −

e2B2

8π2

∫ ∞

0

ds

s
e−m

2s/(eB)

[

1

s tanh(s)
−

1

s2
−

1

3

]

, (2.14)

L
(1)magnetic
scalar =

e2B2

16π2

∫ ∞

0

ds

s
e−m

2s/(eB)

[

1

s sinh(s)
−

1

s2
+

1

6

]

. (2.15)

The leading strong-field asymptotics is determined by the IR behavior of the propertime

integrand for s→∞; at the one-loop level this yields

L
(1)magnetic
spinor ∼

e2B2

24π2
ln

(

eB

m2

)

+ · · · (2.16)

L
(1)magnetic
scalar ∼

e2B2

96π2
ln

(

eB

m2

)

+ · · · (2.17)

Noting that − 1
4FµνF

µν = −1
2B

2, and comparing with the correspondence (2.9), we deduce

that βspinor1 = 1
12π2 and β

scalar
1 = 1

48π2 , in agreement with the one-loop β function coefficients

quoted in (2.10) and (2.11).

The two-loop renormalized effective lagrangians for a constant background field were

derived by Ritus for both spinor [1] and scalar [2] QED. While the actual expressions

for the effective lagrangians are complicated double parameter integrals, it is nevertheless

possible to extract the two-loop leading strong-field asymptotics for the constant magnetic

field case [3]:

L
(2)magnetic
spinor ∼

e4B2

128π4
ln

(

eB

m2

)

+ · · · (2.18)

L
(2)magnetic
scalar ∼

e4B2

128π4
ln

(

eB

m2

)

+ · · · (2.19)

Once again, comparing with the correspondence (2.9), we deduce that β spinor
2 = βscalar2 =

1
64π4

, in agreement with the two-loop β function coefficients quoted in (2.10) and (2.11).

– 4 –



J
H
E
P
1
1
(
2
0
0
2
)
0
3
2

2.3 Explicit example: constant self-dual background

Another interesting solvable case is when the constant background field is self-dual:

Fµν = F̃µν ≡
1

2
εµναβF

αβ . (2.20)

It is well-known that self-dual backgrounds have special properties which often lead to

dramatic simplifications. This can be traced to the fact that a self-dual background has

definite helicity and the Dirac operator in such a background has a quantum mechanical

supersymmetry [25, 26, 27]. Since a self-dual background has definite helicity, the effective

lagrangian for such a background can be used as a generating functional for amplitudes

with all external lines having the same helicity. It is also well-known that many remarkable

simplifications occur for such helicity amplitudes [28, 29]. Recently it has been found that

analogous simplifications occur in the two-loop effective lagrangian itself [18, 19, 20].

At one-loop, the on-shell renormalized effective lagrangians for a constant self-dual

background can be deduced from the results of Euler and Heisenberg [22] and Schwin-

ger [23]:

L
(1)self-dual
spinor = −

e2f2

8π2

∫ ∞

0

ds

s
e−m

2s/(ef)

[

coth2 s−
1

s2
−

2

3

]

, (2.21)

L
(1)self-dual
scalar =

e2f2

16π2

∫ ∞

0

ds

s
e−m

2s/(ef)

[

1

sinh2 s
−

1

s2
+

1

3

]

. (2.22)

Here, f denotes the magnitude of the self-dual field strength,

1

4
FµνF

µν ≡ f2 . (2.23)

Note that the one-loop renormalized effective lagrangians in (2.21) and (2.22) satisfy

L
(1)self-dual
spinor = −2L

(1)self-dual
scalar , which is a consequence of the supersymmetry of the self-dual

background [26, 27].

At two-loop, the on-shell renormalized effective lagrangians for a constant self-dual

background can be expressed in closed-form [18, 19, 20] in terms of the digamma function,

L
(2)self-dual
spinor = −2α

m4

(4π)3
1

κ2
[

3ξ2(κ)− ξ′(κ)
]

, (2.24)

L
(2)self-dual
scalar = α

m4

(4π)3
1

κ2

[

3

2
ξ2(κ)− ξ′(κ)

]

. (2.25)

Here the dimensionless parameter κ is defined as

κ =
m2

2ef
, (2.26)

and the function ξ(κ) is

ξ(κ) = −κ

(

ψ(κ)− lnκ+
1

2κ

)

. (2.27)
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Note that this function ξ(κ) is essentially the digamma function, ψ(κ) = d
dκ ln Γ(κ), with the

first two terms of its large κ asymptotic expansion subtracted (see Eq (6.3.18) in [30]). It is

interesting to note also that the one-loop expressions (2.21) and (2.22) can be expressed [18]

simply in terms of the function
∫ κ

ξ.

From (2.26) it is clear that the strong-field limit corresponds to the small κ limit. Thus,

the strong-field behaviors can be deduced from the known series expansion of ψ(κ) (see Eq

(6.3.14) in [30]). For scalar QED in a constant self-dual background, the one- and two-loop

leading strong-field behaviors of the effective lagrangians (2.22) and (2.25) are [18]

L
(1)self-dual
scalar ∼

e2

48π2
f2 ln

(

ef

m2

)

+ · · · (2.28)

L
(2)self-dual
scalar ∼

e4

64π4
f2 ln

(

ef

m2

)

+ · · · (2.29)

Once again, comparing with (2.9), we see that the coefficients of this leading behavior agree

with the scalar QED β function coefficients at one- and two-loop in (2.11), as was noted

already in [18].

On the other hand, for spinor QED in a constant self-dual background, the leading

strong-field behaviors of the effective lagrangians (2.21) and (2.24) are

L
(1)self-dual
spinor ∼ −

e2

24π2
f2 ln

(

ef

m2

)

+ · · · (2.30)

L
(2)self-dual
spinor ∼ −

e4

32π4
f2 ln

(

ef

m2

)

+ · · · (2.31)

Comparing with (2.9), we see that the coefficients of these leading behaviors do not agree

with the spinor QED β function coefficients in (2.10), at either one-loop or two-loop. This

apparent mis-match is the issue which will be resolved in the following sections of this

paper. As already hinted in the Introduction, the key is that for the spinor case (but not

the scalar case) there are zero modes in a self-dual background, and these zero modes must

be separated first, before making the strong-field comparison.

3. One-loop Euler-Heisenberg lagrangian for a self-dual field

The results of (2.30) and (2.31) make it clear that the general argument given in section 2.1

needs to be modified in some way for the case of spinor QED with a self-dual background.

This modification must take account of the presence of zero modes for spinor QED in a

self-dual background. Furthermore, this must be done at any loop order. At one-loop it

is well-known that the small mass limit is complicated by the existence of normalizable

zero modes for the massless Dirac equation, and that the resolution is known to involve

the separation of a logarithmic term proportional to the number of zero modes [25, 17,

31, 32]. Here we are interested in the role of the zero modes at two loops. However,

in order to proceed to the two-loop level in subsequent sections, we first briefly recap

the evaluation and renormalization of the one-loop Euler-Heisenberg effective lagrangian

for a self-dual background. This will serve to explain the difference between scalar and
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spinor QED, in a self-dual background, with respect to the connection between the β

function coefficients and the strong-field behavior of the on-shell renormalized effective

lagrangian.

3.1 One-loop scalar QED in a self-dual background

For scalar QED, the one-loop effective lagrangian, L(1), is defined as

∫

d4xL
(1)
scalar = −

1

2
ln det

(

−D2 +m2
)

, (3.1)

where Dµ = ∂µ + ieAµ is the covariant derivative. This can also be expressed in terms of

the scalar propagator, G = 1
−D2+m2 , for scalar particles in the given background. For a

self-dual background, the scalar propagator has a simple position space representation (up

to an unimportant gauge dependent phase),

G(x, x′) =

(

ef

4π

)2 ∫ ∞

0

dt

sinh2(eft)
exp

[

−m2t−
ef

4
(x− x′)2 coth(eft)

]

. (3.2)

The unrenormalized effective lagrangian is therefore

L
(1)self-dual
scalar,unren. =

(

ef

4π

)2 ∫ ∞

0

dt

t
e−m

2t

[

1

sinh2(eft)

]

. (3.3)

To obtain the renormalized one-loop effective lagrangian, L
(1)
R , we first subtract the (diver-

gent) zero-field contribution, and then introduce an ultraviolet cutoff Λ through a lower

bound 1/Λ2 on the proper-time t integral. Furthermore, we introduce a (redundant) renor-

malization scale µ by writing

L
(1)self-dual
scalar =

(

ef

4π

)2∫ ∞

0

dt

t
e−m

2t

[

1

sinh2(eft)
−

1

(eft)2
+
1

3

]

+

+
e2

48π2
f2
[

ln

(

m2

µ2

)

+γ+ ln

(

µ2

Λ2

)]

= L
(1)self-dual
scalar,R +

α

12π
f2
[

ln

(

µ2

Λ2

)

+γ

]

. (3.4)

Here γ is Euler’s constant, and we dropped terms of O(m2/Λ2). In the last line, we

separated the renormalized one-loop lagrangian, L
(1)
R , from the counterterm. The latter

can be combined with the unrenormalized classical action, corresponding to charge and field

strength renormalization, so that α = α(µ) = e2(µ)
4π becomes the running coupling [23]. For

instance, implementing electron mass-shell renormalization conditions, µ = m, so that

α(m) ' 1/137, the lnm2/µ2 term would drop out. However, since we are interested in the

strong-field limit and its mass-(in-)dependence, let us keep the µ dependence.

For our purposes, it is important to observe that the strong-field limit of the effective

lagrangian [see eq. (2.28)] comes from the 1/3 term inside the square brackets in the first

line of (3.4), while the one-loop β function coefficient is determined by the µ dependence

in the logarithmic term on the second line of (3.4), which is the charge renormalization

– 7 –
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counterterm. These terms have the same coefficient, which illustrates the connection (2.9)

between the strong-field limit of the one-loop effective lagrangian and the one-loop β func-

tion. It also confirms the assumption [3] of mass-independence of the strong-field limit,

since in the m→ 0 limit we can write

L
(1)self-dual
scalar,R ∼

α

12π
f2 ln

(

ef

m2

)

+
α

12π
f2 ln

(

m2

µ2

)

=
α

12π
f2 ln

(

ef

µ2

)

, (3.5)

which guarantees that the limit m → 0 can be taken. This is important because the

existence of a well-defined massless limit is a necessary prerequisite for the trace-anomaly

argument described in section 2.1.

3.2 One-loop spinor QED in a self-dual background

For spinor QED, the one-loop effective lagrangian, L(1), is defined as

∫

d4xL
(1)
spinor = lndet (D/ +m) =

1

2
ln det

(

−D/ 2 +m2
)

. (3.6)

A self-dual background has definite helicity [25, 17, 26, 27], which has the consequence that

D/ 2PL = D2PL , (3.7)

where PL = 1
2 (1 + γ5) is the projector onto positive helicity states. It follows that the

spinor propagator S can be expressed in terms of the scalar propagator G [31, 32, 33],

S =
1

D/ +m

= − (D/ −m)GPL −GD/ PR +
1

m
(1 +D/ GD/ )PR , (3.8)

where PR = 1
2(1− γ5). This can also be expressed in proper-time form as [33]

S = −

∫ ∞

0
dte−m

2t

[

(D/ −m) eD
2tPL + eD

2tD/ PR −mD/
1

D2
eD

2tD/ PR −mP

]

. (3.9)

The last term in (3.9) involves the projector, P , onto the zero modes,

P = (1 +D/ G0D/ )PR , (3.10)

where G0 = limm→0G denotes the massless scalar propagator. After some straightforward

Dirac traces, one finds that the one-loop spinor effective lagrangian (3.6) can be expressed

in terms of the scalar effective lagrangian, up to a zero-mode projection contribution,

L
(1)self-dual
spinor = −

1

2

1

V

∫ ∞

0

dt

t
e−m

2t
{

Trx

[

4eD
2t
]

+Trx trDirac P
}

, (3.11)

where V denotes the spacetime volume. The first term on the r.h.s. of eq. (3.11) is just

−2L
(1)self-dual
scalar , which is, as mentioned above, a direct reflection of the supersymmetry of

– 8 –
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the self-dual background at one-loop. The second term on the r.h.s. of eq. (3.11) counts

the number (density) of zero modes

nF ≡
1

V
Trx trDirac P

=

(

ef

2π

)2

. (3.12)

Note that nF is just the square of the usual 2d Landau degeneracy factor, since the 4d

self-dual system factorizes into two orthogonal 2d Landau systems [9].

Thus, the one-loop spinor effective lagrangian can be expressed in proper-time form as

L
(1)self-dual
spinor = −

(ef)2

8π2

∫ ∞

1/Λ2

dt

t
e−m

2t

[

1

sinh2(eft)
−

1

t2
+ 1−

2

3
+

2

3

]

= −
(ef)2

8π2

∫ ∞

0

dt

t
e−m

2t

[

1

sinh2(eft)
−

1

t2
+

1

3

]

+

+
e2

12π2
f2
[

ln

(

m2

µ2

)

+ γ + ln

(

µ2

Λ2

)]

= L
(1)self-dual
spinor,R +

α

3π
f2
[

ln

(

µ2

Λ2

)

+ γ

]

. (3.13)

On the first line of (3.13), the 1 refers to the zero mode contribution, and 2/3 is added and

subtracted to achieve the charge renormalization. As in the scalar case (3.4), the strong-

field limit is read off from the last term, 1/3, inside the square brackets on the second

line of (3.13), while the one-loop β function coefficient is read off from the coefficient of

the logarithmic terms, which are responsible for charge renormalization. In this spinor

case, in contrast to the scalar case, the coefficients of these two terms are different. It

is clear that the source of the difference is precisely the zero mode contribution. This

explains the mis-match, at one-loop, between the strong-field asymptotics of the one-loop

effective lagrangian and the one-loop β function coefficient in the spinor case with the self-

dual background field. This mis-match, due to the zero mode contribution, also prevents

the strong-field limit from becoming mass-independent [as it was in the scalar case: see

eq. (3.5)], and therefore violates the assumptions of the trace-anomaly argument given in

section 2.1.

There is another useful perspective on this mis-match in the one-loop spinor self-dual

case: note that the unrenormalized one-loop lagrangian in the scalar case (3.3) is infrared

(IR) finite even in the massless limit. However, the renormalized one-loop lagrangian (3.4)

has an IR divergence at the upper bound of the proper-time integral in the massless limit

(which is actually cancelled by the lnm2/µ2 term). It is precisely the charge renormal-

ization subtraction removing the logarithmic UV divergence which introduces the IR di-

vergence. And it is the IR divergence which dominates the strong-field limit. Hence, we

observe an UV/IR connection in QED: the strong-field limit results from the IR behavior

of the proper-time integral which receives contributions from the counter-terms controlling

the UV behavior. This means that if the unrenormalized lagrangian is IR finite (as it is in

magnetic backgrounds for both scalar and spinor QED, and in the scalar self-dual case),
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the β function and the strong-field limit coincide. The presence of zero modes, in the spinor

self-dual case, obviously spoils this UV/IR connection, because it leads to an additional IR

divergence of the unrenormalized lagrangian.

4. Two-loop Euler-Heisenberg lagrangian for a self-dual field

We now turn to a two-loop analysis of the Euler-Heisenberg lagrangian for a self-dual

field in both spinor and scalar QED. We concentrate again on the role of the zero modes.

Interestingly, this role will turn out to be of a different nature than at one loop. The

unrenormalized two-loop spinor lagrangian can be written in coordinate space as

L
(2)
spinor =

e2

2

∫

d4x′D(x− x′) trDirac

[

γµ〈x|S|x
′〉γµ〈x

′|S|x〉
]

, (4.1)

where we have introduced the photon propagator D(x−x′) = [4π2(x−x′)2]−1 and work in

the Feynman gauge for convenience. Furthermore, we have used bracket notation for the

propagators, S(x, x′) ≡ 〈x|S|x′〉.

The influence of the zero-mode contribution can conveniently be studied with the aid

of representation (3.8), (3.9) of the spinor propagator S, which allows for a separation of

the zero-mode contribution,

L
(2)
spinor,z.m. = 2e2

∫

d4x′D(x− x′)
∫ ∞

0
dte−m

2t〈x|eD
2t|x′〉 trDirac〈x

′|P |x〉 . (4.2)

Here the first matrix element corresponds to the proper-time integrand of the massless

scalar propagator (3.2), and the second matrix element contains the projector P onto the

zero modes, defined in (3.10). For a constant self-dual background

〈x|eD
2t|x′〉 =

1

(4π)2
(ef)2

sinh2(eft)
exp

[

−
ef

4
(x− x′)2 coth(eft)

]

. (4.3)

Thus, we can write

L
(2)
spinor,z.m. =

e2

32π4
(ef)

∫ ∞

0

ds

sinh2 s
e−m

2s/(ef)

∫

d4x′
1

(x− x′)2
× (4.4)

× exp

[

−
ef

4
(x− x′)2 coth s

]

trDirac〈x
′|P |x〉 .

In the strong-field limit, ef
m2 →∞, we observe that

1

4π2(x− x′)2
exp

[

−
ef

4
(x− x′)2 coth s

]

→
1

ef coth s
δ(x− x′) . (4.5)

Therefore, in the strong-field limit the zero mode contribution is

L
(2)
spinor,z.m. →

α

2π

∫ ∞

0
ds

e
−m2

ef
s

sinh s cosh s
nF . (4.6)
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Our main observation here is that the zero-mode contribution (4.6) to the unrenormalized

two-loop lagrangian is IR finite even in the massless limit. This should be contrasted with

the one-loop spinor case [see eqs. (3.11) and (3.12)], where the zero-mode contribution is

the source of the IR divergence. At two-loops, even though eq. (4.6) has a UV divergence to

be absorbed in charge renormalization, the corresponding subtraction contributes equally

to the β function and the strong-field limit by virtue of the UV/IR connection discussed

at the end of section 3. Therefore, the zero-mode contribution identified in eq. (4.6) is not

the source of the difference between the β function coefficients and the strong-field limit

coefficients.

In order to pinpoint the actual source of the mis-match at the two-loop level, let us

perform the calculation in a straightforward way, starting from eq. (4.1) and using the

relations (3.8) and (3.9) to trade the spinor propagators S for a representation in terms of

the scalar propagator G. (This derivation complements the two-loop derivations in [18, 19],

which were done using the world-line formalism.) After taking the Dirac trace, we arrive

at a simple form in terms of matrix elements of G [19]:

L
(2)
spinor =

e2

2

∫

d4x′D(x− x′)× (4.7)

×
[

−8〈x|DαG|x
′〉〈x′|DαG|x〉 + 16〈x|G|x′〉〈x′|DαGDα|x〉+ 16〈x|x′〉〈x′|G|x〉

]

.

The last term corresponds to a “tadpole” diagram in the scalar language, suggesting a

quadratic divergence. However, this is only seemingly the case; in fact, there is a cancella-

tion of the last term with a corresponding divergence in the second term. This can be seen

from the identity

〈x|DαGDα|x
′〉 = −〈x|x′〉+m2〈x|G|x′〉+

(ef)2

2
(x− x′)2〈x|G|x′〉 , (4.8)

which makes it clear that the “tadpole” terms cancel in spinor QED (as they should).

The scalar two-loop lagrangian is also written in a form analogous to eq. (4.7), but

with different coefficients:

L
(2)
scalar = −e2

∫

d4x′D(x− x′)× (4.9)

×
[

〈x|DαG|x
′〉〈x′|DαG|x〉 + 〈x|G|x

′〉〈x′|DαGDα|x〉+ 4〈x|x′〉〈x′|G|x〉
]

.

In this case, the “tadpole” terms no longer cancel, and a quadratic divergence remains.

This is exactly as expected in the scalar case, since this quadratic divergence reflects the

presence of a relevant operator, the scalar mass term, in scalar QED. In fact, as we shall

confirm below, the complete tadpole term, including its divergence, can be absorbed into

the mass renormalization.

Before we proceed with the evaluation of these expressions, let us comment that we

derived eqs. (4.7), (4.9) without recourse to the explicit form of the background field. Only

the self-duality of the background has been used, so that we expect the similarities between

eqs. (4.7) and (4.9) to hold also in a more general context.
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4.1 Calculation of the two-loop lagrangians

The representations (4.7) and (4.9) of the spinor and scalar two-loop lagrangians can be

constructed from two basic terms (we drop “tadpole” terms in the scalar case from now

on, since they only modify the mass renormalization as discussed above):

L(2) =
α2

(4π)2
f2
(

AI1 +BI2

)

, (4.10)

where the numerical coefficients are A = −4 and B = 8 in the spinor case, and A = B = −1

in the scalar case. The integrals I1 and I2 are

I1 : =
(4π)3

αf2

∫

d4x′D(x− x′)〈x|DαG|x
′〉〈x′|DαG|x〉

=

∫ ∞

0
ydye

−m2

ef
y
[

2

sinh2 y
−

coth y

sinh2 y

∫ 1

0
du(coth yu+ coth y(1− u))

]

, (4.11)

I2 : =
(4π)3

αf2

∫

d4x′D(x− x′)
(

〈x|G|x′〉〈x′|DαGDα|x〉+ 〈x|G|x
′〉〈x|x′〉

)

=

∫ ∞

0
ydye−

m2

ef
y
[

2

sinh2 y
+
m2

ef

1

sinh y

∫ 1

0

du

(sinh yu)(sinh y(1− u))

]

, (4.12)

where we have inserted the proper-time form of the scalar propagator (3.2), leading to a

proper-time double integral. Furthermore, we have rescaled the proper-time parameter as

s = eft, and then performed the substitutions y = s+ s′, u = s′/(s + s′). Both integrals

I1 and I2 are IR finite but UV divergent and require regularization. As at one loop, we

introduce an UV proper-time cutoff for each proper-time integral which implies

∫ ∞

0
dy →

∫ ∞

2ef

Λ2

dy ;

∫ 1

0
du→

∫ 1− ef

Λ2y

ef

Λ2y

du . (4.13)

Now the u integrations can be performed, and we arrive at representations for I1 and I2
which are similar:

I1 =

∫ ∞

2ef

Λ2

dye
−m2

ef
y

{

2y

sinh2 y
+
m2

ef

1

sinh2 y

(

ln

[

sinh(y − ef
Λ2 )

sinh( ef
Λ2

)

]

−
ef

m2
coth

(

y −
ef

Λ2

)

)}

,(4.14)

I2 =

∫ ∞

2ef

Λ2

dye
−m2

ef
y

{

2y

sinh2 y
+

2m2

ef

1

sinh2 y
ln

[

sinh(y − ef
Λ2 )

sinh( ef
Λ2

)

]}

. (4.15)

An important observation is that each term in these expressions for I1 and I2 can be

naturally expressed in terms of the function ξ(κ) which was defined in (2.26) and (2.27).

This function ξ(κ) has the following integral representation

ξ = −
1

2

∫ ∞

0
dye
−m2

ef
y
(

1

sinh2 y
−

1

y2

)

. (4.16)

Recalling that κ = m2/(2ef), it follows that

ξ′ =
∫ ∞

0
dye−

m2

ef
yy

(

1

sinh2 y
−

1

y2

)

. (4.17)
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Thus, the first term in each of I1 and I2 can be expressed in terms of ξ ′:

∫ ∞

2ef

Λ2

dye−
m2

ef
y y

sinh2 y
=

∫ ∞

2ef

Λ2

dye−
m2

ef
yy

(

1

sinh2 y
−

1

y2

)

+

∫ ∞

2ef

Λ2

dye−
m2

ef
y 1

y

= ξ′(κ) +

(

−γ − ln

(

2m2

Λ2

))

(4.18)

where we have dropped terms that vanish as the cutoff is removed (i.e., as Λ→∞).

Similarly, by considering the integral representation for ξ2(κ) we find that the log terms

in the expressions (4.14) and (4.15) for I1 and I2 can also be expressed in terms of ξ(κ) as

m2

ef

∫ ∞

2ef

Λ2

dye−
m2

ef
y 1

sinh2 y
ln

[

sinh(y− ef
Λ2

)

sinh( efΛ2 )

]

=
1

2
−2ξ2(κ)−2

m2

ef

[

ln

(

Λ2

m2

)

+1−γ

]

ξ(κ)−

−2κ2

[

(

ln

(

Λ2

m2

)

+1− γ

)2

+1−
2Λ2

m2
ln 2

]

(4.19)

where once again we have dropped terms which vanish as the cutoff Λ is removed. Also

notice that the last parenthesis term in (4.19) is proportional to κ2, and so when inserted

into the two-loop effective lagrangian in (4.10) this term gives a field-independent contri-

bution to the effective lagrangian. Thus, we neglect this term, since it cancels when we

subtract the zero field effective lagrangian.

The remaining term in I1 can also be written in terms of ξ(κ), as

∫ ∞

2ef

Λ2

dye−
m2

ef
y
coth

(

y− ef
Λ2

)

sinh2 y
= −

1

3
(1+ ln 2)+2κξ(κ)+κ2

[(

3−2γ + 2 ln

(

Λ2

m2

))

− (4.20)

− 4
Λ2

m2
ln 2+ (4 ln 2−2)

Λ4

m4

]

up to terms vanishing as the cutoff is removed. Note that the final term in (4.20) is

proportional to κ2, and so can be dropped as it leads to a field-independent contribution

to the effective lagrangian.

So, putting everything together, we see that the entire two-loop effective lagrangian

(4.10) can be written in terms of the function ξ(κ):

L(2) =
α2

(4π)2
f2

{

2(A+B)ξ′ − 2(A+2B)ξ2−4κξ

[

(A+2B)

(

ln

(

Λ2

m2

)

−γ

)

+

(

3

2
A+ 2B

)]

+

[

2(A+B)

(

ln

(

Λ2

m2

)

−γ

)

+

(

5

6
A+B

)

−

(

5

3
A+2B

)

ln 2

]

}

(4.21)

The last term on the r.h.s. of (4.21) is proportional to the bare Maxwell lagrangian f 2, and

so corresponds to the charge renormalization counterterm. However, even after doing this

charge renormalization there remains on the r.h.s. of (4.21) a logarithmic UV divergence

with a nontrivial field dependence ∼ ξ(κ). This term can be seen to contribute to mass
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renormalization by noting that

−4κξ = 8π2

[{

1

−2

}

m2

(ef)2
∂

∂m2
L
(1)ren
{ sp
sc
} −

1

8π2

{

1

0

}]

, (4.22)

where we have used a combined notation for spinor (upper) and scalar (lower) QED. The

important difference arises from the last term in eq. (4.22): in the scalar case this term is

zero, and the ξ function is the only contribution required for a mass renormalization of the

one-loop lagrangian,

L(1)(ef,m2
R) = L

(1)(ef,m2) +
∂L(1)(ef,m2)

∂m2
δm2 , (4.23)

where mR denotes the renormalized mass, and δm2 is the mass renormalization countert-

erm. However, in the spinor case, the ξ function is not sufficient, but has to be supplemented

by the last term of eq. (4.22) which accounts for the zero-mode contribution in L
(1)
spinor.

Inserting the mass renormalization representation (4.22) for κξ into (4.21), we find

that the unrenormalized two-loop lagrangian can finally be written as

L
(2)
{ sp
sc
}=

α2

(4π)2
f2
[

2(A+B)ξ′ − 2(A+ 2B)ξ2
]

+ (4.24)

+
α

8π

{

1

−2

}

[

(A+ 2B)

(

ln

(

Λ2

m2

)

− γ

)

+

(

3A

2
+ 2B

)]

m2 ∂

∂m2
L
(1)ren
{ sp
sc
} +

+
α2

(4π)2
f2

[{

A

2(A +B)

}

(

ln

(

Λ2

m2

)

− γ

)

+

{

−2A
3 −B

5A
6 +B

}

−

(

5A

3
+ 2B

)

ln 2

]

.

This is our final result for the bare regularized two-loop lagrangian, written in a transparent

way such that renormalization is almost self-evident. The renormalized two-loop lagrangian

corresponds to the first term in (4.24); inserting A = −4 and B = 8 in the spinor case,

and A = B = −1 in the scalar case, we rediscover the results of [18, 19, 20] quoted in

eqs. (2.24), (2.25). Note that the results of [18, 19, 20] were derived using the world-line

representation of the effective lagrangian, so the result (4.24) provides an independent

confirmation.

The second term in (4.24) represents the mass renormalization counter-term that has

to be added to the one-loop lagrangian in the spirit of eq. (4.23). Here we can also read off

the one-loop mass shift (apart from “tadpole” contribution for the scalar case, as discussed

above),

δm2
{ sp
sc
} =

{

1

1/2

}

3α

2π

[

(

ln

(

Λ2

m2

)

− γ

)

+

{

5/6

7/6

}]

m2, (4.25)

which agrees with independent one-loop computations using a proper-time cutoff [23, 34].

The last term in (4.24) correponds to the charge renormalization counterterm which

has to be added to the Maxwell lagrangian in order to renormalize the coupling and field

strength (as in the one-loop case, we can trade the UV cutoff scale Λ for an arbitrary
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renormalization scale µ). Inserting the appropriate values for the coefficients A and B we

find

δL
(2)chargeren.
{ sp
sc
} = −

e4

64π4
f2

[

(

ln

(

Λ2

m2

)

− γ

)

+

{

4/3

11/24

}

+

{

7/3

−11/12

}

ln 2

]

. (4.26)

As expected, from these charge renormalization terms we can read off the correct two-loop

β function coefficients quoted in eqs. (2.10), (2.11).

The two-loop origin of the mis-match (in the spinor case with a self-dual background)

between the β function coefficient and the strong-field behavior becomes clear now: al-

though the zero-mode contribution exerts no direct influence on the IR behavior of the

unrenormalized lagrangian (cf. eq. (4.6)), the zero-mode contribution to the mass renor-

malization term in eq. (4.22) introduces another UV divergence which, together with the

overall UV divergence of the unrenormalized lagrangian, leads to the correct β function.

Whereas the overall UV divergence contributes equally to the strong-field limit by the

UV/IR connection, the zero-mode UV divergence from the mass renormalization does not

affect the strong field limit. This is the subtle source of the mis-match in the spinor case

at two-loop. We stress again that this is very different from the more familiar role of the

zero-modes at one-loop, as described in section 3.2.

5. Conclusions

We have analyzed the relation between the short-distance behavior and the strong-field

limit of QED with electromagnetic backgrounds. On the one hand, the strong-field asymp-

totics of a renormalized QED effective lagrangian is generally determined by its infrared

behavior. Since, on the other hand, the terms which are relevant for the ultraviolet be-

havior affect also the infrared simply for dimensional reasons, quantum fluctuations induce

an IR/UV interplay. In many instances, this mechanism leads to an exact IR/UV corre-

spondence between the strong-field limit and the β function. For instance in the case of

magnetic backgrounds or scalar QED, the strong-field limit can be computed from the β

function and vice versa, as is also suggested by an argument involving the trace anomaly.

The necessary condition for this exact IR/UV correspondence as well as the trace-anomaly

argument is the mass independence of the strong-field limit or, phrased differently, the

validity of the theory in the massless limit.

In the case of spinor QED in a self-dual background, an apparent discrepancy arises

from a comparison of the strong-field behavior of the effective lagrangian with the behavior

predicted by the perturbative β function and a naive application of the trace-anomaly

argument. The key to the resolution is the appearance of zero modes for spinor QED in

a self-dual background which invalidate a direct massless limit. This is well understood

at one-loop, but we found that the role of the zero modes is rather different at two loop.

Indeed, one way to understand our two loop results is that there is, in fact, only really a

one-loop effect: at the two-loop level, the zero modes do not introduce a new IR divergence,

but enter instead through the inevitable reappearance of the one-loop effective lagrangian

via mass renormalization.
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One motivation for our work is to prepare for future studies of higher-loop calculations

in QCD for quarks in a self-dual instanton background. A great deal is known about this at

one-loop [25, 32, 33, 35], but not at the two loop level. Many features of our QED analysis

generalize to the instanton case because it was primarily the self-duality of the background,

rather than its spacetime independence, which was most important. However, one major

difference is that in QED the internal photon propagator does not feel the background

field, while for the corresponding QCD diagram the internal gluon propagator does couple

to the background (instanton) field. Here it would be interesting to make connection with

the QED and QCD analysis of the one-loop polarization operator Πµν(Q
2) in a self-dual

background, where the role of the zero modes has also been studied [36, 37].

Finally, we conclude with a discussion of a renormalization group (RG) interpretation of

our results, which gives another perspective to the IR/UV connection in the renormalization

of spinor and scalar QED in these self-dual backgrounds. The discrepancy between the

strong-field limit and the β function coefficients can be viewed from a different perspective

with the aid of a renormalization group (RG) equation for the effective lagrangian. The RG

equation can be derived from the statement that the renormalized lagrangian is independent

of the renormalization scale µ,

µ
d

dµ
L(eF, α,m;µ) = 0 , (5.1)

where all quantities are assumed to be renormalized. Equation (5.1) states that any shift

in µ is compensated for by corresponding shifts of the renormalized parameters. Since the

product eF is RG invariant, it acts only as a spectator in the following considerations and

can be omitted from now on. Introducing the anomalous mass dimension

γm = −
µ

m

∂m

∂µ
, (5.2)

the RG equation can be written as
(

µ
∂

∂µ
+ β(α)

∂

∂α
− γmm

∂

∂m

)

L(α,m;µ) = 0 . (5.3)

If the strong-field limit was mass-independent, we could drop the term ∼ γm in eq. (5.3)

and read off the β function from this limit. In the self-dual spinor case, however, the mass-

dependence induced by the zero modes forces us to keep this term even in the strong-field

limit where L at one-loop is given by

L = −
(ef)2

4πα
−

(ef)2

24π2
ln
ef

m2
+

(ef)2

12π2
ln
m2

µ2
, for

ef

m2
→∞ . (5.4)

The first term is simply the renormalized Maxwell term. Inserting eq. (5.4) into eq. (5.3)

leads us to

β(α)m =
2

3

α2

π
+ γm

α2

π
+ · · · , (5.5)

where the dots represent higher-loop contributions. Here we appended the subscript m to

the β function in order to indicate the mass dependence. Since γm is of order α, namely

γm = −
µ

m

∂m

∂µ
= −

1

2

µ

m2

∂δm2

∂µ
= −

3

2

α

π
+ · · · , (5.6)
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as can be read off from eq. (4.25) by trading Λ for µ, the mass dependence induces contri-

butions to the βm function at the two-loop level and higher. Adding the standard two-loop

coefficient as obtained within a mass-independent scheme, we find

β(α)m =
2

3

α2

π
+

1

2

α3

π2
−

3

2

α3

π2
+O

(

α4
)

=
2

3

α2

π
−
α3

π2
+O

(

α4
)

, (5.7)

so that the two-loop coefficient in the nomenclature used in section 2 reads βm,2 =

−1/(32π4). This coefficient matches perfectly with the two-loop strong-field limit of the

self-dual spinor case given in eq. (2.31).

We can interpret the coincidence in the following way: there is, in fact, a correspon-

dence between the strong-field limit and the β function in the self-dual spinor case at

two-loop; but this correspondence applies only to the β function βm of an implicitly

electron-mass-dependent regularization scheme. (Note that the standard argument [38]

of scheme-independence of the two-loop coefficient holds for mass-independent schemes

only.) This mass-dependent scheme is natural in the self-dual spinor case because of the

presence of the zero modes which inhibit a direct massless limit.

This analysis can be performed at any loop order. In those cases where the strong-

field limit is mass-independent such as a magnetic background, this analysis connects the

β function with the strong-field limit coefficients and is well understood [1, 2, 3, 24]. In

the present case, however, such an analysis connects the mass-dependent β function, the

anomalous mass dimension and the strong-field limit with each other. For instance, if

the strong-field limit at n-loop order and the anomalous dimension at (n-1)-loop order

are known, we can extract the n-loop mass-dependent βm function and also the mass-

independent β function by virtue of the n-loop analogue of eq. (5.5). Aiming at an n-loop

computation of the β function, this is the same amount of information required as for

a magnetic background, but the computation for a self-dual background will be much

simpler.

As a further remark, let us point out that we have discussed possible massless limits of

QED always as continuous limits of massive theories in this work. In this sense, a massless

limit of the self-dual spinor case does not exist because of the zero modes. This does not

imply that a massless formulation of the self-dual spinor case does not exist at all. On

the contrary, it is well possible that a massless formulation exists but requires a different

treatment similar to the case of massless gluonic fluctuations in a self-dual Yang-Mills

background [9, 25]. For this, the integration over the fermions has to be decomposed into

zero-mode and non-zero-mode fluctuations. The non-zero modes have to be integrated out

first in a background consisting of the constant self-dual field plus zero-mode fluctuations.

We expect that the non-zero-mode integration “dresses” the zero modes in such a way

that they acquire a mass. Contrary to the gluonic case, this mechanism requires a two-

loop calculation, so that an effective four-fermion coupling between the zero and nonzero

modes can be generated by photon exchange. In a self-dual background, the non-zero

modes will form a condensate which then gives a mass to the zero modes because of this

four-fermion interaction. A strong evidence for this scenario is given by our observation

that the zero modes do not induce an IR divergence at the two-loop level. Once the
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zero modes are lifted by this effective mass, they can finally be integrated out. Since

there is no further scale in this formulation, the standard relation between the strong-

field limit and the beta function can be expected to hold for this theory once the zero

modes are integrated out. This explains also why the massless limit of the massive case

cannot be continuous because the strong-field limit coefficient changes discontinuously in

this limit.
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A. Finite part of mass renormalization

In this appendix we comment on the finite part of the mass renormalization in (4.25). This

finite part is not relevant for the main discussion of this paper, as it does not affect either

the β function or the strong-field limit. However, it is crucial for the derivation of the finite

renormalized two-loop effective lagrangians (2.24) and (2.25) for spinor and scalar QED,

respectively, in a constant self-dual background. These two-loop results were first derived

in [18, 19] using the worldline formalism, and here we have given an independent derivation

in section IV of this current paper using a conventional field theory diagrammatic approach.

In order to fix the finite part of the mass renormalization mass shift, one approach is

to compare (4.25) with an independent calculation of the UV properties of the mass opera-

tor [23, 34], done in the same regularization scheme. For a constant magnetic background,

this scheme dependence of the finite mass shift has been studied at two-loop in [39]. An-

other approach, implicit in [1, 2, 3, 40], is to demand that the leading growth rate of the

coefficients of the weak-field expansion of the two-loop renormalized effective lagrangian

coincides (up to a factor of απ) with the leading growth rate of the coefficients of the

weak-field expansion of the one-loop renormalized effective lagrangian. This ensures that

the leading imaginary part of the Leff , when the field is analytically continued to an un-

stable regime, involves the same physical electron mass at two-loop as at one-loop. This is

because the leading imaginary parts go like exp[−m2π/(e|f |)], and these nonperturbative

factors are related to the leading divergence rate of the perturbative coefficients of the

(divergent) weak-field expansion in the standard way . Therefore, any mis-match between

the leading growth rates at one-loop and two-loop corresponds to a shifted value of m2,

and vice versa. This gives an interesting “nonperturbative” definition of the renormalized

mass, which is completely compatible with the standard definition of the mass through a

renormalized perturbative Green’s function [1, 2, 3]. The correspondence of the leading

growth rates of the one-loop and two-loop weak-field expansions has been confirmed nu-

merically in [41] for the case of a constant electric background, and has been confirmed
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analytically in [20] for the case of a constant self-dual background (with f analytically

continued f → if).

From the calculation presented in section IV, it is easy to see from (4.23) and (4.24)

that any finite shift in the finite parts (5/6 and 7/6 for spinor and scalar, respectively) of the

mass shift in (4.25) would introduce into the renormalized two-loop effective lagrangians

on the first line of (4.24) an additional term of the form

δL(2) ∼ αm2 ∂

∂m2
L(1) ∼ ακ

∂

∂κ
L(1) . (A.1)

Now the one-loop effective lagrangians in (2.21) and (2.22) have divergent weak-field ex-

pansions of the form

L(1) = m4
∞
∑

n=2

c
(1)
n

κ2n
, (A.2)

where the magnitude of the expansion coefficients grows factorially as [20]

|c(1)n | ∼
Γ(2n− 1)

(2π)2n
. (A.3)

Similarly, the two-loop effective lagrangians in (2.24) and (2.25) have divergent weak-field

expansions of the form

L(2) = απm4
∞
∑

n=2

c
(2)
n

κ2n
, (A.4)

where the magnitude of the expansion coefficients grows factorially as [20]

|c(2)n | ∼
Γ(2n− 1)

(2π)2n
. (A.5)

This leading growth rate is precisely the same as the one-loop rate in (A.3), confirming

Ritus’s criterion at this order.

The two-loop results (2.24) and (2.25) for the on-shell renormalized effective lagran-

gians appear in the first line of (4.24), when the finite parts of the mass shifts are as

specified in (4.25). If these finite parts were shifted, then the renormalized effective la-

grangians would acquire a further shift as in (A.1). However, this extra piece clearly has

the wrong growth rate, with the magintude of the expansion coefficients now growing like

Γ(2n)/(2π)2n, which is faster than the one-loop growth rate in (A.3). Thus we see that

we can indeed uniquely implement Ritus’s nonperturbative criterion as a means to fix the

physical renormalized mass, including the finite part of the mass shift. And the result is

completely consistent with the finite parts found by standard perturbative means [23, 34].

We believe that the method described here is not only of theoretical interest, but at higher

loop orders might actually be technically preferable to a direct calculation of the mass shift.
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