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ABSTRACT

We report the discovery of a microlensing candidate projected 2′54′′ from the

center of M32, on the side closest to M31. The blue color (R− I = 0.00± 0.14)

of the source argues strongly that it lies in the disk of M31, while the proximity

of the line of sight to M32 implies that this galaxy is the most likely host of the

lens. If this interpretation is correct, it would confirm previous arguments that

M32 lies in front of M31. We estimate that of order one such event or less should

be present in the POINT-AGAPE data base. If more events are discovered in

this direction in a dedicated experiment, they could be used to measure the mass

function of M32 up to an unknown scale factor. By combining microlensing

observations of a binary-lens event with a measurement of the M31-M32 relative

proper motion using the astrometric satellites SIM or GAIA, it will be possible to

measure the physical separation of M31 and M32, the last of the six phase-space

coordinates needed to assign M32 an orbit.



– 2 –

Subject headings: Galaxy: halo – M31: halo – lensing – dark matter

1. Introduction

Following the suggestions of Crotts (1992) and Baillon et al. (1993), the POINT-AGAPE

collaboration1 is carrying out a pixel lensing survey of M31 using the Wide Field Camera

(WFC) on the Isaac Newton Telescope (INT). We monitor two fields of 0.3 deg2 each,

located North and South of the M31 center. The main goal of the survey is to map the

global distribution of microlensing events in M31 and to determine any large-scale gradient.

M31 is highly inclined, so there will be a strong gradient if a substantial fraction of the lenses

lie in the dark halo of M31. The main difficulties are that the M31 sources are resolved only

while they are lensed (and then only if the magnification is substantial), and seeing causes

substantial variations in the point spread functions. The pixel lensing technique has been

developed to cope with these problems (Ansari et al. 1997, 1999).

The large field of view happens to encompass M32, the dwarf elliptical, whose center

lies 25′ from the center of M31, corresponding to ∼ 5 kpc in projected distance. Since M32

lies ∼ 53.◦5 from the far-minor axis of M31, the M31 disk stars at this projected position

are ∼ 10 kpc from the center of M31. The M31 disk at this position is relatively faint and

blue. Since M32 probably lies in front of M31 (Ford, Jacoby, & Jenner 1978), this opens up

the possibility of detecting microlensing events of M31 stars by M32 stars (or other compact

objects). Here, we report such a candidate M31/M32 intergalactic microlensing event. We

argue from the geometry and color of the event that the intergalactic interpretation is the

most plausible. The discovery of additional events of this type could be used determine the

M32 mass function, as well as the relative distances and velocities of M31 and M32.

2. Observations and Data Analysis

Observations of the event, named PA-00-S4, were obtained in r′ and i′ bands (similar

to Sloan r′ and i′) from 2000 August to 2001 January. The field was also observed in g′

and r′ bands from 1999 August to 2000 January, when the source was quiescent. Total

exposure times were between 5 and 10 minutes per night. Data reduction is described in

detail elsewhere (Ansari et al. 1997; Le Du 2000). After bias subtraction and flat-fielding,

each image is geometrically and photometrically aligned relative to a reference image (1999

1see http://www.point-agape.org
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August 8), which was chosen because it has a long exposure time, typical seeing (1.′′5) and

little contamination from the Moon. The lightcurves are computed by summing the flux

in 7-pixel (2.′′3) square “superpixels” and removing the correlation with seeing variation.

The transformation from instrumental (r′, i′) to Cousins (R, I) is based on ∼ 50 standards

(Haiman et al. 1994; catalogue II/208 of VizieR) that lie on the same CCD as PA-00-S4.

We use a simple set of criteria to select candidates from two seasons of INT WFC data.

Detection of events is made in the r′ band, which has better sampling and is free of fringing

effects on the CCDs. We fit all lightcurves having detectable bumps to a Paczyński (1986)

curve with seven parameters: the Einstein timescale tE, the time of maximum, t0, the impact

parameter (in units of the Einstein radius) u0, and two flux parameters for each filter, one for

the source Fs, and one for the background Fb. A bump is defined by at least 3 consecutive

r′ data points rising above the baseline by at least 3σ, with at least 2 points (in either band)

on both the rising and falling parts of the variation (defined as the interval over which the

lightcurve is at least 3 σ above baseline). We calculate the probability P that the bump is

due to random noise, and demand − ln P > 100 in r′ and − ln P > 20 in the second filter (i′

for 2000). To allow for non-standard microlensing events, we initially set a loose threshold

of χ2/dof < 5. Then, to extract a sample of high signal-to-noise ratio events, we demand

R(∆F ) < 21, where R(∆F ) is the (Cousins) magnitude corresponding to (Amax − 1)Fs and

Amax is the peak of the Paczyński fit. After eliminating the lightcurves with strong secondary

bumps, there remain 362 candidates, of which 8 have FWHM shorter than 25 days. Four of

these 8 short candidates are almost certainly microlensing events (Paulin-Henriksson et al.

2002). Among them is PA-00-S4, with a projected position close to the center of M32.

3. The M31/M32 Candidate

Figure 1 shows the lightcurves in r′ and i′ of PA-00-S4 together with the Paczyński

fit. The source has J2000 position α = 00h42m30.0s, δ = +40◦53′47.′′1. That is, it lies

projected on the far disk of M31, 22′31′′ from the center of M31, with a position angle

∼ 59.◦2 relative to the minor axis. It also lies 2′54′′ from the center of M32. There are some

straightforwards tests to see if PA-00-S4 is compatible with microlensing. First there are

no comparable “bumps” in the remainder of the lightcurve, as might be expected for many

classes of variable stars. Second, it is achromatic: the r′ and i′ data are simultaneously

fit to a Paczyński curve and show no significant systematic offset relative to one another.

The FWHM of the peak is t1/2 = 2.1 days, and at the maximum magnification the source

is R = 20.7 ± 0.2 (corresponding to MR = −3.9) and R − I = 0.00 ± 0.14. We know

of no variables capable of producing a time-symmetric outburst of 2000L� on such a short
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timescale. Note that the magnitude error is greater than the color error because the former is

more affected by seeing. We assume a ratio of selective-to-total exinction E(B−V ) = 0.062

(Schlegel, Finkbeiner, & Davis 1998) and a distance of 770 kpc.

4. Lightcurve Analysis

4.1. Source Location

Microlensing events of unresolved sources are generically subject to a degeneracy in

which the product of source flux Fs and the timescale tE is much better determined than

either parameter separately. PA-00-S4 suffers from this degeneracy at about the factor 2

level:

log
tE

day
= 2.11± 0.34, Rs = 26.65± 0.85. (1)

Given the magnitude at peak, R = 20.7, these correspond to a maximum magnification

Amax = 240+285
−130. At the distance and reddening of M31, the source flux corresponds to MR =

2.05±0.85. This absolute magnitude and the dereddened color, (R−I)0 = −0.05±0.13, are

consistent with the source being either an A type main-sequence star or a blue horizontal

branch (BHB) star. The former are expected to be common in the M31 disk, while about

8000 of the latter have been counted within a near-central 0.45 arcmin2 of M32. Given the

short evolutionary phase of the BHB and the fact that the surface brightness of M31 is about

twice that of M32 at this location, the source is strongly favored to be an M31 A star, even

prior to the auxiliary information presented in § 4.2.

4.2. Lens Location

Current distance-indicator based estimates do not permit one to say whether M31 or

M32 is closer (e.g., Mateo 1998). However, if M32 lay behind M31, it would suffer extinction

due to dust in the M31 disk. The absence of such extinction as determined from a wide

variety of observations led Ford, Jacoby, & Jenner (1978) to conclude that M32 must be

in front. Moreover, the disk of M31 is disturbed (Argyle 1965; Einasto & Rümmel 1970;

Gottesman & Davies 1970), leading Arp (1964) and Roberts (1966) to suggest an encounter

with M32 as the cause. Byrd’s (1976) model of this encounter, which has M32 passing right

through the disk of M31, places M32 today 8.5 kpc in front of M31, i.e. ∼ 20 kpc in front of

the M31 disk stars projected along the line of sight. In any case, M32 certainly lies in M31’s

potential well and orbits it rather closely: Faber (1973) argued from the profile of M32 that
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it had been tidally stripped by encounters with M31, and this has now been proved by the

discovery of a Sagittarius-dwarf like tidal stream associated with M32 (Ibata et al. 2001).

For the moment, we assume that M32 lies 20 kpc in front of M31, in accordance with the

estimate of Byrd (1976). Then there are six possible locations for the lens: the disk or halo

of M31, the disk or halo of the Galaxy, M32 itself, or the tidal stream associated with it. The

optical depth for any population, i, of lenses is τi = (4πG/c2)ΣiDi, where Σi is its surface

mass density, and Di = DL,iDLS,i/DS, a combination of the distances between the observer

(O), lens (L), and source (S). For the populations under consideration, D ' min{DL, DLS}.
The dereddened surface brightness of M32 at the position of the event is R = 22.1 mag arcsec−2.

Adopting a stellar (actually, compact-object) mass-to-light ratio of M/LR = 3, this implies

a surface density ΣM32 = 110 M�pc−2. The optical depth is therefore τ ∼ 1.4×10−6(DM31−
DM32)/20 kpc. This is one to several orders of magnitude larger than the optical depths of

the M32 tidal stream, the disks of M31 (Gould 1994) and the Milky Way (Gould, Bahcall &

Flynn 1997), and to the optical depth due to compact objects in the Milky Way halo (Alcock

et al. 2000; Lasserre et al. 2000). The total optical depth of the M31 halo at this location,

if it were entirely composed of compact objects, would be τM31 ∼ 4 × 10−6. However, our

current data already rule out a full MACHO halo for M31 (Paulin-Henriksson et al. 2002).

If only 20% of the M31 halo were in compact objects, as Alcock et al. (2000) have argued is

true for the Milky Way, then the M31 halo optical depth would be about half that due to

stars in M32. We conclude that the most likely location of the lens is a star in M32 but that

it could be a compact object in the halo of M31 as well.

4.3. Plausibility

What is the probability of finding a microlensing event for which the lens lies in M32

and the source in M31, and what is the most likely projected separation between such an

event and the center of M32? At any given time, the expected number of events per unit

surface area is
dn

dA
=

4πG

c2
NS(x, y)ΣL(x, y)DLS (2)

where ΣL is the surface mass density of lenses and NS is the column density of sources.

Integrating equation (2) over the entire M32 galaxy, and making the assumption (true to

first order) that the source and lens densities are not correlated, yields

n0 =
4πGMM32

c2
DLS〈NS〉 = 40

MM32

109 M�

DLS

20 kpc

〈NS〉
3 pc−2

. (3)
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The quantities at the denominator of various ratios have been chosen to make those ratios

close to unity. These adopted normalizations are derived as follows. For the total mass of

M32, we assume an integrated luminosity of MB = −15.5 (Krann-Korteweg & Tammann

1979), a color of B − V = 0.9 and a compact-object mass-to-light ratio of M/LV = 3.5.

We measure the M31 dereddened surface brightness at the radial position of M32 to be

R = 21.4 mag arcsec−2. If all of this light were typically coming from MR = 1 stars, then there

would be 3 pc−2 such stars. Only relatively high magnification events would be detectable

with our current experimental setup. The number taking place at any given time with

Amax > Amax,thresh is n ' n0/Amax,thresh. To meet our selection criterion R(∆F ) < 21

requires Amax > 70. The measured color, (R− I)0 ∼ −0.05± 0.13 and the color-luminosity

relation of main-sequence stars favor a source luminosity at the bright end of the range

given in equation (1), and so a timescale at the short end. We adopt tE ∼ 60 days. Since

πtE/2 ∼ 95 days, we would detect ∼ (40/70)× (150/95) ∼ 1 per observing season, assuming

100% efficiency. While we have not yet calibrated our efficiency, we expect that it is likely

to be . 10% for this type of event (Amax > 75, tE ∼ 60 days) averaged over the relatively

dense field of M32 (see below). So, we were somewhat lucky to detect such an event in the

POINT-AGAPE database for 1999 and 2000, but not excessively so.

At what projected separation are we most likely to detect such an event? The surface

brightness of M31 falls rapidly across the face of M32. We therefore first evaluate the

probability for an event to occur in semicircular radial bins on each side of M32 by integrating

the product of the M31 and M32 surface brightnesses over the bin (see eq. [2]). Figure 2

shows the result. As one moves from the center of M32 closer to M31, the probability is

enhanced by the higher density of M31 sources, and by the larger size of the semicircle, but

is degraded by the falling surface density of M32. On the side that is farther from M31, the

surface brightness of both galaxies falls off rapidly, leading to a rapid decline in probability.

Near the very center, our images are saturated, so there is no possibility of detection. The

event PA-00-S4 lies on the shoulder of the probability curve, about a factor 10 below the

peak. However, while events occur much more frequently near the center, they are not much

more likely to be detected. Specifically, we find that a similar plot of variable stars detected

with R(∆F ) < 21 is roughly flat from the position of PA-00-S4 to the cutoff at ∼ 0.′5. We

conclude that the position of PA-00-S4 is a plausible place to detect such an event.

5. Possible Applications

There is a limited amount that can be concluded from one event, especially as we cannot

be certain that the lens resides in M32 (see § 4.2). Nevertheless, it is worth considering the
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scientific applications of an ensemble of microlensing events in the neighborhood of M32,

gathered not just in the experiments monitoring M31 but also perhaps in a future survey

centered on M32 itself. First, if the events were clustered on the M31 side of M32 as predicted

by Figure 2, then this would prove incontrovertibly that M32 lies in the foreground of the

M31 disk.

Second, the distribution of Einstein timescales tE can be used to measure the mass

function of M32, modulo an initially unknown scale factor. The timescale is given by tE =

θE/µrel, where θE is the angular Einstein radius and µrel is the source-lens relative proper

motion. When, as in the present case, DLS � DS, this reduces to

tE ∼ 1

vrel,⊥

√
4GMDLS

c2
= 73 days

( vrel,⊥
300 km s−1

)−1( Ml

M�

)1/2( DLS

20 kpc

)1/2

, (4)

where vrel,⊥ = |vL,⊥ − vS,⊥| is the lens-source relative transverse velocity. The transverse

velocity of the M31 disk at this location is known from its rotation curve and inclination

and is ∼ 200 km s−1. The transverse velocity of M32 is unknown, but since M32 is in the

potential of M31, its magnitude is likely to be ∼ 200 km s−1. Since these speeds are much

larger than the internal dispersions of either population, vrel,⊥ is probably ∼ 300 km s−1 and,

very importantly, roughly the same for all events. Thus, if the timescales can be measured,

the masses can also be measured, up to the unknown scale factor v2
rel,⊥/DLS. We are unable

to measure the timescale precisely in the case of PA-00-S4 because the source is not resolved

in ground-based images, and so we do not know the source brightness which is degenerate

with tE (see eq. [1]). However, M31 microlensing sources can be resolved with the Hubble

Space Telescope (e.g., Aurière et al. 2001). Indeed, virtually all potential sources in the field

of M32 could easily be resolved with just 4 snapshots using the Advanced Camera System.

Note that this mass-function measurement is very similar to Paczyński’s (1994) proposal to

measure the mass function of globular clusters that lie projected against the bulge, except

that the distances and proper motions of the clusters are already reasonably well known, so

there is no unknown scale factor.

Third, the ensemble of events would yield the product MM32DLS, according to equation

(3). Combined with an independent estimate of MM32 (say, by assuming a compact-object

mass-to-light ratio or by stellar dynamical modelling), this would give an estimate of DLS.

Fourth, if a caustic-crossing binary-lens event were observed, one could use it to measure

vrel,⊥. That is, if the source can be resolved in two bands, its surface brightness can be inferred

from its color, and hence its angular size can be determined from its flux. The time that

the source takes to cross the caustic (plus the crossing angle, which can be inferred from

the solution of binary-lens geometry), then yields µrel = vrel,⊥/DS. This technique has been

successfully applied to five events (Albrow et al. 1999, 2000, 2001; Afonso et al. 2000; An
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et al. 2002). A determination of vrel,⊥ would remove some of the degeneracy in the mass-

function measurement. This requires that the event be observed during the caustic crossing,

which only lasts a time 2∆t = 2r∗/vrel,⊥ csc φ = 4 hr(r∗/3r�)/(vrel,⊥/300 km s−1) csc φ, where

φ is angle between the source-lens relative motion and the normal to the caustic. Hence,

the crossing is unlikely to be observed unless special preparations are taken. Of course, this

requires predicting the crossing in real time, as was done in all previous cases to which this

technique has been applied.

Finally, we look ahead to combining microlensing and space-based interferometry to

obtain all six phase-space coordinates of M32 relative to M31. At present, three of these

coordinates are known (the two transverse position coordinates and the relative radial ve-

locity), while the remaining three are unknown. The proper motion of M32 is µM32 =

60µas yr−1(vL,⊥/200 km s−1). It will easily be measured by the Space Interferometry Mis-

sion (SIM) with its ∼ 4 µas precision and 5-yr baseline. It will also be measured by the

scanning satellite GAIA, which will record the proper motions of ∼ 104 stars in M32 with

∼ 100 µas precision, from which the proper motion of M32 itself is obtainable with ∼ 1 µas

precision. Once the proper motion is determined, not only the magnitude of vrel,⊥, but also

its direction will be known. As we now describe, this can be combined with microlensing

parallax information to determine DLS.

Normally, one does not think of parallax effects in relation to M31 microlensing, because

the projected Einstein radius is so large,

r̃E =

√
4GMDSDL

DLSc2
∼ 460 AU

√
M/M�

DLS/20 kpc
, (5)

that it dwarfs any conceivable parallax baseline, whether space-based (Refsdal 1966) or

ground-based (Gould 1992). However, parallax effects on a caustic crossing scale inversely

with the projected source radius

r̃∗ =
DL

DLS
r∗ ∼ 0.5 AU

( DLS

20 kpc

)−1 r∗
3r�

(6)

rather than as r̃−1
E (Hardy & Walker 1995; Gould & Andronov 1999), and therefore could

be precisely measured by a satellite in an Earth-like orbit even with relatively modest pho-

tometric capabilities. The time delay between the caustic crossings as seen from the Earth

and satellite is

δt =
DsatDLS cos(γ − φ)

DSDLµrel sin φ
, (7)

where Dsat is the magnitude of the Earth-satellite separation vector projected onto the

plane of the sky, γ is the angle between this projected vector and direction of source-lens
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relative motion, and where φ is again the angle between this motion and the normal to the

caustic. As discussed above, µrel can usually be measured from caustic crossings and φ can

be determined from the overall solution to the binary event. Unfortunately, γ is not generally

known, and hence the measurement of δt would not typically lead to a determination of DLS.

However, since SIM or GAIA will measure the vector proper motions of M31 and M32 (and

so determine the orientation of the M31-M32 relative proper motion as well), γ will in fact

be known.

6. Conclusions

We have reported the discovery of a high S/N, short-duration microlensing candidate,

PA-00-S4. It is a remarkable event because the source almost certainly lies in the M31 disk,

yet the lens most probably resides in M32. This makes it the first convincing candidate for an

M31/M32 intergalactic microlensing event. If this interpretation is correct, it demonstrates

that M32 lies in front of M31. We estimate that . 1 such event satisfying the selection

criterior R(∆F ) < 21 should be detectable in the current POINT-AGAPE microlensing

survey of M31.

The scientific applications of gathering an assemblage of events centered around M32 are

substantial. If the events are clustered on the M31 side, this provides unambiguous evidence

that M32 lies in front of M31. The events can be used to deduce the mass function of M32

up to an unknown scale factor. Microlensing observations of a binary-lens event, together

with a measurement of the M31-M32 relative proper motion using astrometric satellites like

SIM or GAIA, will enable the line-of-sight separation of M31 and M32 to be determined.

This provides strong motivation for a microlensing survey targetted on M32 itself.
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Fig. 1.— Lightcurves for the M31/M32 intergalactic candidate microlensing event PA-00-S4.

Upper panel shows full two years of INT WFC data in r′. Lower two panels show zooms of

the event in r′ and i′. Both are well fit by a Paczyński curve with a single set of geometrical

parameters.
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Fig. 2.— Relative probability for an event to occur in semi-circular radial bins around M32

on the sides closer to (negative) and farther from (positive) M31. The curve does not go

to the center of M31, which is saturated. The event PA-00-S4 lies on the shoulder of this

distribution, about a factor of 10 below the peak. However, the probability of detecting an

event is roughly flat as a function of radius because the higher surface brightness interferes

with detection.


