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We show that the inclusion of parton density effects in the perturbative small-x evolu-
tion reduces the strength of the powerlike growth of total hadronic cross sections.

1. Introduction

At center of mass energies above
√

s ≈ 100 GeV, total hadronic cross sections σ show
a continuous rise which persists up to the highest energies explored so far and which is
consistent with a gentle powerlike growth,

σ ∝ sαP , where αP = 0.08 . (1)

However, at asymptotically high
√

s, hadronic cross sections satisfy the unitarity or Frois-
sart bound, σ ≤ π

m2 ln2 s
m2 where m is the smallest mass in the theory. Thus, the power

law growth (1), parametrized by the soft pomeron intercept αP , can be valid only in a
preasymptotic, though possibly large, kinematical regime. So far, this growth is not un-
derstood in the context of QCD. Indeed, perturbation theory in the LO BFKL framework
does result in a powerlike growth

σ ∝ sω , where ω =
αs

π
Nc4 ln 2 � αP , (2)

but the BFKL intercept ω is much larger than the experimentally observed one. Inspecting
at large rapidity t = ln s

m2 the analytically known dependence of the BFKL density
Φ(b, k, t, k0) of gluons of momentum k at impact parameter b originating from a gluon
of momentum k0 at initial rapidity t0, two different perturbative (non-unitary) growth
mechanisms can be identified in the BFKL calculation:

1. Growth in density: For b < bdiff ' e
√

αst, one finds Φ(b) ∼ eωt. For BFKL, this is
the dominant growth mechanism, resulting in (2).

2. Growth in impact parameter space: For bspread = eεαst, one finds Φ(bspread) ∼ e(ω−ε2αs)t.
For BFKL, this is a subleading growth mechanism.
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Here, we review arguments that including “gluon saturation”, i.e. parton density effects,
in the LO perturbative QCD calculation allows to regulate the dominant growth in density,
thus taming in comparison to BFKL the non-unitary powerlike growth to σ ∝ sεω. This
provides a perspective for a perturbative calculation of the soft pomeron intercept.

2. The dipole-hadron total cross section

For an explicit discussion of gluon saturation effects, we take recourse to a toy model
of a hadronic collision. At initial rapidity t0, we consider a perturbative qq̄-dipole with
quarks at transverse positions x and y colliding with a hadronic target. The dipole
scattering probability is N(x, y) [we also write N(b = x+y

2
, r = x−y

2
)], and the total cross

section is obtained by integrating over the impact parameter, σ(t0) = 2
∫

d2bN(b, r). To
calculate the rapidity dependence of the cross section, one may work in the target rest
frame where t > t0 corresponds to boosting the projectile. This boost generates additional
gluons which in the large Nc-limit translate into additional dipoles at different transverse
positions. Pictorially:
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Calculating the interaction of this boosted dipole wave function with the hadronic target
and taking the derivative with respect to the phase space opened up by the boost, one
regains the Balitsky-Kovchegov equation [1]:

d

dt
N(x, y) = ᾱs

∫ d2z

2π

(x− y)2

(x− z)2(y − z)2
[N(x, z) + N(y, z)−N(x, y)−N(x, z)N(z, y)] . (3)

This non-linear evolution equation differs from the linear BFKL equation by the addition
of the last term N(x, z)N(z, y) only. The physics contained in this modification of the
BFKL equation is that of a double counting correction. Namely, for a projectile consisting
of two dipoles (x, z) and (y, z), the scattering probability is the sum of the individual
scattering probabilities minus the probability that both dipoles scatter:

N({x, z}; {y, z}) = N(x, z) + N(y, z)−N(x, z) N(z, y) . (4)

The remaining fourth term N(x, y) in (3) is a virtual correction required by the proper
normalization of the projectile wavefunction |qq̄〉+ |qq̄g〉. In conclusion, the BK evolution
equation (3) can be viewed in the target rest frame as BFKL evolution of the boosted
projectile but supplemented by the double counting correction for the interaction of the
evolved projectile wavefunction with the target. The swelling of the BK dipole projectile
wavefunction in impact parameter space is thus known from BFKL. The density of dipoles
of size r at b obtained by boosting the initial dipole of size r0 to rapidity t takes the form

n(r, b, r0, t) =
32

r2

ln 16b2

r0r

(πa2t)3/2
exp


ωt− ln

16r2

r0r
− ln2 16b2

r0r

a2t


 . (5)
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To determine the growth of the total cross section from this density, we consider the
smallest dipole for which the scattering probability N(r, b) is of order one for b < R0:
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If after boosting the density of dipoles at b becomes unity, then the scattering probability
is of order unity as well. This establishes the non-unitary growth [2,3]

σ(t) = πR2(t, Q2 = 1/r2) with R2(t, Q2) =
r0 r

16
exp [εt] . (6)

From (5), one finds for the BK intercept ε = αsNc

π
7 ζ(3)

[
− 1 +

√
1 + 8 ln 2/7ζ(3)

]
. This

expression is parametrically correct but numerically questionable since (5) is based on a
saddle point approximation valid for sufficiently small impact parameter only. Still, the
numerical value ε = 0.87 ω is compatible with a numerical result of G. Salam [4] who
finds a non-unitary growth of total cross sections with ε ≈ 0.75 ω in a simulation which
encodes essentially the same physics as (3).

3. Saturation without Unitarization: alternative derivations

The above derivation was given in the target rest frame where the evolution resides
in the projectile wavefunction. The same result can be obtained [2,3] within Weigert’s
formulation where the evolution is ascribed to the target. This latter argument can be
viewed as establishing the non-unitary growth of the hadronic cross section for a coloured
scattering probe. Moreover, it was shown [5] that the total cross section violates unitarity
for a colourless projectile as soon as it does so for a coloured one. These three arguments
are independent of each other but consistent with each other and with Ref. [4]. They
establish that while the BK equation ensures saturation of the scattering probability
locally in impact parameter space (i.e. N(b, r) < 1 for all b), it violates unitarization of
the total cross section [2].

4. Beyond the BK equation (BBK)

In the target rest frame, the only density effect included in the BK equation (3) is the
nonlinear double counting correction in (4). This correction sets in as soon as the number
of gluons in the projectile state becomes large, even if the gluonic density may still be
small. In addition, as soon as the partonic density in the projectile reaches a critical
value of order 1/αs, one expects wavefunction saturation effects which further tame the
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growth of density in the projectile and are not included in (3). The rapidity scales for
these different effects are:[2]

tBFKL ∝ 1

αs Nc
, tBK ∝ 1

αs Nc ln(R0/r0)
, tBBK ∝ 1

αs Nc ln(1/αs)
. (7)

At rapidity tBFKL, the BFKL equation violates unitarity due to the growth in density.
From (6) one finds that at rapidity tBK, the BK equation violates unitarity for a (small)
dipole of initial size r0 incident on a sufficiently extended target of size R0. This violation
is due to the growth of the projectile in transverse size. The applicability of the BK
evolution, however, crucially depends on the nature of the target. If the target is thick
enough, so that the scattering probability is parametrically larger than αs [for a large
nucleus of atomic number A, it is O(A1/3αs)], and if the target is wide enough, so that
saturation occurs before the projectile radius swells beyond that of the target, then there
is an intermediate regime t < tBK in which BK applies. However, if the target is a nucleon,
neither one of these conditions is satisfied.

Wavefunction saturation effects should set in when the interaction probability of a
dipole of size r with another dipole of similar size is of order unity, αs r2 n(r) ∼ 1. Taking
the density growth exponential in rapidity, r2 n(r) = eωt, this indicates that saturation
effects beyond those included in the BK equation become relevant for t > tBBK.

It is reasonable to expect that projectile wavefunction saturation effects further diminish
the intercept parameter of total cross sections beyond the exponent of the BK equation.
The reason is that a tamed growth of the density in the projectile due to dipole interactions
will result in a tamed growth in impact parameter. This suggests the hierarchy

ωBFKL > ωBK > ωBBK . (8)

Thus, one is led naturally to conjecture that a non-linear generalization of the BFKL
equation which goes beyond BK by taking into account wave function saturation ef-
fects (“Pomeron loops”) provides a perturbative framework for the calculation of the soft
Pomeron intercept, ωBBK = αP . However, this requires that the perturbative growth
mechanism occurs in the hadron on a scale smaller than the confinement scale at which
the Froissart bound can be expected to arise as a consequence of non-perturbative physics.
As explained in Ref.[3], a picture of the proton as consisting of three small black discs
associated with the valence quarks is consistent with what is known about hadronic cross
sections and allows for this possibility.
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