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Abstract

This paper discusses hadron energy reconstruction for the ATLAS
barrel prototype combined calorimeter (consisting of a lead-liquid ar-
gon electromagnetic part and an iron-scintillator hadronic part) in the
framework of the non-parametrical method. The non-parametrical me-
thod utilizes only the knowne/h ratios and the electron calibration con-
stants and does not require the determination of any parameters by a min-
imization technique. Thus, this technique lends itself to an easy use in a
first level trigger. The reconstructed mean values of the hadron energies
are within±1% of the true values and the fractional energy resolution is
[(58 ± 3)%/

√
E + (2.5 ± 0.3)%] ⊕ (1.7 ± 0.2)/E. The value of the

e/h ratio obtained for the electromagnetic compartment of the combined
calorimeter is1.74 ± 0.04 and agrees with the prediction thate/h > 1.7
for this electromagnetic calorimeter. Results of a study ofthe longitudi-
nal hadronic shower development are also presented. The data have been
taken in the H8 beam line of the CERN SPS using pions of energies from
10 to 300 GeV.

Codes PACS: 29.40.Vj, 29.40.Mc, 29.85.+c.
Keywords: Calorimetry, Combined Calorimeter, Shower Counter, Com-
pensation, Energy Measurement, Computer Data Analysis.
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1 Introduction

The key question for calorimetry in general, and hadronic calorimetry in par-
ticular, is that of energy reconstruction. This question becomes especially
important when a hadronic calorimeter has a complex structure incorporating
electromagnetic and hadronic compartments with differenttechnologies. This
is the case for the central (barrel) calorimetry of the ATLASdetector which
has the electromagnetic liquid argon accordion and hadronic iron-scintillator
Tile calorimeters [1, 2, 3]. A view of the ATLAS detector, including the two
calorimeters, is shown in Fig. 1.

In this paper, we describe a non-parametrical method of energy reconstruc-
tion for a combined calorimeter known as thee/h method, and demonstrate
its performance using the test beam data from the ATLAS combined prototype
calorimeter. For the energy reconstruction and description of the longitudinal
development of a hadronic shower, it is necessary to know thee/h ratios, the
degree of non-compensation, of these calorimeters. Detailed information about
thee/h ratio for the ATLAS Tile barrel calorimeter is presented in [2, 4, 5, 6, 7]
while much less was done so far for the liquid argon electromagnetic calorime-
ter [8, 9, 10]. An additional aim of the present work, then, isto also determine
the value of thee/h ratio for the electromagnetic compartment.

Another important question for hadron calorimetry is that relating to the
longitudinal development of hadronic showers. This question is especially im-
portant for a combined calorimeter because of the differentdegrees of non-
compensation for the separate calorimeter compartments. Information about
the longitudinal hadronic shower development is very important for fast and
full hadronic shower simulations and for fast energy reconstruction in a first
level trigger. This work is also devoted to the study of the longitudinal hadronic
shower development in the ATLAS combined calorimeter.

This work has been performed using the 1996 combined test beam data
[11, 12] taken in the H8 beam line of the CERN SPS using pions ofenergies
from 10 to 300 GeV.

2 Combined Calorimeter

The combined calorimeter prototype setup is shown in Fig. 2,along with a def-
inition of the coordinate system used for the test beam. The LAr calorimeter
prototype is housed inside a cryostat with the hadronic Tilecalorimeter proto-
type located downstream.
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The beam line is in theY Z plane at 12 degrees from theZ axis. With this
angle the two calorimeters have an active thickness of 10.3 interaction lengths
(λI). The beam quality and geometry were monitored with a set of scintilla-
tion counters S1 – S4, beam wire chambers BC1 – BC3 and triggerhodoscopes
(midsampler) placed downstream of the cryostat. To detect punchthrough parti-
cles and to measure the effect of longitudinal leakage a “muon wall” consisting
of 10 scintillator counters (each 2 cm thick) was located behind the calorimeters
at a distance of about 1 metre.

The liquid argon electromagnetic calorimeter prototype consists of a stack
of three azimuthal modules, each module spanning9◦ in azimuth and extending
over 2000 mm along theY direction. The calorimeter structure is defined by
2.2 mm thick steel-plated lead absorbers folded into an accordion shape and
separated by 3.8 mm gaps filled with liquid argon. The signalsare collected
by three-layer copper-polyamide electrodes located in thegaps. The calorime-
ter extends from an inner radius of 1315 mm to an outer radius of 1826 mm,
representing (in theZ direction) a total of 25 radiation lengths (X0), or 1.22
λI for protons. The calorimeter is longitudinally segmented into three com-
partments of9 X0, 9 X0 and7 X0, respectively. Theη × φ segmentation is
0.018 × 0.02 for the first two longitudinal compartments and0.036 × 0.02 for
the last compartment. Each read-out cell has full projective geometry inη and
φ. The cryostat has a cylindrical shape, with a 2000 mm internal diameter (filled
with liquid argon), and consists of an 8 mm thick inner stainless-steel vessel,
isolated by 300 mm of low-density foam (Rohacell), which is itself covered by
a 1.2 mm thick aluminum outer wall. A presampler was mounted in front of
the electromagnetic calorimeter. The presampler has fine strips in theη direc-
tion and covers≈ 11 × 8 in η × φ LAr calorimeter cells in the region of the
beam impact. The active depth of liquid argon in the presampler was 10 mm
and the strip spacing 3.9 mm. Early showers in the liquid argon were kept to
a minimum by placing light foam material (Rohacell) in the cryostat upstream
of the LAr electromagnetic calorimeter. The total amount ofmaterial between
BC3 and LAr calorimeter is near0.2λI . More details about this prototype can
be found in [1, 10].

The hadronic Tile calorimeter is a sampling device which uses steel as the
absorber and scintillating tiles as the active material [2]. A conceptual design
of this calorimeter geometry is shown in Fig. 3. The innovative feature of the
design is the orientation of the tiles which are placed in planes perpendicular
to theY direction [13]. The absorber structure is a laminate of steel plates
of various dimensions stacked alongY . The basic geometrical element of the
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stack is denoted as a period. A period consists of a set of two master plates
(large trapezoidal steel plates, 5 mm thick, spanning alongthe entireZ dimen-
sion) and one set of spacer plates (small trapezoidal steel plates, 4 mm thick,
100 mm wide alongZ). During construction, the half-period elements are pre-
assembled starting from an individual master plate and the corresponding 9
spacer plates. The relative position of the spacer plates inthe two half periods
is staggered in theZ direction, to provide pockets in the structure for the sub-
sequent insertion of the scintillating tiles. Each stack, termed a module, spans
2π/64 in the azimuthal angle (X dimension), 1000 mm in theY direction and
1800 mm in theZ direction (about 9λI or about 80X0). The module front
face, exposed to the beam particles, covers 1000×200 mm2. The scintillating
tiles are made out of polystyrene material of thickness 3 mm,doped with scin-
tillating and wavelength-shifting dyes. The iron to scintillator ratio is4.67 : 1
by volume. The tile calorimeter thickness along the beam direction at the in-
cidence angle of12◦ (the angle between the incident particle direction and the
normal to the calorimeter front face) corresponds to 1.5 m ofiron equivalent
length.

Wavelength shifting fibers collect the scintillation lightfrom the tiles at both
of their open (azimuthal) edges and transport it to photo-multipliers (PMTs) at
the periphery of the calorimeter (Fig. 3). Each PMT views a specific group of
tiles through the corresponding bundle of fibers. The prototype Tile calorimeter
used for this study is composed of five modules stacked in theX direction, as
shown in Fig. 2.

The modules are longitudinally segmented (alongZ) into four depth seg-
ments. The readout cells have a lateral dimension of 200 mm along Y , and
longitudinal dimensions of 300, 400, 500, 600 mm for depth segments 1 – 4,
corresponding to 1.5, 2, 2.5 and 3λI , respectively. Along theX direction, the
cell sizes vary between about 200 and 370 mm depending on theZ coordinate
(Fig. 2). More details of this prototype can be found in [1, 14, 15, 4, 16, 17].
The energy release in 100 different cells was recorded for each event [14].

The data have been taken in the H8 beam line of the CERN SPS using
pions of energy 10, 20, 40, 50, 80, 100, 150 and 300 GeV. We haveapplied
some cuts similar to [11, 12] in order to eliminate the non-single track pion
events, the beam halo, the events with an interaction beforethe liquid argon
calorimeter, and the electron and muon events. The set of cuts adopted is as
follows: single-track pion events were selected by requiring the pulse height
of the beam scintillation counters and the energy released in the presampler of
the electromagnetic calorimeter to be compatible with thatfor a single particle;
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the beam halo events were removed with appropriate cuts on the horizontal and
vertical positions of the incoming track impact point and the space angle with
respect to the beam axis as measured with the beam chambers; acut on the total
energy rejects incoming muons.

3 The e/h Method of Energy Reconstruction

An hadronic shower in a calorimeter can be seen as an overlap of a pure elec-
tromagnetic and a pure hadronic component. In this case an incident hadron
energy isE = Ee +Eh. The calorimeter response,R, to these two components
is usually different [18, 19] and can be written as:

R = e · Ee + h · Eh , (1)

wheree (h) is a coefficient to rescale the electromagnetic (hadronic)energy
content to the calorimeter response. A fraction of an electromagnetic energy of
a hadronic shower isfπ0 = Ee/E, thanR = e · fπ0 · E + h · (E − fπ0 · E) =
e· [1+(e/h−1)·fπ0 ]/(e/h)·E. From this one can gets formulae for an incident
energy

E =
1

e
·
(

e

π

)

· R , (2)

where
(

e

π

)

=
e/h

1 + (e/h − 1) · fπ0

. (3)

The dependence offπ0 from the incident hadron energy can be parameterized
as in Ref. [20]:

fπ0 = k · ln E . (4)

In the case of the combined setup described in this paper, thetotal energy
is reconstructed as the sum of the energy deposit in the electromagnetic com-
partment (ELAr), the deposit in the hadronic calorimeter (ET ile), and that in the
passive material between the LAr and Tile calorimeters (Edm). Expression (2)
can then be rewritten as:

E = ELAr +Edm +ET ile =
1

eLAr

(

e

π

)

LAr

RLAr +Edm +
1

eT ile

(

e

π

)

T ile

RT ile ,

(5)
whereRLAr (RT ile) is the measured response of the LAr (Tile) calorimeter com-
partment and1/eT ile and1/eLAr are energy calibration constants for the LAr
and Tile calorimeters respectively [11].
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Similarly to the procedure in Refs. [11, 21], theEdm term, which accounts
for the energy loss in the dead material between the LAr and Tile calorimeters,
is taken to be proportional to the geometrical mean of the energy released in
the third depth of the electromagnetic compartment and the first depth of the
hadronic compartment (Edm = α ·

√

ELAr,3 · ET ile,1). The validity of this ap-
proximation has been tested using a Monte Carlo simulation along with a study
of the correlation between the energy released in the midsampler and theEdm

[12, 22, 23].
The ratio(e/h)T ile = 1.30 ± 0.03 has been measured in a stand-alone test

beam run [6] and is used to determine the(e/π)T ile term in equation 5. To
determine the value of the1/eT ile constant we selected events which started
showering only in the hadronic compartment, requiring thatthe energy de-
posited in each sampling of the LAr calorimeter and in the midsampler is
compatible with that of a single minimum ionization particle. The result is
1/eT ile = 0.145 ± 0.002.

The response of the LAr calorimeter has already been calibrated to the elec-
tromagnetic scale; thus the constant1/eLAr = 1 [11, 12]. The value of(e/h)LAr

has been evaluated using the data from this beam test, selecting events with well
developed hadronic showers in the electromagnetic calorimeter, i.e. events with
more than 10% of the beam energy in the electromagnetic calorimeter. Using
the expression (5), the(e/π)LAr ratio can be written as:

(

e

π

)

LAr

=
Ebeam − Edm − ET ile

RLAr/eLAr

. (6)

Fig. 4 shows the distributions of the(e/π)LAr ratio for different energies, and
the mean values of these distributions are plotted in Fig. 5 as a function of the
beam energy. From a fit to this distribution using expression(3) and (4) we
obtain(e/h)LAr = 1.74±0.04 andk = 0.108±0.004, thereby taking(e/h)LAr

to be energy independent. For a fixed value of the parameterk = 0.11 [20],
the result is(e/h)LAr = 1.77 ± 0.02. The quoted errors are the statistical ones
obtained from the fit. The systematic error on the(e/h)LAr ratio, which is a
consequence of the uncertainties in the input constants used in the equation
(6) as well as of the shower development selection criteria,is estimated to be
±0.04.

Figure 6 compares our values of the(e/π)LAr ratio to the ones obtained
in Refs. [8, 9, 10] using a weighting method. The results are in good agree-
ment below 100 GeV but disagree above this energy because theweighting
method leads to a distortion of the(e/π)LAr ratios. Despite this disagreement,
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fitting expression (3) to the old data leads to(e/h)em = 1.73± 0.10 for [9] and
(e/h)em = 1.64± 0.18 for [10] (parameterk fixed at 0.11). These values are in
agreement with our result within error bars.

In the Ref. [20] it was demonstrated that thee/h ratio for non-uranium
calorimeters with high-Z absorber material is satisfactorily described by the
formula:

e

h
=

e/mip

0.41 + fn · n/mip
, (7)

wherefn is a constant determined by theZ of the absorber (for leadfn = 0.12)
[24, 25], ande/mip andn/mip represent the calorimeter response to electro-
magnetic showers and to MeV-type neutrons, respectively. These responses are
normalized to the one for minimum ionizing particles. The Monte Carlo cal-
culatede/mip andn/mip values [18] for the lead liquid argon electromagnetic
calorimeter [26] aree/mip = 0.78 andn/mip < 0.5, leading toe/h > 1.66.
The measured value of the(e/h)em ratio agrees with this prediction. Using
expression (7) and measured value ofe/h we can find thatn/mip is≃ 0.3.

Formula (7) indicates thate/mip is very important for understanding com-
pensation in lead liquid argon calorimeters. The degree of non-compensation
increases when the sampling frequency is also increased [24]. A large fraction
of the electromagnetic energy is deposited through very soft electrons (E < 1
MeV) produced by Compton scattering or the photoelectric effect. The cross
sections for these processes strongly depend onZ and practically all these pho-
ton conversions occur in the absorber material. The range ofthe electrons pro-
duced in these processes is very short,∼ 0.7 mm for 1 MeV electron in lead.
Such electrons only contribute to the calorimeter signal ifthey are produced
near the boundary between the lead and the active material. If the absorber
material is made thinner this effective boundary layer becomes a larger fraction
of the total absorber mass and the calorimeter response goesup. This effect
was predicted by EGS3 simulation [27]. It leads to predictions for the GEM
[28] accordion electromagnetic calorimeter (1 mm lead and 2mm liquid argon)
that e/mip = 0.86 ande/h > 1.83. The Monte Carlo calculations also pre-
dict that the electromagnetic response for liquid argon calorimeters (due to the
largerZ value of argon) is consistently larger than for calorimeters with plastic-
scintillator readout. The signal from neutrons (n/mip) is suppressed by a factor
0.12 and then − p elastic scattering products do not contribute to the signalof
liquid argon calorimeters. These detectors only observe the γ’s produced by
inelastic neutron scattering (thermal neutron capture escapes detection because
of fast signal shaping) [24].
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To use expression (5) for reconstructing incident hadron energies, it is nec-
essary to know the(e/π)T ile and(e/π)LAr ratios, which themselves depend on
the hadron energy. For this purpose, a two cycle iteration procedure has been
developed. In the first cycle, the(e/π)T ile ratio is iteratively evaluated using the
expression:

(

e

π

)

T ile

=
(e/h)T ile

1 + ((e/h)T ile − 1) · k · ln (1/eT ile · (e/π)T ile · RT ile)
. (8)

using the value of(e/π)T ile from a previous iteration. To start this procedure, a
value of 1.13 (corresponding tof 0

π = 0.11 ln(100 GeV)) has been used.
In the second cycle, the first approximation of the energy,E, is calculated

using the equation (5) with the(e/π)T ile ratio obtained in the first cycle and
the (e/π)LAr ratio from equation (3), where again the iteration is initiated by
fπ0 = 0.11 ln(100 GeV).

In both cycles the iterated values are arguments of a logarithmic function;
thus the iteration procedure is very fast. After the first iteration, an accuracy
of about0.1% has been achieved for energies in the range 80÷150 GeV, while
a second iteration is needed to obtain the same precision forthe other beam
energies. In Fig. 7 the energy linearity, defined as the ratiobetween the mean
reconstructed energy and the beam energy, is compared, after a first iteration,
to the linearity obtained after iterating to aǫ = 0.1% accuracy, showing a good
agreement. For this reason, the suggested algorithm of the energy reconstruc-
tion can be used for the fast energy reconstruction in a first level trigger.

Fig. 7 also demonstrates the correctness of the mean energy reconstruction.
The mean value ofE/Ebeam is equal to(99.5 ± 0.3)% and the spread is±1%,
except for the point at 10 GeV. However, as noted in [11], result at 10 GeV is
strongly dependent on the effective capability to remove events with interac-
tions in the dead material upstream and to separate the real pion contribution
from the muon contamination.

Fig. 8 shows the pion energy spectra reconstructed with thee/h method
proposed in this paper for different beam energies. The meanandσ values
of these distributions are extracted with Gaussian fits over±2σ range and are
reported in Table 1 together with the fractional energy resolution.

Fig. 9 shows the comparison of the linearity as a function of the beam energy
for thee/h method and for the cells weighting method [29]. Comparable quality
of the linearity is observed for these two methods.

Fig. 10 shows the fractional energy resolutions (σ/E) as a function of1/
√

E
obtained by three methods: thee/h method (black circles, also presented on the
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Table 1), the benchmark method [11] (crosses), and the cellsweighting method
[11] (open circles). The energy resolutions for thee/h method are comparable
with the benchmark method and only30% worse than for the cells weighting
method. A fit to the data points gives the fractional energy resolution for the
e/h method obtained using the iteration procedure withǫ = 0.1%,

σ/E = [(58 ± 3)%/
√

E + (2.5 ± 0.3)%] ⊕ (1.7 ± 0.2)/E (9)

for thee/h method using the first approximation,

σ/E = [(56 ± 3)%/
√

E + (2.7 ± 0.3)%] ⊕ (1.8 ± 0.2)/E, (10)

for the benchmark method,

σ/E = [(60 ± 3)%/
√

E + (1.8 ± 0.2)%] ⊕ (2.0 ± 0.1)/E, (11)

and, for the cells weighting method,

σ/E = [(42 ± 2)%/
√

E + (1.8 ± 0.1)%] ⊕ (1.8 ± 0.1)/E, (12)

where E is in GeV and the symbol⊕ indicates a sum in quadrature. The sam-
pling term is consistent between thee/h method and the benchmark method
and is smaller by a factor of 1.5 for the cells weighting method. The constant
term is the same for the benchmark method and the cells weighting method and
is larger by(0.7± 0.3)% for thee/h method. The noise term of about1.8 GeV
coincide for all four cases within errors that reflect its origin in electronic noise.
Note, that from the pedestal trigger data the total noise forthe two calorimeters
was estimated to be about 1.4 GeV.

4 Hadronic Shower Development

The e/h method for energy reconstruction has been used to study the energy
depositions,Ei, in each longitudinal calorimeter sampling. Table 2 lists (and
Fig. 11 shows) the differential mean energy depositions(∆E/∆z)i = Ei/∆zi

as a function of the longitudinal coordinatez for energies from 10 to 300 GeV,
with z expressed in interaction length units.

A well known parameterization of the longitudinal hadronicshower devel-
opment from the shower origin is suggested in Ref. [30]:

dEs(z)

dz
= N

{

ω
( z

X0

)a−1

e
−b z

X0 + (1 − ω)
( z

λI

)a−1

e
−d z

λI

}

, (13)
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whereN is the normalization factor, anda, b, d, ω are parameters (a =
0.6165 + 0.3183 · ln E, b = 0.2198, d = 0.9099 − 0.0237 · ln E, ω = 0.4634).
In this parameterization, the origin of thez coordinate coincides with shower
origin, while our data are from the calorimeter face and, dueto insufficient lon-
gitudinal segmentation, the shower origin can not be inferred to an adequate
precision. Therefore, an analytical representation of thehadronic shower lon-
gitudinal development from the calorimeter face has been used [31]:

dE(z)

dz
= N

{

ωX0

a

( z

X0

)a

e
−b z

X0
1F1

(

1, a + 1,
(

b −
X0

λI

) z

X0

)

+
(1 − ω)λI

a

( z

λI

)a

e
−d z

λI
1F1

(

1, a + 1, (d − 1)
z

λI

)

}

, (14)

where1F1(α, β, z) is the confluent hypergeometric function. Note that the for-
mula (14) is given for a calorimeter characterized by itsX0 and λI . In the
combined setup, the values ofX0, λI and thee/h ratios are different for elec-
tromagnetic and hadronic compartments. So, the use of formula (14) is not
straightforward for the description of the hadronic showerlongitudinal profiles.

To overcome this problem, Ref. [32] suggests an algorithm tocombine
the electromagnetic calorimeter (em) and hadronic calorimeter (had) curves
of the differential longitudinal energy depositiondE/dz. At first, the mean
hadronic shower develops according eq. (14) in the electromagnetic calorimeter
to the boundary valuezem which corresponds to a certain integrated measured
energyEem(zem). Then, using the corresponding integrated hadronic curve,
E(z) =

∫ z

0
(dE/dz)dz, the pointzhad is found from the equationEhad(zhad) =

Eem(zem)+Edm. From this point a shower continues to develop in the hadronic
calorimeter. In principle, instead of the measured value ofEem one can use the
calculated value ofEem =

∫ zem

0
(dE/dz)dz obtained from the integrated elec-

tromagnetic curve. The combined curves have been obtained in this manner.
Fig. 11 shows the differential energy depositions(∆E/∆z)i = Ei/∆zi as

a function of the longitudinal coordinatez in units ofλπ for the energy from
10 to 300 GeV and a comparison with the combined curves for thelongitudinal
hadronic shower profiles (dashed lines). The level of agreement was estimated
using the functionχ2 where, following Ref. [30], the variances of the energy
depositions are taken to be equal to the depositions themselves. A significant
disagreement (P (χ2) < 0.1%) has been observed between the experimental
data and the combined curves in the region of the LAr calorimeter, especially
at low energies.

We attempted to improve the description and to include such essential fea-
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ture of a calorimeter as thee/h ratio. Several modifications and adjustments
of some parameters of the parameterization (14) have been tried. The con-
clusion is that replacing the two parametersb andω in the formula (14) with
b = 0.22 · (e/h)cal/(e/h)′cal andω = 0.6 · (e/π)cal/(e/π)′cal results in a reason-
able description of the experimental data. Here the values of the (e/h)′cal ratios
are(e/h)′em ≈ 1.1 and(e/h)′had ≈ 1.3 which correspond to the data used for the
Bock et al. parameterization [30]. The(e/π)′cal are calculated using formulas
(3) and (4).

In Fig. 12 the experimental differential longitudinal energy depositions and
the results of the description by the modified parameterization (solid lines) are
compared. There is a reasonable agreement (the probabilityof description is
more than5%) between the experimental data and the curves. Note, that pre-
vious comparisons between Monte-Carlo and data have shown that FLUKA
describes well the longitudinal shape of hadronic showers [11].

The obtained parameterization has some additional applications. For exam-
ple, this formula may be used for an estimate of the energy deposition in various
parts of a combined calorimeter. This is demonstrated in Fig. 13 in which the
measured and calculated relative values of the energy deposition in the LAr and
Tile calorimeters are presented. The errors of the calculated values presented
in this figure reflect the uncertainties of the parameterization (14). The relative
energy deposition in the LAr calorimeter decreases from about 50% at 10 GeV
to 30% at 300 GeV. Conversely, the fraction in the Tile calorimeter increases as
the energy increases.

5 Conclusions

Hadron energy reconstruction for the ATLAS barrel prototype combined calo-
rimeter has been carried out in the framework of the non-parametrical method.
The non-parametrical method of the energy reconstruction for a combined calo-
rimeter uses only thee/h ratios and the electron calibration constants, without
requiring the determination of other parameters by a minimization technique.
Thus, it can be used for the fast energy reconstruction in a first level trigger.
The value of thee/h ratio obtained for the electromagnetic compartment of
the combined calorimeter is1.74 ± 0.04 and agrees with the prediction that
e/h > 1.66 for this calorimeter. The ability to reconstruct the mean values
of particle energies (for energies larger than 10 GeV) within ±1% has been
demonstrated. The obtained fractional energy resolution is [(58 ± 3)%/

√
E +

(2.5 ± 0.3)%] ⊕ (1.7 ± 0.2)/E. The results of the study of the longitudinal
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hadronic shower development have also been presented.
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Table 1: Mean reconstructed energy, energy resolution and fractional energy
resolution for the various beam energies.

Ebeam E (GeV) σ (GeV) σ/E (%)
10∗ GeV 9.30 ± 0.07 2.53 ± 0.05 27.20 ± 0.58
20⋆ GeV 19.44 ± 0.06 3.41 ± 0.06 17.54 ± 0.31
40 GeV 39.62 ± 0.11 5.06 ± 0.08 12.77 ± 0.21
50 GeV 49.85 ± 0.13 5.69 ± 0.13 11.41 ± 0.26
80 GeV 79.45 ± 0.16 7.14 ± 0.14 8.99 ± 0.18

100 GeV 99.10 ± 0.17 8.40 ± 0.16 8.48 ± 0.16
150 GeV 150.52 ± 0.19 11.20 ± 0.18 7.44 ± 0.12
300 GeV 298.23 ± 0.37 17.59 ± 0.33 5.90 ± 0.11

∗The measured value of the beam energy is 9.81 GeV.
⋆The measured value of the beam energy is 19.8 GeV.
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Table 2: The differential mean energy depositions∆E/∆z (GeV/λπ) as a
function of the longitudinal coordinatez for the various beam energies.

N z Ebeam (GeV)
depth (λπ) 10 20 40 50

1 0.294 5.45 ± 0.08 8.58 ± 0.16 14.3 ± 0.2 16.6 ± 0.4
2 0.681 4.70 ± 0.08 9.10 ± 0.15 16.7 ± 0.2 20.8 ± 0.3
3 1.026 2.66 ± 0.06 5.55 ± 0.11 11.1 ± 0.2 13.6 ± 0.2
4 2.06 1.93 ± 0.03 4.35 ± 0.06 8.99 ± 0.08 11.0 ± 0.1
5 3.47 0.87 ± 0.02 2.13 ± 0.04 5.29 ± 0.06 6.15 ± 0.10
6 5.28 0.18 ± 0.01 0.57 ± 0.02 1.50 ± 0.03 2.07 ± 0.05
7 7.50 0.025 ± 0.003 0.11 ± 0.01 0.32 ± 0.01 0.49 ± 0.02
N z Ebeam (GeV)

depth (λπ) 80 100 150 300
1 0.294 22.6 ± 0.6 28.4 ± 0.6 36.3 ± 0.7 61.3 ± 1.5
2 0.681 30.4 ± 0.4 37.6 ± 0.5 53.5 ± 0.8 97.9 ± 1.7
3 1.026 20.3 ± 0.3 25.7 ± 0.4 37.2 ± 0.6 68.9 ± 1.2
4 2.06 18.0 ± 0.1 22.4 ± 0.2 33.9 ± 0.3 64.8 ± 0.7
5 3.47 11.9 ± 0.1 14.6 ± 0.2 23.3 ± 0.2 49.0 ± 0.5
6 5.28 3.66 ± 0.06 4.57 ± 0.08 8.18 ± 0.13 18.6 ± 0.3
7 7.50 0.86 ± 0.03 1.10 ± 0.04 2.04 ± 0.06 5.54 ± 0.15
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Figure 1: Three-dimensional cutaway view of the ATLAS calorimeters.
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Figure 2: Schematic layout of the experimental setup for thecombined LAr
and Tile calorimeters run (side view). The S3 and S4 are scintillation counters,
the BC3 is a beam proportional chamber, and the midsampler and the “muon
wall” are scintillation hodoscopes.
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Figure 4: The distributions of the(e/π)LAr ratio for beam energies of 20 and
50 GeV (top row, left to right), and beam energies of 100 and 300 GeV (bottom
row, left to right).
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Figure 5: The mean value of the(e/π)LAr ratio as a function of the beam energy.
The curve is the result of a fit of equations (3) and (4).
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Figure 6: The(e/π)LAr ratios as a function of the beam energy. fore/h method
(black circles) and for weighting method (open circles for [9] and open squares
for [10]). The lines are the result of a fit of equations (3) and(4) with freee/h
parameter andk = 0.11: solid line is for our data, dashed line is for the [9] data
and dash-doted line is for the [10] data.
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Figure 7: Energy linearity as a function of the beam energy for thee/h method
obtained using the iteration procedure withǫ = 0.1% (black circles) and with
the first approximation (open circles).
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Figure 8: The energy distributions for beam energies of 20 and 50 GeV (top
row, left to right), and beam energies of 100 and 300 GeV (bottom row, left to
right).
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Figure 9: Energy linearity as a function of the beam energy for thee/h method
(black circles) and the cells weighting method (open circles).
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Figure 11: The comparison between the experimental differential mean energy
depositions at 10 GeV (crosses), 20 GeV (black top triangles), 40 GeV (open
squares), 50 GeV (black squares), 80 GeV (open circles), 100GeV (black cir-
cles), 150 GeV (stars), 300 GeV (black bottom triangles) andthe calculated
curves (14) as a function of the longitudinal coordinatez in unitsλπ. The er-
rors on the data points are the errors of the mean values and there are within
symbols size.

31



10
-2

10
-1

1

10

10 2

0 2 4 6 8

Z (λπ)

∆E
/∆

z 
(G

eV
/λ

π)

Figure 12: The experimental differential mean longitudinal energy depositions
at 10 GeV (crosses), 20 GeV (black top triangles), 40 GeV (open squares), 50
GeV (black squares), 80 GeV (open circles), 100 GeV (black circles), 150 GeV
(stars), 300 GeV (black bottom triangles) energies as a function of the longitu-
dinal coordinatez in unitsλπ for the combined calorimeter and the results of
the description by the modified parameterization for the equation (14).
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Figure 13: Energy deposition (percentage) in the LAr and Tile calorimeters at
different beam energies. The circles (squares) are the measured energy depo-
sitions in the LAr (Tile) calorimeter, the diamonds (crosses) are the calculated
energy depositions.
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