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1. Introduction

The staircase model of Al. Zamolodchikov [1] is a simple relativistic factorized scat-

tering theory in 1+1 dimensions, which shows signs of a very non-trivial renormalisation

group behaviour. It describes a single boson with mass m and two-particle scattering

amplitude

S(θ) = tanh

(
θ − θ0

2
−
iπ

4

)
tanh

(
θ + θ0

2
−
iπ

4

)
, (1.1)

where θ0 is a real parameter. Assuming the existence of an underlying field theory, the

model can be studied at all length-scales by placing it on a cylinder and varying the

circumference R. In particular, the ground-state scaling function c(x) (x = log mR
2

) can

be obtained by means of the Thermodynamic Bethe Ansatz (TBA) [2,3]. (The ground-

state scaling function can be interpreted as an ‘effective central charge’ for the non scale-

invariant theory, and is related to the vacuum Casimir energy by E(R) = −πc(x)/6R ;

for a unitary scale-invariant theory it is just equal to the central charge.) Plotting c(x)

as a function of x shows a series of plateaux, connected by steps each time x is near an

integer or half-integer multiple of θ0. This staircase-like pattern becomes more pronounced

as θ0 increases, the values taken by c(x) on the plateaux then running through the series

cp = 1− 6/p(p+1), the central charges of the c<1 minimal models. This suggests an RG

flow from an ultraviolet fixed point (R→ 0; x→ −∞) with c = 1, to a trivial c = 0 fixed

point in the infrared, passing close by each minimal modelMp in turn. Varying θ0 results

in a one-parameter family of such flows; the larger θ0, the more closely the trajectory visits

each minimal model in its journey from c = 1 to c = 0.

From another point of view, A.B. Zamolodchikov [4], and Ludwig and Cardy [5] showed

some time ago that for large p the deformation of Mp by its φ13 operator leads in the

infrared toMp−1, so long as the coupling constant is positive. More recently, TBA analysis

by Al. Zamolodchikov [6,7], applicable for all values of p, has reinforced this picture. The

perturbed model, commonly denotedMA
(+)
p , can thus be associated with an RG flow that

hops between two neighbouring minimal models, and the staircase model can be seen as an

approximation to this whole series of hopping flows, the approximation becoming better

as θ0 increases.

The minimal models are only the first of many infinite series of conformal field theories

that can be constructed by means of the GKO coset construction [8]. For example, given

any simple simply-laced Lie algebra G = A, D or E, there is a series of WG-minimal

models, rational conformal field theories described by the coset G(1)×G(l)/G(1+l). Since

the minimal models are recovered by chosing G = A1, it is natural to ask whether staircase

models can be found for the other WG series. The fact that Zamolodchikov’s S-matrix
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(1.1) is an analytic continuation in the coupling constant of the sinh-Gordon S-matrix

(already remarked in ref. [1]) provides a strong hint that the required generalisation is to

be found in the analytic continuation of the real-coupling affine Toda S-matrices, and this

turns out to be the case [9,10]. To complete the analogy with the minimal sequence, it can

be argued that ‘one-hop’ flows similar to those associated with the modelsMA
(+)
p should

also exist for each WG series. The generalisations of Zamoldochikov’s A1 TBA analysis [6]

to arbitrary G [11,12] lend support to this view.

However this is by no means the end of the story. In particular, there are the

models G(k)×G(l)/G(k+l) [13]. For each fixed k, they form a series with central charges

cl = r(h+1)kl(k+2h+l)/(h+k)(h+l)(h+k+l), where r is the rank of G and h the Coxeter

number. In all cases, the operator analogous to φ13 is φid,id,adj , the three indices labelling

particular representations of G(k), G(l) and G(k+l) respectively.

For G = A1, there are general perturbative results for large l matching those already

described for the minimal models [14]. There is a surprise here, in that the perturbation

of the lth model of the kth series does not flow to the l−1th model of this series, but rather

to the l−kth. As a result, there is no longer a single sequence of one-hop trajectories, but

rather k disconnected sequences, interlaced along the kth series. Note that taking G = A1,

k = 2 gives the N=1 superconformal discrete series, for which this result had already been

found in ref. [15]. A TBA analysis for the general A1 case, for arbitrary values of l, has

now been given by Al. Zamolodchikov [7]; the picture outlined above holds good modulo

a small complication when l becomes smaller than k, which will be described later. The

further generalisation to arbitrary G can be found in ref. [12].

Since for given k there are k different sequences of hopping flows, it is reasonable to

hope for k different staircase models approximating them. Some nice recent work by Mar-

tins [16,17] has started this programme by proposing a generalisation of Zamolodchikov’s

original staircase model to one of the k = 2 sequences, finding TBA systems indicative

of RG trajectories which pass close by the subset of superconformal minimal models with

non-zero Witten index (l even), before flowing off to massive theories in the IR limit. He

also showed the generalisation of this to other G, again at k = 2 and l even. One interesting

feature of his proposal is that each TBA system contains magnonic terms (pseudoenergies

with no direct couplings to energy terms), perhaps indicating that the as-yet unknown

scattering theories underlying the models have non-diagonal S-matrices.

In this paper, we propose and start to analyse TBA systems for general k and G. The

proposal itself is given in the next section: for each k there are k different systems, labelled

by an index s ∈Zk. In sections 3 and 4, we describe why these systems should mimic the

desired hopping behaviour, a discussion that has many parallels to one given earlier for
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the k = 1 series [10]. The conclusions of these two sections have been backed up by some

numerical work, which is reported in section 5. The RG flows predicted have a number

of surprising features, which can however be supported by alternative arguments. These

points, along with some further speculations, are contained in the concluding section.

2. The spiral staircase

Take G to be an arbitrary simply-laced Lie algebra, with Coxeter number h, and

let a label nodes on the corresponding Dynkin diagram. In real-coupling affine Toda field

theory, the different types of particle are labelled by just such an index; let ma be the mass

of the corresponding particle. These masses can also be characterised as the components

of the Perron-Frobenius eigenvector of the G Cartan matrix [18–20]. To provide for some

magnonic structure, an extra label i will be needed, lying in Zk. As already mentioned,

the particular staircase out of the k possibilities is determined by a member of Zk, s say,

which will stay fixed throughout the discussion.

The TBA system will be given in terms of r × k pseudoenergies ε
(i)
a (r is the rank

of G). The Zk-condition on the index i amounts to identifying ε
(i)
a with ε

(i+k)
a . Similarly

there are r × k energy terms ν
(i)
a , given by the formula

ν(i)
a (θ) = m̂a(δi,0ex−θ + δi,sex+θ) , (2.1)

where θ is the rapidity, and x encodes the scale of the system via ex = 1
2m1R. The case

s=0 will turn out to have a massive infrared limit, allowing m1 to be interpreted as the

mass of a particle, or multiplet of particles; the values of the remaining ma are contained

in the (dimensionless) ratios m̂a = ma/m1. Note that the energy term is only nonzero

if i is equal to 0 or s: it is in this way that the value of s enters the game. Defining

L
(i)
a (θ) = log(1 + e−ε(i)

a (θ)), and introducing a parameter θ0 ∈ R+, the proposed TBA

system is:

ε(i)a (θ) +
1

2π

r∑

b=1

[
φab ∗ L

(i)
b − ψab ∗ L

(i−1)
b (θ − θ0)− ψab ∗ L

(i+1)
b (θ + θ0)

]
= ν(i)

a (θ) , (2.2)

where all the i-type indices are to be taken modulo k, and ∗ denotes the rapidity convo-

lution: φ ∗ L(θ) =
∫ ∞

−∞
dθ′φ(θ − θ′)L(θ′). The kernel functions φab and ψab are defined

in terms of the minimal parts of the corresponding affine Toda S-matrix elements Smin
ab ,

written in the form

Smin
ab (θ) =

∏

x∈Aab

(x− 1) (θ) (x+ 1) (θ) ; (x) (θ) =
sinh( θ

2 + iπx
2h

)

sinh( θ
2 −

iπx
2h

)
,
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where Aab is a set of integers (possibly with repetitions), and the related functions

SF
ab(θ) =

∏

x∈Aab

(x) (θ) .

Then

φab(θ) = −i
d

dθ
logSmin(θ) ; ψab(θ) = −i

d

dθ
logSF (θ) .

More explanation can be found in refs. [12,10]; while this notation is consistent with that

of these two references, it differs from that of ref. [16]. A complete list of the functions

Smin
ab can be found in ref. [18], and general formulae in ref. [21].

The ground-state scaling function is now given in the standard way [3] in terms of the

solutions to the TBA system (2.2), and the energy terms (2.1):

c(x, θ0) =
6

π2

r∑

a=1

k−1∑

i=0

∫ ∞

−∞

dθm̂ae
xν(i)

a (θ)L(i)
a (θ) . (2.3)

The next section will discuss the solutions to (2.2), explaining how the scaling function

c(x, θ0) can be expected to behave as a function of x. Before giving these details, it is

worth making a few general comments on the system defined by (2.1) and (2.2). First,

notice that just as in refs. [16,17], there are many ‘magnonic’ pseudoenergies with zero

energy term: this may be a sign that for these models too, the underlying S-matrix is

non-diagonal. More striking is the form that the shifted terms in (2.2) take: while the

term shifted by −θ0 couples with L
(i−1)
b , that shifted by +θ0 couples with L

(i+1)
b . Thus

these factors are not a simple continuation of the affine Toda Z-factors, as was the case for

previous staircase TBA systems [1,9,10,16,17]. Despite the apparent asymmetry that this

implies, the solutions of (2.2) are symmetric under θ → −θ, so long as this transformation

is accompanied by an exchange of the pseudoenergies ε
(i)
a → ε

(s−i)
a . The possibility to

implement the parity transformation in this way is a reflection of the symmetries of the

affine Âk Dynkin diagram on which the Zk labels i live, and is reminiscent of the discussion

for systems based on non-affine graphs given in ref. [22]. It also allows the ‘left-moving’

and ‘right-moving’ energy terms in (2.1) to be coupled to different pseudoenergies for s 6=0,

a hint that in these cases the system has a massless infrared limit. More detailed analysis

in a later section will confirm this expectation.

The most important feature of (2.2) is the non-local nature of the interactions between

the different pseudoenergies. The functions φ(θ) and ψ(θ) are exponentially damped away

from a region of order one about θ=0, so their convolutions φ ∗ L(θ) and ψ ∗ L(θ) are, up

to exponentially small corrections, dominated by the values of L(θ′) in a region of order
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one about θ′=θ. (While functions L(θ) could be found for which this does not hold, suffice

it to say that these do not seem to arise amongst the solutions to (2.2).) Hence the three

convolution terms in (2.2), which involve ε
(i)
a , ε

(i−1)
b and ε

(i+1)
b , pick up most of their values

near θ, θ−θ0, and θ+θ0 respectively. To visualise this, it is helpful consider the index i on

the same footing as θ, albeit only taking discrete values. Thus we write ε
(i)
a (θ) = εa(i, θ),

the pair (i, θ) being valued in Zk×R. This space has the form of a cylinder, on which (2.2)

induces interactions between the neighbourhoods of (i, θ), (i−1, θ−θ0) and (i+1, θ+θ0).

This explains the sobriquet ‘spiral staircase’: the pseudoenergies couple together in a

spiral pattern round the cylinder, a feature that turns out to be important in reproducing

the expected hops in the RG flow.

3. The double helix

We now turn to the solutions to (2.2), and to progress we will have to make some

more assumptions about their general form. These parallel the assumptions made in the

analysis of more usual TBA systems, and we will not pretend to give any rigorous proofs.

However, we have also made a number of numerical checks, which will be commented on

later.

Comparing (2.2) and (2.1), there are two regions where εa(i, θ) and La(i, θ) are imme-

diately known (as always, up to exponentially small corrections – we will tend to assume

such a phrase to apply globally from now on). For i = 0 and θ ≪ x, the energy term νa(0, θ)

becomes very large and dominates (2.2), so that εa(0, θ≪x) ≈ m̂ae
x−θ. Correspondingly,

La(0, θ≪x) suffers a double-exponential decay and is soon negligably small. In the region

i = s, θ ≫ −x, similar considerations show that εa(s, θ≫− x) grows exponentially, while

La(s, θ≫− x) quickly decays towards zero.

Near to (0, x), all the terms in (2.2) come into near-equal competition, and it is no

longer a good approximation to ignore the convolutions. However, beyond this transitional

region the form of the equation simplifies once again, as for θ ≫ x the energy term νa(0, θ)

becomes exponentially small and can be dropped. On the basis of previously-studied TBA

systems, we expect La(0, θ) to have a kink near θ = x, interpolating between zero for

θ ≪ x, and some other constant for θ ≫ x. Just as is the case for other TBA systems,

the precise form of this kink is hard to find due to the increased complexity of (2.2) in the

transitional region, but is not required for an asymptotic evaluation of the ground-state

scaling function.

At this point the non-locality of (2.2) comes into play. The presence of a kink near

(0, x) has an effect, via the shifted convolution terms, on the equations obeyed near
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(k−1, x−θ0) and (1, x+θ0). This is similar to the propagation of kinks in the k=1 staircase

model described in [10], though with one important difference: here, the influence is on

pseudoenergies with different values of i from that of the ‘seed’ kink near (0, x), and hence

with different energy terms derived from (2.1). In particular, while La(0, θ) was forced to

be zero for θ ≪ x by the dominance of νa(0, θ) in this region, this is generally not the

case for La(k−1, θ). Thus we expect to find kinks generated in both directions from the

initial kink. These in turn cause there to be kinks at (k−2, x−2θ0) and (2, x+2θ0), and so

on, the set of secondary kinks spiralling round the cylinder in both directions from (0, x).

Making the transformation i → s−i, θ → −θ reveals another set of kinks spiraling away

from (s,−x) , and interleaving with the first spiral to form the pattern of a double helix.

This is illustrated in figure 1, where the kinks should be imagined to be strung out like

beads along the two spirals. The two regions where the energy terms are dominant are

depicted as double lines; the two seed kinks are at their ends. That they do not overlap

means that the figure shows a situation where x is negative.

The asymptotic directions for which c(x, θ0) can be evaluated correspond to the kinks

from one spiral becoming far away from those of the other, so that the values of εa and

La have time to settle down to approximately constant values in the inter-kink regions

(that they do become nearly constant in these regions is in fact the key assumption of the

discussion). This breaks down whenever (m, x+nθ0) ≈ (s,−x) for some m. The (strict!)

equality implied on the Zk-valued first coordinate requires m = nk+s for some integer n,

and so interleaving will fail each time x/θ0 ≈ −(nk+s)/2 , corresponding to a crossover in

the critical behaviour. Attention will now be restricted to situations far from these points,

and the scaling function c(x, θ) treated in the limit θ0 →∞ with x/θ0 remaining fixed at

a value away from crossover.

While secondary kinks are generated in both directions from each seed kink, they

cannot propagate indefinitely. The fact that Zk is cyclic means that at some stage energy

terms will be re-encountered in domains where they are dominant, and this truncates the

chain of kinks. For the remainder of this section, we assume that x < 0, as in figure 1; it

will turn out that most (though not always all) of the hops are found in this region. For

definiteness, take x to lie between crossovers in the region defined by

−
(
nk + s

)
θ0 ≪ 2x≪ −

(
(n−1)k + s

)
θ0 . (3.1)

Consider the spiral generated by the kink at (0, x) (the behaviour of the other spiral

will then follow by parity). After k−1 steps in the −θ-direction, there is a kink near

(1, x−(k−1)θ0). The energy term νa is zero in this region, and so there is no reason for

this kink to be suppressed. However, one more step arrives at (0, x−kθ0). This is well
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inside the region i = 0, θ ≪ x where, as already described, the part m̂aδ
i,0ex−θ of the

energy term dominates the TBA equation and forces La(0, θ) to be vanishingly small.

There is no kink here – La(0, θ) has been zero since the seed kink at (0, x), and remains

so as θ decreases through x−kθ0. Thus in the −θ-direction, the chain of kinks terminates

after k−1 steps. In the +θ direction, the truncation is instead effected by m̂aδ
i,sex+θ, the

part of the energy term which couples when i = s. If θ ≪ −x this term plays no rôle in

(2.2), and for x in the region (3.1) the spiral makes n complete circuits of the cylinder,

and then continues with a further s−1 kinks, before the energy term becomes important.

So, there are nk+s−1 kinks in the +θ-direction from the seed kink at (0, x), truncation

being caused by the suppression of the putative kink at (s, x+ (nk+s)θ0).

The full picture for both spirals can be seen by referring once again to figure 1: the

spirals terminate when they encounter the double lines representing regions in which the

energy term is completely dominant. Since they each make a single turn in one direction,

and two complete turns in the other, the figure should correspond to taking n=2 in (3.1):

this is easily verified by writing down the inequalities implied by the ordering of the marked

points along the θ-axis.

We can now unwind each spiral from the cylinder, and represent the set of interacting

kinks graphically:

©

1

– – – – –©

k−1

——
⊗k

——©

k+1

– – – – –©——©

k+nk+s−1

(3.2)

Each node is a kink, and nodes are linked if they interact via the shifted convolution terms

in (2.2). Empty nodes ( © ) represent kink regions where the energy term plays no part

in the leading behaviour of (2.2), while the filled node (
⊗

) corresponds to the seed kink,

in the neighbourhood of which the energy term m̂aδ
i,0ex−θ cannot be ignored. This is also

the only region of those represented on the graph which contributes directly to the formula

(2.3) for c(x, θ0). An isomorphic (reflected) graph results for the other spiral.

The next task is to find the values taken by the functions εa(i, θ) and La(i, θ) in

the inter-kink regions. The necessary constraints follow in the usual way by pulling near-

constant terms out of the convolutions in (2.2), leaving only overall integrals of φab and

ψab. These are [19,12]:

1

2π

∫ ∞

−∞

dθφab(θ) = δab − 2C−1
ab ;

1

2π

∫ ∞

−∞

dθψab(θ) = −C−1
ab , (3.3)

where Cab is the (non-affine) G Cartan matrix. The various inter-kink regions influ-

ence each other through the non-local terms in (2.2), in much the same way as did the
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kinks. To describe the situation, let the pth kink in (3.2) be located near (ip, θp) =

(pmod k, x+(p−k)θ0), and let (ip, θ
−
p ) and (ip, θ

+
p ) be points in the inter-kink regions im-

mediately before, respectively after, this kink:

θ−p =
1

2
θ0 (2p− (n+2)k − s) ; θ+

p =
1

2
θ0 (2p− (n+1)k − s) . (3.4)

Via (2.2), the εa(ip, θ
−
p ) come into interaction, as do the εa(ip, θ

+
p ). However care is needed

when p=k. While the seed kink at (ik, θk) = (0, x) owes its very existence to the delicate

balance between the energy and convolution terms in (2.2) at that point, the energy term

has become negligable by the time that (ik, θ
+
k ) is reached, and so has no effect on the

equation for εa(ik, θ
+
k ). On the other hand, (ik, θ

−

k ) is in the region immediately to the left

of the seed kink, where the energy term in (2.2) is dominant. As a consequence εa(ik, θ
−

k )

is forced to be effectively infinite, irrespective of the values taken by the other εa(ip, θ
−
p ).

All this has the effect of changing the ‘connectivity structure’ that for the kink inter-

actions was summarised in (3.2). It can be visualised on figure 1 by mentally shifting the

spiral based at (0, x) slightly to the left, and then slightly to the right. Shifting leftwards,

the spiral is cut by the double line representing a dominant energy term, while shifting

rightwards disconnects the spiral from this line altogether, apart from the endpoint. Thus

for the inter-kink regions containing the left-shifted points (ip, θ
−
p ), (3.2) should be replaced

by

©

1

– – – – –©

k−1

©

k+1

– – – – –©——©

k+nk+s−1

(3.5)

while to the right, the graph for the (ip, θ
+
p ) is

©

1

– – – – –©

k−1

——©

k

——©

k+1

– – – – –©——©

k+nk+s−1

(3.6)

For the second spiral making up the double helix, kinks are found at (̃ıp, θ̃p) = (s −

ip,−θp) and the two neighbouring inter-kink regions are centred on (̃ıp, θ̃
±
p ), where θ̃+

p =

−θ−p = θ−(n+2)k+s−p
and θ̃−p = −θ+

p = θ−(n+1)k+s−p
. The above treatment goes through

isomorphically when phrased in terms of these kinks, as indeed it must by the parity

symmetry of the system.

To express the algebraic content of (3.5) and (3.6), let l−pq and l+pq be their respective

incidence matrices, and put C̃±
pq = 2δpq − l±pq. At (ik, θ

−

k ), the value of εa has already

been established; for the rest, extracting the near-constant values of εa(ip, θ
±
p ) from the
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convolutions in (2.2) and using (3.3) yields, after some simple rearrangements, the following

consistency conditions:

f±
ap =

r∏

b=1

(n+1)k+s−1∏

q=1

(
1− f±

bq

)C
−1
ab

C̃pq

, (3.7)

where

f±
ap =

e−εa(ip,θ±
p )

1 + e−εa(ip,θ
±
p )
. (3.8)

These equations reproduce the constraints for the limiting values of the pseudoenergies

in the G(k)×G(nk+s)/G((n+1)k+s) TBA system given in [12], providing the substitution

exp(−εa(ip, θ
±
p )) = Y a

p (∓∞) is made. While this is suggestive, caution is needed, since

(3.7) describes the values of the functions εa at various points along the θ-axis, rather than

just at ±∞ as for more usual systems. Nevertheless, asymptotically far from the crossovers

the different kinks should become decoupled and behave like independent functions, their

only interactions being those explicitly marked on (3.2). These reproduce exactly the

interactions between different pseudoenergies found in the TBA systems of [7,12], so we

certainly expect the evaluation of the function c(x, θ0) in the asymptotic regime under

discussion (given by (3.1)) to be the same as for the corresponding coset TBA system. But

to confirm this, the leading asymptotic behaviour of c(x, θ0) away from crossover can also

be calculated directly from the formula (2.3), remaining within the spiral staircase model.

The necessary modifications to the usual arguments have already been described at some

length in ref. [10], and the slightly increased complexity of the models being considered

here has no bearing on the calculations once the spirals have been unwound, and the

connectivity structure (3.2) established. The one small point to watch is that since the

massive kink is now located at the kth position, inside the chain, the ‘integrations by parts’

by means of which the other kinks are felt now proceed in both directions away from k,

rather than just to the right as for the k=1 staircase. Referring to the earlier paper [10]

for further details, we will simply report the final result:

lim
θ0→∞

x/θ0=Nn

c(x, θ0) = cn =
6

π2

r∑

a=1

(n+1)k+s−1∑

q=1

[
L

(
f+

ap

)
−L

(
f−

ap

)]
, (3.9)

where x/θ0 is held fixed at Nn, −(nk+s)/2 ≪ Nn ≪ −((n−1)k+s)/2 , while the limit is

taken in order to stay inside the regime defined by (3.1). The functions appearing on the

righthand side are Rogers dilogarithms, defined by L(z) = −1
2

∫ z

0
dt

(
log(1−t)

t
+ log t

1−t

)
, and

their arguments f±
ap are obtained by solving (3.7). To finish the calculation, a sum rule
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is needed [23]: if {fap} (1≤a≤r, 1≤p≤l) is the solution to (3.7) when Cab is the Cartan

matrix of G and C̃pq the Cartan matrix of the algebra Ar′ , then

6

π2

r∑

a=1

r′∑

p=1

L (fap) =
rr′h′

h+ h′
= rh′ −

r(h+1)h′

h+ h′
, (3.10)

where h is the Coxeter number of G and h′=r′+1 the Coxeter number of Ar′ . The second

version is useful because it shows the sum to be rh′ minus the central charge of the

G(h′) WZW model. For the case in hand, the sum over the L(f+
ap) follows from (3.10)

with h′ = (n+1)k+s, since (3.6) is the Dynkin diagram of A(n+1)k+s−1 . For the {f−
ap}

there are two disconnected parts to (3.5), the Dynkin diagrams of Ak−1 and Ank+s−1.

Correspondingly the dilogarithm sum splits into two, summed by taking h′ equal to k and

nk+s respectively. The absent kth node does not contribute since L(f−

ak) = L(0) = 0 for

all a, and so

cn = r(h+1)

[
k

h+k
+

nk+s

h+nk+s
−

(n+1)k+s

h+(n+1)k+s

]
, (3.11)

the central charge of the G(k)×G(nk+s)/G((n+1)k+s) coset model.

4. The infrared limit

To complete the picture of the asymptotics of the ground-state scaling function

c(x, θ0), the condition that x be negative, imposed thoughout the last section, must be

relaxed. Since x is related to the physical parameters of the model by 1
2m1R = ex, this

corresponds to examining the system in the infrared.

The point to note is that for x positive the nature of the relationship between the

spirals of kinks and the two regions of energy-term dominance, illustrated in figure 1 for x

negative, may change. When x becomes positive, the two regions, marked by double lines

on figure 1, start to overlap, as in one region θ runs from −∞ to x, in the other from −x

to +∞. If s = 0, then the two regions actually collide and this has the effect of killing

off the two seed kinks completely. Thus in this case the IR limit is simple: a theory with

c = 0, with the final crossover to a massive phase occurring near x = 0. Otherwise, kinks

will continue to be found near (0, x) and (s,−x) for arbitrarily large positive values of x.

Thus the L
(i)
a (θ) never become trivial, and a non-zero value for c(x, θ0) is expected even

as x→ +∞. This reinforces the assertion made in section 2 that for s 6= 0 the IR limit of

(2.2) should be massless. Precisely which conformal field theory this massless limit should

be brings one last surprise. In the previous discussion it was seen that for x<0 the spiral

generated at (0, x) truncates after a single turn in the −θ direction, when it re-encounters
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the i=0 energy term. This is why the left-most piece of (3.5) has k−1 nodes, and one of

the elements of the coset whose central charge (3.9) reproduces has level k. But if x is

positive, this can change. In the −θ direction, the chain from (0, x) might encounter the

energy term at i=s before returning to i=0. The onset of this phenomenon is signalled

by a crossover around x = 1
2 (k−s)θ0, beyond which point the chain of kinks anchored at

(x, 0) is terminated in both directions by the i=s energy term. It is straightforwardly seen

that this is the last such crossover expected on the basis of changes to the overall kink

structure, and that after this point the situation stabilises, the form of the pseudoenergies

remaining unchanged apart from simple translations as x → +∞. The final kink system,

governing the IR limit, can be unwound and represented graphically just as before. The

picture (3.2) becomes:

©

s+1

– – –©

k−1

——
⊗k

——©

k+1

– –©

k+s−1

(4.1)

where to ease comparison with the earlier graphs, the mod-k values of the labels have

been preserved. This graph has k−s−1 massless nodes to the left, s−1 to the right. The

remaining calculations now go through unchanged, (3.9) becoming

lim
θ0→∞

x/θ0=N−1≫(k−s)/2

c(x, θ0) = c−1 = r(h+1)

[
k−s

h+k−s
+

s

h+s
−

k

h+k

]
, (4.2)

which is the central charge of the G(k−s)×G(s)/G(k) coset model.

In this last equation, the fact that N−1 is positive means that x tends to +∞ as the

limit θ0 → ∞ is taken, but this does not spoil the validity of the asymptotic estimates

being made. However, the real interest all along has been to trace the variation in c(x, θ0)

in one particular model, for which θ0 is fixed. Thus a change in the point of view is needed

to apply the results found so far. If the value of θ0 is large enough, then as x varies,

the pair (x, θ0) will pass through a series of regions for which the asymptotic results (3.9)

and (4.2) are good approximations to the true values of c(x, θ0). Hence this function will

run through the values cn in turn, deviating significantly from these numbers only in the

crossover regions. An order-of-magnitude estimate for the size of these regions is easily

given: the approximations leading up to (3.9) and (4.2) were good, up to exponentially

small corrections, so long as the various kinks in each pseudoenergy ε
(i)
a (θ) were clearly

separated along the θ-axis. These kinks have a size of order one (the precise value will

depend on the model, but in any case we are only interested in orders of magnitude

in comparison with x and θ0 here), and so the crossover will start when the expected
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positions of two kinks become closer than this. There are generally two different interkink

separations for any given (x, θ0) (this is rather clear from looking at figure 1); they are:

θp − θ̃(n+1)k+s−p = −2x− ((n−1)k + s)θ0 ;

θ̃(n+1)k+s−p − θp+k = 2x+ (nk + s)θ0 .
(4.3)

(That these two are positive follows from (3.1); strictly speaking there are also steadily

growing separations for x larger than the final crossover, after the two spirals have become

completely disentangled.) The interkink separations are therefore overly small only in

regions of order one about each crossover value of x. Since the intervals between these

crossover values grow linearly with θ0, the staircase-like nature of c(x, θ0) soon becomes

pronounced. This is the evidence for the previously-advertised roaming RG trajectories,

and from the values of cn, the set of fixed points approached by any particular flow can

be read off. The G(k)×G(l)/G(k+l) coset models can be imagined to be located on a grid,

giving the following skeleton for the large-θ0 pattern of the k, s (s 6=0) flow:

↓

c(k, 2k + s)

↓

c(k, k + s)

↓

c(k − s, s)← c(k, s)

(4.4)

The set-up for s=0 is less unexpected:

↓

c(k, 2k)

↓

c(k, k)

↓

0 (massive)

(4.5)

Before attempting to interpret these results, it is worth seeing that they stand up to

numerical verification.
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5. Numerical work

The above has relied rather heavily on assumptions about the behaviour of the so-

lutions to (2.2) – the existence of kinks and so on – which, though well-motivated, have

most certainly not been rigourously derived. Therefore it is worth subjecting the proposal

to some independent checks, and for this we have solved the equations (2.2) numerically

in a number of cases, discretising the θ axis at intervals of 0.2, and then iterating (2.2)

until c(x, θ0) relaxed to a steady value. To gain five-digit precision, ample for the purposes

of graph-plotting, typically took from 25 to 30 steps. We have only looked at the case

G = A1 – for higher-rank algebras the iteration of TBA equations, even in the usual cases,

is more tricky [24] – but previous numerical work on higher-rank staircase models [9,16,17]

gives no reason to expect any unpleasant surprises. In particular, in refs. [16,17] Martins

proposed and investigated numerically the k = 2, s = 0 instance of (2.2) with G = A2, and

the predictions made above for this case are consistent with his findings.

Figures 2a and 2b show numerical results for all values of s at k = 2 and k = 3,

respectively. In both cases θ0 was fixed at 40, and it can be seen that the agreement with

the predictions of the last two sections is excellent, even including the final ‘corner’ of

(4.4) for s 6= 0. One amusing feature is that for k = 3, the two flows with non-zero s have

the same infra-red central charge, despite their very different behaviours at intermediate

scales. At given k, each pair of flows s, k−s has this property – at the simplest level just

a reflection of the fact that c(G(k−s)×G(s)/G(k)) = c(G(s)×G(k−s)/G(k)). Note though that

this is only an equality of central charges – since our system in its current form only traces

the evolution of the ground-state energy, we cannot distinguish between different modular

invariants having the same central charge.

6. Discussion

The convergence of analytical and numerical results leaves little doubt that the be-

haviour of the solutions to (2.2) is as claimed above, even if this has not been rigourously

proved. It is then very tempting to suppose that (2.2) is indeed the TBA system for

some relativistic field theory, the exact ground-state scaling function of which is given by

c(x, θ0). In the absence of any concrete proposals as to what this model might be, we can

at least discuss some of its expected properties, and decide whether they are consistent

from other points of view.

The first of these properties is that as x increases from the deep ultraviolet, c(x, θ0)

does indeed run through the sequence of numbers cn given by equation (3.11), these being

a subset of the G(k)×G(l)/G(k+l) central charges. The function pauses near each cn for a
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‘time’ approximately given by kθ0/2 for large θ0, before making a sharp transition to cn−1

over an interval with size of order one, in the process of which l decreases by k. This is just

the behaviour needed for a staircase model based on these cosets, being consistent with

the existence of a family of roaming flows which in the large-θ0 limit comes to approximate

the known single-hop trajectories.

More interesting is the predicted behaviour towards the infrared, as x increases and

l becomes smaller. The hopping-by-k cannot continue indefinitely, since l cannot be neg-

ative. For s=0, the situation is simple: after a last pause near l=k, the final flow is to

c = 0, implying that the theory becomes massive at long distances. All previously-studied

staircase models have shared this property, which is furthermore in accord with the one-

hop behaviour predicted for the φid,id,adj -perturbation of a G(k)×G(k)/G(2k) coset model.

To understand the curious final hop that all the staircase systems with s 6=0 undergo, we

first recall the general small-l pattern of the interpolating trajectories [7]. Even without

the TBA, it is clear that once l has become smaller than k, it is no longer possible for l to

decrease by a further k. However the perturbation φid,id,adj is symmetrical with respect to

the k and l in the numerator of the coset G(k)×G(l)/G(k+l), and so as soon as l decreases

below k, it is natural to expect that the flow induced by this perturbation now hops by

decreasing k by an amount l, instead of l by k. Such a change in direction for the interpo-

lating trajectories when l becomes smaller than k is indeed predicted by Zamolodchikov’s

TBA analysis [7].

For the superconformal discrete series (G=A1 and k=2), such a phenomenon was

discussed in ref. [25], and can be visualised by referring back to figure 2a, which shows the

form of the two flows predicted by (2.2) for this case. The series of models with l odd

continues to hop down in steps of 2 until l=1, the tricritical Ising model, is reached. All

of the models up to and including this point have been N=1 supersymmetric, a symmetry

respected by their φid,id,adj perturbations – the field is in fact the top component of a

supermultiplet, all other components vanishing anyway on integration over the Grassman

directions. However while the φid,id,adj operator of the tricritical Ising model again respects

the N=1 supersymmetry, it is also the φ13 operator in the sense of the minimal c<1

series, and as such induces a flow down to the Ising model, which does not possess such a

symmetry. The interpretation given in ref. [25] is that the supersymmetry is spontaneously

broken along this last trajectory. At large θ0 we can expect the k=2, s=1 staircase model

to show similar behaviour, with an approximate supersymmetry at short distances being

broken near x=θ0/2 as the trajectory approximates the final step down to the Ising model.

Thus a change in the hop direction, from decreasing l to decreasing k, is not ruled out,

and should probably be associated with the spontaneous breaking of whatever higher
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symmetry is associated with a given series. For k=2, this was N=1 supersymmetry, and

the situation was reasonably under control; for large values of k, or algebras G other than

A1, the situation is less clear, and the discussion much more speculative. The possible

forms of the symmetries associated with such theories were first discussed in refs. [26], and

later in ref. [27] where they were called ‘fractional supersymmetries’, but in particular the

lack of a satisfactory generalisation of the Grassman variables to these situations makes life

difficult. A better understanding of all this will be needed before any detailed implications

can be drawn for the symmetries of the staircase models.

To return to the general form of the staircase flows, it is tempting to imagine that

they should ultimately approximate a complete sequence of these single hops, joined up

nose-to-tail to form a zig-zag series of flows with the left and right coset indices taking

turns to decrease, until a diagonal coset (k=l) is reached, at which point the flow would

be to a massive model. However this is not what happens for the spiral staircase flows

predicted by (2.2) and illustrated in (4.4): after only a single hop in a new direction, the

flow grinds to a halt, the final destination in the infrared being the G(k−s)×G(s)/G(k) coset.

In terms of the higher symmetries touched on above, the staircase continues to mimic the

sequence of single-hop flows only so long as the perturbing operator respects the symmetry

associated with the kth series of cosets – after the final flow in which the symmetry is

spontaneously broken, there are no longer any directions respecting this symmetry, and

the flow is ‘trapped’.

For an alternative understanding of why the flow might come to such an abrupt stop,

first recall some work by Lässig [28] on Zamolodchikov’s original staircase model. The

hopping flows mimicked in this case were those between minimal models, Mp → Mp−1,

induced by the massless φ13 perturbation. Lässig pointed out that at large p an RG flow

with properties identical to that predicted by Zamolodchikov can be uncovered within

a perturbative treatment, simply by adding the slightly irrelevant operator φ31 to the

original perturbation by the just-relevant operator φ13. Normally one ignores irrelevant

operators as having no effect on the infrared destination of an RG trajectory, but this may

not be correct if the situation under discussion involves a crossover in critical behaviour,

as here. The subtlety is that even an irrelevant operator with respect to the first fixed

point may induce couplings to relevant operators near the second, repelling the trajectory

and sending it on to some new destination of even lower criticality. A detailed analysis of

the relevant RG equations, to lowest order in 1/p, shows that this is indeed what happens

for the combined φ13,φ31 flows in the minimal series – in fact, both operators are nearly

marginal and mix under the RG flow, so that, crudely speaking, the irrelevant φ31 operator

near Mp becomes φ13 as Mp−1 is approached, and sends the flow leapfrogging on down
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the minimal sequence. Thus even an irrelevant operator can cause an interpolating flow to

change its IR behaviour, a judicious choice managing to replicate itself at the next step,

and ultimately producing a flow with the characteristic staircase-like form. It is important

here that the original perturbing operator for the interpolating flow, φ13, flowed precisely

to φ31 in the infrared – had it flowed to anything else, the subspace of couplings under

consideration would have had to be enlarged at least to include that operator, spoiling the

simple leapfrogging picture. To repeat this analysis for a level-k staircase, it is therefore

natural to imagine a G(k)×G(l)/G(k+l) model perturbed by a linear combination of the

relevant operator φ
(k,l)
UV = φid,id,adj , which on its own induces the interpolating flow to

the next model down, and the irrelevant operator φ
(k,l+k)
IR , along which the trajectory

arriving from the model one step higher arrives. (There is also an incoming flow φ
(k+l,l)
IR

forming part of a level-l sequence of hops, but we won’t worry about this for now.) In

ref. [7], Zamolodchikov found the incoming operator in the case G = A1 to have conformal

dimension

∆IR = 1 +
2

l + 2
, (6.1)

corresponding to the field φid,adj,id. The flow into l=1 is exceptional, in that there is no

operator in the infrared model with this conformal dimension – the adjoint is not among

the level-one representations of ̂SU(2). Instead, the prediction is that ∆IR=2, leading to

the expectation that here the attracting operator is TT . Staying with this case, which

for the spiral staircase corresponds to setting s=1, we should examine the effect of adding

some TT to the φ13-perturbation of the (k, 1) A1 coset model. For large k a treatment

perturbative in 1/k should be valid. Note that even in this limit the operator TT retains

a scaling dimension of 4, a feature which already distinguishes this case from that of the

combined φ13, φ31 perturbations. But more important is the fact that TT is a symmetrical

descendant of the identity, so that the operators generated in repeated operator product

expansions of φ13 and TT only consist of left-right symmetric descendants of φ13. Since φ13

itself is already nearly marginal in the large-k limit, any such descendants will be strongly

irrelevant. Any operator mixing induced through the RG flow is restricted to operators in

this subalgebra, and therefore should not affect the final destination of the flow. Near to

the (k, 1) fixed point (Mk+2), there are thus (at least) two different subspaces pertinent

to staircases: one spanned by φ13 and φ31, and one by φ13 and TT . The first of these

is relevant to the original (k=1) staircase of Zamolodchikov, as shown by Lässig, while

we expect the second to contain the tail-end of the kth A1 spiral staircase model at s=1,

undergoing its final crossover before flowing down to the coset model at (k−1, 1) in the

far infrared. The more detailed analysis made by Lässig also gave signs of other flows

complementary to the staircase, obtained by varying the signs of the couplings. It would
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be interesting to investigate these possibilities, but for the moment we content ourselves

with this plausibility argument for the form of the final step of the s=1 spiral staircase.

There do not appear to be any obstructions in principle to applying analogous argu-

ments in the cases s>1 and/or G6=A1. Zamolodchikov [7] found that in the case relevant for

our G = A1, s=2 staircases, the incoming direction at the end of the second-last crossover

mimicked by the roaming flow is GG, rather than the TT above, where G is the spin 3/2

part of the supercurrent. This is certainly suggestive, but to give a satisfactory analysis

of the general case requires a more detailed knowledge of the fractional supersymmetry

algebras than we have at present.

A final area for further speculation concerns the field theories underlying our TBA

systems. If such models exist, they must have a rich and varied structure, and only a

subset of them can be massive. On the basis of the magnonic structure, we would expect

to find non-diagonal scattering in these cases. The k=1 systems were intimately related to

the real-coupling affine Toda theories [9,10], and so it is possible that further insight may

be found in the fractional supersymmetric sine-Gordon models introduced by Bernard and

LeClair [27]. While we have no definite suggestions to make in this direction, it seems to

be an interesting area for further work.
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Figure 1 : The arrangement of kinks around the cylinder.
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Figure 2 : Plots of ground state scaling functions.
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