
Preprint typeset in JHEP style. - PAPER VERSION SU-ITP-02/23

CERN-TH/2002-131

hep-th/0206155

Quantum Black Holes as Holograms in AdS

Braneworlds

Roberto Emparan∗

Theory Division, CERN, CH-1211 Geneva 23, Switzerland
E-mail: roberto.emparan@cern.ch

Alessandro Fabbri

Dipartimento di Fisica dell’Università di Bologna & INFN sezione di Bologna
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study quantum black hole physics. The black holes on a brane in an AdSD+1 braneworld

that solve the classical bulk equations are interpreted as duals of quantum-corrected

D-dimensional black holes, rather than classical ones, of a conformal field theory cou-

pled to gravity. We check this explicitly in D = 3 and D = 4. In D = 3 we reinterpret

the existing exact solutions on a flat membrane as states of the dual 2 + 1 CFT. We

show that states with a sufficiently large mass really are 2 + 1 black holes where the

quantum corrections dress the classical conical singularity with a horizon and censor

it from the outside. On a negatively curved membrane, we reinterpret the classical

bulk solutions as quantum-corrected BTZ black holes. In D = 4 we argue that the

bulk solution for the brane black hole should include a radiation component in order

to describe a quantum-corrected black hole in the 3+1 dual. Hawking radiation of the

conformal field is then dual to classical gravitational bremsstrahlung in the AdS5 bulk.
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1. Introduction

We propose here a connection between two seemingly unrelated problems in black hole

theory: i) the well-known problem of the backreaction from quantum effects on a black

hole geometry, and ii) the description of a black hole in an AdS braneworld, as in the

Randall-Sundrum model with an infinite extra dimension, RS2 [1]. Quantum fields in

a black hole background lead to particle production and black hole evaporation via

Hawking radiation [2]. To leading order in perturbation theory, this yields an expec-

tation value of the renormalized stress-energy tensor of quantum fields 〈Tµν〉, which

includes quantum corrections. The backreaction of 〈Tµν〉 on the classical geometry

modifies it according to the one-loop corrected Einstein’s equation Gµν = 8πG4 〈Tµν〉.
Unfortunately, the stress-energy tensor 〈Tµν〉 in a black hole spacetime can only be

computed approximately, while determining its backreaction is even more difficult [3].

Only in dimensions D < 4 was it possible to find exact solutions [4, 5, 6, 7].

On the other hand, an AdS braneworld consists of a bulk AdSD+1 space ending on

a D−1-dimensional domain wall, or brane. A prototype is the RS2 model where AdS5

ends on a 3-brane, which should model our 3+1 dimensional world. It is therefore

natural to look for a suitable description of a black hole in this scenario. However,

the attempts to find exact, static, asymptotically flat black hole solutions localized on

the brane in AdSD+1>4, with regular horizons both on and off the brane, have come

empty-handed to date (for published examples see, e.g., [8]-[12]). It has even been

suggested that static, asymptotically flat, spherical black holes on the brane might not

altogether exist in the RS2 model [9]1. Contrasting this, exact static solutions localized

on a 2-brane in AdS4 have been found in [14, 15].

Here we adopt the point of view that the difficulties in constructing these solutions

are no mere accident, but are intricately related to the effects induced by quantum

corrections. We use a modification of AdS/CFT correspondence [16] for the RS2 model

[17]-[23] to connect both problems. Our main result is the following conjecture:

1Ref. [13] obtains a numerical solution for a static star on an RS2 brane.
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The black hole solutions localized on the brane in the AdSD+1 braneworld

which are found by solving the classical bulk equations in AdSD+1 with the

brane boundary conditions, correspond to quantum-corrected black holes in

D dimensions, rather than classical ones.

This conjecture follows naturally from the AdS/CFT correspondence adapted to

AdS braneworlds. According to it, the classical dynamics in the AdSD+1 bulk encodes

the quantum dynamics of the dual D-dimensional conformal field theory (CFT), in

the planar limit of a large N expansion. Cutting the bulk with a brane introduces a

normalizable D-dimensional graviton mode [1, 24], while on the dual side this same

D-dimensional gravity mode is merely added to the CFT, which is also cutoff in the

ultraviolet. Then, solving the classical D+1-dimensional equations in the bulk is equiv-

alent to solving the D-dimensional Einstein equations Gµν = 8πGD 〈Tµν〉CFT , where

the CFT stress-energy tensor incorporates the quantum effects of all planar diagrams.

These include particle production in the presence of a black hole, and possibly other

vacuum polarization effects.

This conjecture has implications in two directions. On the one hand, it allows us

to view the brane-induced modifications of the metric of a D-dimensional black hole as

quantum corrections from a CFT, a dual view that sheds light on both problems. On

the other hand, we can use the conjecture to infer, from the known properties of the

classical bulk solutions, the spectrum of states of the cutoff CFT coupled to gravity.

Even if some of the conclusions are derived using the AdS/CFT correspondence, they

are typically independent of the existence of a bulk dual: any strongly coupled CFT

with a large number of degrees of freedom is likely to behave, when coupled to weak

gravity, in a similar manner.

We submit the conjecture to the test by reinterpreting the exact solutions on the

2-brane in an AdS4 braneworld [14, 15] as quantum-corrected, gravitating CFT states

in the dual 2+1 theory, either with or without a negative cosmological constant in 2+1

dimensions, Λ3. As is typical in tests of the AdS/CFT correspondence, the calculations

on the CFT side can only be performed at weak ’t Hooft coupling, often at the one-loop

order only, and therefore comparisons with the strongly coupled dual of the classical

bulk theory, which includes all planar diagrams, are difficult. Even then, we find some

instances where the equivalence between the results at weak and strong coupling holds

to a great degree of detail.

An interesting spin-off of the analysis is a realization of quantum censorship of

conical singularities, which we argue is a generic effect independent of the AdS/CFT

duality. Gravity in 2+1 dimensions is known to describe massive particles in terms

of conical singularities [25]. We find that when quantum corrections from a CFT
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are included, the singularity of a sufficiently massive particle is dressed by a regular

horizon. This result is in fact true independently of whether the CFT is strongly or

weakly coupled, and acts more efficiently when it has a large number of degrees of

freedom.

Since we have a detailed description of the solutions in the AdS4 braneworld, we

can apply it to describe the spectrum of the cutoff CFT. When Λ3 = 0, the theory

is characterized by three mass scales: the UV cutoff of the CFT, µUV , the 4D Planck

mass and the 3D Planck mass, in ascending order. These scales organize the spectrum

naturally into three categories: (i) the familiar light CFT states, with masses below

the CFT cutoff, which are not black holes because of the quantum uncertainty-induced

smearing; (ii) states with masses between the CFT cutoff and the 4D Planck mass,

which also are not black holes because of quantum smearing and may receive large

quantum corrections in the bulk; and (iii) black holes, which are the states with masses

above the 4D Planck mass. These black holes may be smaller than the CFT length

cutoff, ~/µUV , but their description should be reliable since both the bulk and the 2+1

gravity corrections are small. Our argument that the cutoff CFT can be trusted to

distances much shorter than the UV cutoff is analogous to a familiar situation in string

theory [26], suggesting that the intermediate mass states and light black holes behave

as CFT solitons.

A negative cosmological constant Λ3 < 0, allows for classical BTZ black holes

[27]. Although the AdS/CFT duality is not fully understood for the case of negatively

curved branes, we find that the solutions localized on the 2-brane are naturally inter-

preted as BTZ black holes with CFT quantum corrections, which are in equilibrium

with a thermal bath in AdS3. There are other localized solutions, all with mass less

than Mmax = 1/(24G3), with different features, but we find explanations for all of

them within the context of our conjecture. Black holes of mass larger than Mmax are

delocalized black strings occupying an infinite region of the bulk, and it is unclear how

to describe them in the confines of the 2 + 1 theory; in fact, it is likely that such a

description should not be possible in terms of only local physics.

In the physically more relevant case of a 3-brane in AdS5 we can not go into

a similar level of detail since there are no exact solutions, and classical gravity in

3 + 1 dimensions is dynamical. However we can still explore the consequences of our

conjecture in a semi-quantitative manner. The description in terms of a CFT coupled

to gravity is not reliable until the horizon is larger than the ultraviolet cutoff of the

CFT, i.e., the black hole is sufficiently heavy. For these black holes, the CFT+gravity

theory allows us to reinterpret the alleged obstruction for finding a static black hole [9]

as a manifestation of the backreaction from Hawking effects. The analysis of the trace

anomaly of the CFT stress tensor allows us to make this point precise. As long as the
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anomaly is consistent with the asymptotic AdS5 geometry, the conformal symmetry of

the dual CFT is valid in the infrared, and so its spectrum is gapless. Hence any black

hole at a finite temperature will emit CFT modes as a thermal spectrum of Hawking

radiation, which on the bulk side is captured by a deformation of the bulk geometry

close to the brane, caused by the black hole sourcing the classical gravity equations. We

illustrate this to the leading order on the CFT side by showing that the backreaction

from Hawking radiation, encoded in the form of a Vaidya-type far-field solution, is

consistent with the CFT anomaly. We also discuss the dual bulk picture of Hawking

radiation that arises from our conjecture. Within this interpretation, the difficulties

encountered in the ongoing quest for the black hole localized on the 3-brane in AdS5

are viewed as a natural, subleading quantum correction to the classical solution, rather

than as a no-go theorem for the existence of classical braneworld black holes.

2. AdS/CFT duality for AdS Braneworlds

We begin with a brief review of several aspects of the two dual descriptions that are

relevant for our conjecture [16]-[23]. Since we want to discriminate between classical

and quantum effects, we retain ~ in our formulas, while setting c = 1. Then, the D-

dimensional Newton’s constant GD, Planck length `D, and Planck mass MD are related

to each other as

GD =
`D−3
D

MD
, MD =

~

`D
. (2.1)

In AdS braneworlds the D + 1 dimensional bulk Newton’s constant and the bulk cos-

mological constant ΛD = −D(D − 1)/2L2 together determine the Newton’s constant

induced on the D-dimensional brane as

GD =
D − 2

2L
GD+1 . (2.2)

The precise details of the dual CFT depend on the specifics of the string/M-theory

construction that yield the AdS background. Here we only need to know the effective

number of degrees of freedom of the CFT, g∗. For D = 4, the dual pair are IIB

string theory on AdS5 × S5 of radius L ∼ `10(gsN)1/4 and N = 4 SU(N) super Yang-

Mills theory, while for D = 3, the dual pair are M-theory on AdS4×S7 and the (poorly

known) theory describing the worldvolume dynamics of a large number N of M2 branes.

In these cases

g∗ ∼ N2 ∼
(

L

`5

)3

∼
(

L

`4

)2

(D = 4),

g∗ ∼ N3/2 ∼
(

L

`4

)2

∼ L

`3
(D = 3) , (2.3)
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where we have used (2.2) to get the final expressions. g∗ is taken to be a large number,

in order to keep small the quantum corrections to the supergravity approximation to

string/M-theory. For the CFT, this is a large N limit where planar diagrams give the

leading contribution.

The introduction of the brane that cuts off the AdS bulk implies that very massive

states of the dual CFT are integrated out, and the conformal invariance of the theory

is broken in the ultraviolet. However, the breaking washes into the low energy theory

only through irrelevant operators, generated by integrating out the heavy CFT states

at the scale µUV ∼ ~/L. In the infrared, at energies E < µUV , the effects of the

conformal symmetry breaking are suppressed by powers of E/µUV . Cutting off the

bulk yields also a normalizable graviton zero mode localized on the brane; this same

D-dimensional gravity mode is added to the dual theory. However, note that the CFT

cutoff µUV is not equal to the induced D-dimensional Planck mass. Instead,

µUV ∼ M4√
g∗

(D = 4), µUV ∼ M3

g∗
(D = 3) , (2.4)

which is much smaller than the Planck mass on the brane. The formulae above can be

written for any AdS space and can be viewed as a definition of a cutoff CFT, although

they do not guarantee the existence of its UV completion. We will use them bearing

this in mind.

3. Quantum Black Holes on flat branes in 2 + 1 Dimensions

For the case of D = 3, the exact four-dimensional solutions constructed in [14] yield

the following metric on the 2-brane,

ds2
brane = −

(
1− r0

r

)
dt2 +

(
1− r0

r

)−1

dr2 + r2dϕ2 . (3.1)

The parameter r0 fixes the position of the horizon, and is determined by the mass M .

In a locally asymptotically flat space in 2 + 1 the mass is given by the conical deficit

angle at infinity, δ∞ = 8π G3M = 8π M/M3. It was shown in [14] that such a deficit

angle is indeed present in (3.1), leading to2

M =
M3

4

(
1−

√
1 + x

1 + 3
2
x

)
, (3.2)

2In the notation of [14], M3 was the mass as measured on the brane, and M4 the mass measured
in the bulk. They were shown to be the same, M3 = M4. Here we denote them by M , reserving M3

and M4 for the three- and four-dimensional Planck masses, as in eq. (2.1).
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where x is defined by

x2(1 + x) =
r2
0

L2
. (3.3)

These expressions define the horizon size r0 as a function of the mass M in parametric

form. The mass varies from M = 0 (r0 = 0) up to a maximum,

Mmax = 1/4G3 = M3/4 , (3.4)

which comes from the constraint that the deficit angle δ∞ be smaller than 2π. For

small masses M � M3

r0 ' 4M

M3

L � L , (3.5)

while for the masses near Mmax

r0 ' 8L

27 (1−M/Mmax)
3 � L . (3.6)

The presence of the horizon at r = r0 may appear as a surprise since it is known that

there are no asymptotically flat vacuum black holes in 2 + 1 dimensions [25]. But (3.1)

is not a vacuum solution. Following our conjecture, it must admit an interpretation as a

quantum-corrected solution of the 2+1 CFT+gravity system. To see this, note that the

general relation between the horizon radius and the mass is of the form r0 = L f(G3M),

with f(G3M) obtained from (3.2) and (3.3). In order to correctly identify quantum-

mechanical effects we express the results in terms of only those variables which are

meaningful in the dual CFT+gravity description. Using (2.1), (2.2) and (2.3) we can

write L ∼ ~g∗G3, so

r0 ∼ ~g∗G3 f(G3M) . (3.7)

The appearance of ~ is a clear fingerprint of the quantum origin of the horizon viewed

from the 2 + 1 perspective. This is in complete agreement with our conjecture: since

there are no horizons in the classical 2 + 1 theory, any that are found must be purely

quantum-mechanical in origin. The classical theory does not contain any length scale

(G3M is dimensionless), and only with the introduction of ~ can we form one, namely

the Planck length `3 = ~G3, which sets the scale for r0.

We can test the conjecture in more detail. The solution (3.1) can be formally

obtained in the dual 2 + 1 CFT coupled to gravity from the quantum-mechanical

backreaction on the spacetime of a particle of mass M . Beginning with the conical

geometry corresponding to a localized CFT lump representing a point particle, with

deficit angle δ∞ = 8πM/M3, one can compute the Casimir stress-energy and find its

backreaction on the metric. Such a solution was indeed discovered almost a decade
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ago in [28] for the case of a weakly coupled scalar CFT. Its Casimir stress-energy was

computed in [29] as

〈T µ
ν〉 =

~α(M)

r3
diag(1, 1,−2) , (3.8)

where

α(M) =
1

128π

∫ ∞

0

du

sinh u

(
cosh u

sinh3 u
− 1

(1− 4G3M)3

cosh[u/(1− 4G3M)]

sinh3[u/(1− 4G3M)]

)
. (3.9)

Using this stress-energy tensor to calculate the backreaction on the conical spacetime,

ref. [28] found the metric (3.1), with r0 = 4π~ α(M)/M3. In our case the CFT has

a large number of degrees of freedom g∗, each of whom contributes to the Casimir

stress-energy tensor. Thus we expect to find r0 = O(1) ~g∗α(M)/M3 where the O(1)

factors can only be calculated when the exact description of the strongly-coupled CFT

is known. Moreover, we can not expect the mass dependence of this r0 to agree precisely

with that of (3.3) — among other things, we have not even included the contribution

from fermions to 〈T µ
ν〉. Nevertheless, we may hope for some simplification in the

limiting cases M � M3 and M → M3/4. In the former limit,

α(M) = O(1)
M

M3
, (3.10)

so

r0 = O(1)~g∗
M

M2
3

= O(1)
M

M3

L , (3.11)

which exactly reproduces eq. (3.5) up to O(1) coefficients. In the limit M → M3/4,

the integrand in (3.9) is strongly peaked at u = 0 and α(M) can be computed using

the saddle-point method,

α(M) =
O(1)

(1− 4G3M)3
, (3.12)

so the backreaction from the CFT results in

r0 = O(1)
~g∗

M3(1− 4G3M)3
= O(1)

L

(1−M/Mmax)3
, (3.13)

which again reproduces the precise parametric dependence in eq. (3.6).

Alternatively, one can compare (3.8) with the stress-energy tensor computed di-

rectly from the metric (3.1),

T µ
ν =

1

16πG3

r0

r3
diag(1, 1,−2). (3.14)

Both (3.8) and (3.14) have the same structure and radius dependence, so they determine

the same geometry. The equivalence is completed by noting that, taking g∗ times
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(3.8), and comparing to (3.14), we find ~g∗α ∼ r0/G3, as expected. This formally

confirms the equivalence between the classical construction in AdS4 and the quantum-

corrected 2 + 1 solution. The quantum corrections are completely due to Casimir-

like vacuum polarization, rather than backreaction from Hawking radiation, since the

classical solutions are not black holes to begin with. The Casimir effect acts here as a

quantum censor, hiding the classical conical singularity behind a horizon.

The agreement between the calculations in the two sides of the conjecture is strik-

ing, given their completely different nature (classical vs. quantum), and we believe that

it provides a strong argument in favor of the AdS/CFT correspondence in the context

of AdS braneworlds, beyond the linearized calculation of [21]. One may ask whether the

agreement is just a consequence of some common symmetry underlying both problems.

This does not seem to be the case. Conformal invariance is present on both sides: since

the bulk AdS is empty, it influences the brane only through the conformal Weyl tensor.

However, conformal symmetry alone only determines the radial dependence r−3 of the

stress tensor (recall that the classical 2+1 theory has no length scale), and its traceless

character. Neither the particular structure diag(1, 1,−2), nor the dependence on the

dimensionless quantity M/M3, are fixed by conformal invariance.

So far we have been focusing on the mathematical side of our conjecture and

ignoring the interpretation of the solutions (3.1). However, since we have argued that

the solutions (3.1) are quantum-mechanical in origin, we must ask to what extent the

description of a state of mass M based on (3.1) is physically valid. In particular, in

the limit of small masses the curvature of the solution will be very large outside of the

horizon, indicating that higher-order curvature corrections will invalidate the solution

(3.1) already in a region larger than the horizon size.

To understand the physics of the solutions (3.1), note that the states of the

CFT+gravity theory are defined by three scales: the CFT cutoff µUV ∼ ~/L on the low

end, the 3D Planck mass M3 on the high end, and the 4D Planck mass M4 in between.

While M4 is an obvious scale from the bulk side, from the viewpoint of the dual CFT

coupled to 2+1 gravity its presence is slightly mysterious. There, M4 emerges because

of the large number of CFT degrees of freedom, as M4 ∼ M3/
√

g∗. Its importance

can be seen as follows. Any solution of a given mass M is characterized by two length

scales: the horizon radius r0 and the Compton wavelength λC = ~/M . If λC > r0,

the solution cannot be a black hole, because quantum effects smear it over a volume

larger than the horizon, but if r0 > λC , the solution is a black hole, since quantum-

mechanical fuzzying up is not sufficient to conceal the horizon. On the bulk side, this

simply means that the description of this object by a classical metric in AdS space is

not appropriate, and that one should instead use wave packets delocalized over λC as

in quantum mechanics. Viewed from the bulk it is clear that the mass scale for the
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crossover is M4. Translated into the 2 + 1 description, this is the same value at which

r0 ∼ λC : when M ∼ M4 � M3, (3.5) and (2.2) imply r0 ∼ LM4/M3 ∼ ~/M4 ∼ λC .

Thus, M4 is consistently the threshold scale for black hole formation. Above this scale,

the curvature near the horizon is sub-Planckian, and the semiclassical geometry (3.1)

becomes reliable all the way down to the black hole horizon r0.

Since for M > M4 the leading CFT corrections are large enough to give rise to a

horizon, one may worry that higher order corrections may be very large as well, and

render the leading approximation meaningless. Again, this does not occur. The higher-

order effects in the 2 + 1 description correspond to one-loop quantum effects (Hawking

radiation) in the bulk. The black hole temperature is T ∼ ~/r0, and when M > M4,

~/r0 ∼ M2
4 /M < M . Hence the backreaction will be small, and the larger the horizon

generated at the leading order, the smaller the higher-order corrections outside it.

We stress that the quantum dressing of the conical singularity is in fact completely

independent of the AdS/CFT correspondence. It happens for any 2 + 1 CFT that

couples to 2 + 1 gravity, independently of whether its (’t Hooft) self-coupling is strong

or weak. While ref. [28] claimed that when g∗ = 1 the solutions (3.1) are never reliable,

because of large quantum corrections outside of the horizon, this is true only in the

regime of small masses. In the limit M → Mmax the horizon becomes arbitrarily large,

(3.6), and the solution (3.1) is a black hole. The main feature here is that the regime

of intermediate mass states disappears as g∗ → 1 because µUV → M4 ∼ M3, and the

transition between light states and black holes is sudden. Adding a large number of

degrees of freedom expands down to M3/
√

g∗ the range of masses where the horizons

can be trusted and makes quantum cosmic censorhip more efficient. Note that these

quantum corrected black holes have a large entropy (∝ the area in the bulk, not on the

brane [14]), and that at first sight its origin may be puzzling, considering the fact that

the classical background which gave rise to this was modeled as a cone sourced by a

point-like distribution of CFT energy. However, this source should really be viewed not

as an individual state but as a lump of many CFT degrees of freedom, whose entropy

is resolved with the help of gravity and quantum corrections.

Therefore the CFT objects fall into three classes as a function of their mass:

1) Light states with masses M < µUV with λC � r0, and so they cannot be

reliably described by (3.1). They require a quantum-mechanical description in the

bulk independently of the localized 2 + 1 gravity, and on the AdS4 side are just the

perturbative massive KK modes [1].

2) Intermediate mass objects µUV < M < M4, with λC > r0, and so they too are

not black holes. Since their masses are above the cutoff, they cannot be described as

bulk KK modes on the AdS4 side. They are new nonperturbative states, which are

bulk deformations of AdS4. Their detailed properties are sensitive to the physics at
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the cutoff scale. If the only new mode which appears at the cutoff is 2 + 1 gravity (a

non-dynamical mode), they can be viewed as bound CFT states, which may however

receive large bulk quantum corrections that are not automatically under control because

λC/r0 > 1.

3) Heavy objects M4 < M ≤ Mmax with λC < r0, and so they really are black

holes. As with the intermediate mass states, the description of the black holes with

M4 < M � M3 requires physics at distances shorter than the CFT cutoff L, which

may be completely reliable if the only new mode at the cutoff is the 2+1 gravity. Then

both the 2 + 1 corrections from the graviton and the bulk quantum corrections remain

small since they are proportional to T/M = ~/r0M < 1, as seen above. These black

holes are unstable to the emission of Hawking radiation, which on the bulk side is a

one-loop effect, corresponding to non-planar diagrams in the CFT dual.

The emergence of the new short distance scale `4 = ~/M4 is analogous to the

emergence of very short distance scales `∗ = gS`S in string theory, which can be probed

by solitonic objects - the D-branes [26].

In closing, we define how to take the classical limit for the 2 + 1 theory in a way in

which the black holes survive. To identify the appropriate limit, observe from (3.7) that

to keep the horizon finite we must take simultaneously ~ → 0 and g∗ → ∞, with ~g∗
finite. Since also L = ~g∗G3 and G4 = ~/M2

4 ∼ LG3 stay finite, the bulk description

remains valid. Consider now the black hole entropy S = πg∗ x2/(2 + 3x) and the

temperature T = µUV /[4πx
√

1 + x]. Since x is a function of only G3M through (3.2),

S and T are written in terms of 2 + 1 quantities only. Both are formally independent

of ~, and naively seem to remain constant as ~ → 0. However, taking also g∗ → ∞,

the black hole temperature vanishes and its entropy diverges, as they should.

4. Quantum Black Holes in 2 + 1 Dimensions with Λ3 < 0

Due to the peculiarities of 2+1 gravity, in the previous example the black hole horizon

arises only after the leading quantum corrections are included. Hawking radiation and

its backreaction will not appear until the next order, which is difficult to compute. By

contrast, classical gravity in 2 + 1 dimensions with a negative cosmological constant

admits not only the conical spacetimes of point particles, but also classical (BTZ) black

holes [27]. Spacetimes with a negative cosmological constant can also be constructed

as AdS bulk geometries ending on negatively curved branes if their tension does not

satisfy the RS2 fine-tuning [30]. Black holes on negatively curved 2-branes in AdS4 have

been constructed in [15], so we can use these solutions to study further our conjecture.

However, the bulk geometry at large distances from negatively curved branes differs

in important ways from the bulk surrounding the flat branes discussed previously. The
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proper size of radial slices decreases away from the brane until a minimal size, a throat,

is reached, after which the space re-expands again. Therefore the total bulk volume is

infinite. Because of this, the solutions with horizons can be either black holes localized

on the brane, or black strings stretching all the way through the AdS space, depending

on their mass. A second, positive tension, regulator brane may or may not be introduced

to cut this volume off. If the regulator is included, then the relationship between G3

and G4 changes to [15]

G3 =
1

2
√

λ L3

G4 , (4.1)

where L3 is the length scale of the brane cosmological constant, Λ3 = −1/L2
3, and λ is

a dimensionless parameter defined by

λ ≡ L2

L2
3 − L2

. (4.2)

If the brane is only slightly curved, L3 � L, i.e., λ ' L2/L2
3 � 1, we recover (2.2)

approximately. The duality as described in Sec. 2 can not be applied in a straight-

forward manner: the holographic dual is modified in the infrared, and is considerably

less understood than in the case of flat branes [31, 32]. Essentially, in this case the

presence of the brane that breaks conformal symmetry in the UV communicates the

breaking to the IR as well. This can be easily seen on the bulk side. Consider the

setup with a regulator brane on the other side of the throat. This ensures the validity

of 2 + 1 gravity at all length scales, but it alters the CFT in the IR by introducing

an IR cutoff. The CFT spectrum becomes discrete, with a mass gap that scales as

the IR cutoff, µIR ∼ ~/L3. In the limit when the regulator is removed, the gap does

not disappear: the fluctuating bulk modes, which correspond to the CFT states, must

obey Dirichlet boundary conditions at the AdS boundary to remain normalizable. Thus

the presence of the AdS brane leads to a two-sided boundary value problem and the

spectrum remains quantized.

The mass gap suppresses Hawking emission for very cold, small black holes, because

their temperature is below the gap and so the CFT modes cannot be emitted as thermal

radiation. Then, to leading order the backreaction for these would be very suppressed

as long as the temperature is below the gap. Other consequences of the mass gap

will be apparent near the end of this section. In the following we will work in the

approximation where λ is small, so the IR and UV regulators are well separated and

(2.2) remains approximately valid.

Besides Hawking emission, we expect quantum corrections from the Casimir effect

induced, as in the previous section, by the identifications of points in the background.

In the cases where the horizon is absent (or has zero temperature) at the classical level,
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the thermal Hawking radiation will be absent. But for a BTZ black hole, it is difficult

to distinguish between thermal and Casimir effects. Actually, the distinction is rather

artificial, since both arise from the same non-trivial identifications of points in AdS3.

We begin the analysis with the solution for a localized black hole on a negatively

curved 2-brane found in [15],

ds2
brane = −

(
r2

L2
3

− 8G3M − r1(M)

r

)
dt2 +

(
r2

L2
3

− 8G3M − r1(M)

r

)−1

dr2 + r2dϕ2 ,

(4.3)

which is asymptotic to AdS3. This is similar to the BTZ black hole of mass M , with an

extra term r1(M)/r. As in the previous example, r1(M) can only be given in parametric

form. Defining a parameter z via

G3M =
z2(1 + z)(λ− z3)

2(λ + 3z2 + 2z3)2
, (4.4)

then

r1 = 8L3

√
λ

z4(λ + z2)(1 + z)2

(λ + 3z2 + 2z3)3
. (4.5)

The range of masses in (4.3) which do

-1/8G3 0 1/24G3
M

Area

1
2

Figure 1: Mass dependence of the 4D
area of black holes on a brane in AdS3.

not lead to naked singularities or to delocal-

ization of the black hole into a black string is

−1/8G3 ≤ M ≤ 1/24G3 (obtained by vary-

ing z ∈ [0,∞)). For M = Mmin = −1/8G3

the correction term vanishes, r1 = 0, and

one recovers AdS3 in global coordinates. The

range −1/8G3 < M < 0 corresponds, in clas-

sical vacuum gravity, to conical singularities,

but here they are dressed with regular hori-

zons. In Fig. 1 we display the bulk horizon

area of all these solutions [15]. This helps us

identify two branches of solutions: the branch

labeled 1 starts at M = −1/8G3 and ends at

M = 1/24G3. Branch 2 begins at M = 0 and

zero area, and ends at the same point as the previous one.

As before, (4.3) does not solve the vacuum Einstein equations with a negative

cosmological constant. Instead, the stress-energy tensor that supports (4.3) contains a

correction of the form

T µ
ν =

1

16πG3

r1(M)

r3
diag(1, 1,−2) . (4.6)
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We must discuss how, in accord with our conjecture, these terms encode the quantum

effects in the dual theory.

The sector −1/8G3 ≤ M < 0 of the first branch is naturally interpreted as in

the previous section: these solutions are classical conical spacetimes dressed with a

horizon from the backreaction of the Casimir energy of the CFT. We are not aware of

any calculations of the Casimir energy of a conformal field in conical (M < 0) AdS3

spacetimes, nor of its backreaction. However, we can verify the correspondence between

this sector of the spectrum and the one of the previous section, in the limit where the

cosmological constant vanishes, L3 → ∞. If we take this limit for the solutions (4.3)

and rescale the time and radial variables to their canonical form at infinity, we find

ds2
brane → −

(
1− r1

(8G3|M |)3/2r

)
dt2 +

(
1− r1

(8G3|M |)3/2r

)−1

dr2 + 8G3|M |r2dϕ2 .

(4.7)

This has the same form as (3.1), with r0 identified as r1/(8G3|M |)3/2. The mass of the

limiting solution, M̃ , obtained from the conical deficit in (4.7), is

M̃ =
1

4G3

(
1−

√
8G3|M |

)
. (4.8)

The masses in asymptotically flat and AdS spaces are differently measured, so it is

not surprising that M̃ differs from M . What is important is that the range of masses

−1/8G3 ≤ M ≤ 0 maps precisely to the range in asymptotically flat space, 0 ≤ M̃ ≤
1/4G3. One can also check that in the limit L3 →∞, r1/(8G3|M |)3/2 as a function of

M̃ becomes exactly the same as r0 in (3.2) and (3.3), with the identification z → 1/x.

Hence we are quite confident that this sector of AdS3 solutions can be interpreted as

Casimir-censored singularities, and where the censorship is reliable for sufficiently large

masses M̃ , as before.

In the sector 0 ≤ M ≤ 1/24G3 there are two branches of black holes. For a

given mass, branch 1 solutions have larger area than branch 2. We will see that the

interpretation is clearer for the solutions in branch 1.

For a conformally coupled scalar at weak coupling residing in the BTZ background,

the renormalized stress tensor 〈T µ
ν〉 has been calculated in [4, 5, 6], and it has the same

structure as (3.8)3, now with

α(M) =
(8G3M)3/2

16
√

2π

∞∑
n=1

cosh 2nπ
√

8G3M + 3(
cosh 2nπ

√
8G3M − 1

)3/2
. (4.9)

3The form of 〈T µ
ν〉 depends on the boundary conditions at the AdS3 boundary. The brane solu-

tions appear to automatically select ‘transparent’ boundary conditions, while ref. [5] considers instead
Dirichlet or Neumann conditions. The results for transparent conditions follow by omitting all terms
in [5] with a “±” factor, bringing [4, 5, 6] into agreement.
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Since this 〈T µ
ν〉 has the same structure as the brane stress-energy tensor (4.6), the

backreaction calculated in [5, 6] results in a geometry like the brane metric (4.3).

This stress-energy tensor is not of the thermal type ∝ diag(−2, 1, 1). However, this

does not conflict with the fact that the CFT in the presence of the black hole is in a

thermal state. Ref. [5] showed that the Green’s function from which this 〈T µ
ν〉 is derived

is periodic in imaginary time, with a period equal to the local Tolman temperature

dictated by the black hole. Moreover, this Green’s function satisfies the analyticity

properties that characterize the Hartle-Hawking state. This means that there is a

thermal component in the stress-energy tensor of the CFT, in static equilibrium with

the black hole. The fact that the tensor structure of 〈T µ
ν〉 does not conform to the

canonical thermal one near infinity reflects the presence of a large Casimir contribution.

For the M = 0 black hole, which has zero temperature in the classical limit, one

would expect that the backreaction from Hawking radiation is absent at one loop. In

this limit

α(0) =
ζ(3)

16π4
, (4.10)

which is finite and parametricallyO(1), i.e., not small. This indicates that the quantum-

corrected solution undergoes a large Casimir backreaction and cannot be the massless

zero-area solution in the second branch, but rather the black hole in the first branch,

of finite size. For this state

r1(0) =
8

27
L = O(1) ~g∗G3 , (4.11)

i.e., r1(0)/G3 = O(1) ~g∗α(0), and so the brane and CFT stress-energy tensors agree

and the interpretation is consistent. The same is true for all M > 0 black holes in the

first branch: the dependence of r1 on M is weak when λ � 1, so r1(M) remains ∼ L,

and similarly α(M) = O(1) in the range of masses 0 < M < 1/24G3, so we find the same

agreement up to numerical factors. It is difficult to compare the mass dependence with

the same level of rigor as in the asymptotically flat case. For example, the fermions

are typically much more sensitive to the cosmological constant than scalars, and so

the details of the mass dependence of the function α(M) for the complete dual CFT,

even if we ignore the effects of strong coupling, will be quite different from the scalar

contribution (4.9). For the largest possible masses, M ≈ 1/24G3, the temperature of

the black hole is of the order of the IR cutoff, ∼ ~/L3, and hence Hawking radiation is

not suppressed. One may say that it becomes comparable to the Casimir energy, but

it is difficult to tell one from the other.

Therefore, all branch 1 solutions at least fit consistently with our conjecture. The

black holes of branch 2 may also allow an interpretation as follows. In our conjecture,

no specification is made of what is the vacuum state of the CFT. In particular, the
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calculation of α(M) in [4, 5, 6] was performed assuming that the state in which 〈Tµν〉
vanishes is the global AdS3 vacuum. However, it is also possible to regard the M = 0

state of zero area as a consistent vacuum, in which case the stress tensor would be

renormalized so that 〈Tµν〉M=0 = 0. This M = 0 black hole would remain uncorrected,

and the BTZ black holes with backreaction from a CFT state above this vacuum would

result in a branch of solutions starting at zero area at M = 0, just like branch 2. While

it is difficult to test this idea further, it is tempting to speculate with the possibility

of a decay of the M = 0 vacuum by making a transition to the more entropic M = 0

state of branch 1, followed by evaporation down to the global AdS3 vacuum4.

Finally, we comment on the solutions with masses M > 1/24G3, which also exist

when Λ3 < 0. The metric they induce on the brane is precisely BTZ without any

corrections. In the bulk, these black holes are in fact black strings that stretch beyond

the throat region, all the way to the AdS boundary on the other side. Therefore

they are extremely sensitive to the infrared modifications in the dual picture, and

their full dynamics is clearly not amenable to the description in terms of only 2 + 1

CFT+gravity theory. While the apparent absence of quantum corrections to these black

holes seems puzzling, a possible resolution is that these black holes are so massive that

the backreaction on them is not only small, but even vanishing at the level of planar

diagrams. Note that the one-loop stress-energy tensor of the CFT at weak coupling

becomes exponentially small in
√

M for large M (see (4.9)), which may be an indication

of such behavior. Another indication comes from the higher-dimensional nature of these

solutions: since they extend through the throat, these solutions cannot be described

by 2 + 1 gravity. Instead, for them the 2 + 1 gravity effectively decouples, and their

temperature should be viewed as a purely bulk loop effect, with G3M reinterpreted as

G4m, where m characterizes the mass per unit length of the string. We postpone a

detailed consideration of these solutions for future work.

5. Resolving the Mystery of the Missing 3 + 1 Black Hole

We now turn to the Randall-Sundrum model [1], defined by a single 3-brane in the

AdS5 bulk. We have far less control over the theory now: on the one hand, gravity

in 3 + 1 dimensions is dynamical; on the other hand, the absence of exact solutions

makes the identification of CFT states difficult. Let us proceed by analogy with the

2 + 1 analysis. In that case black holes of horizon size rH = r0 < L are approximately

spherical four-dimensional black holes in the bulk. This feature extends to higher

4In the presence of supersymmetry, these two vacua differ in the periodicity conditions for fermions,
as NS or R vacua, and therefore fall into different superselection sectors.
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dimensions. Quite generally, a black hole of size rH on the brane has an extent into

the bulk rB ∼ L ln(1 + rH/L), so at distances rH < L the bulk solution becomes

progressively less flattened around the brane and rounder, rH ∼ rB. In the present

context, it is well approximated, near the horizon, by a five-dimensional Schwarzschild

solution. As rH becomes smaller than L an increasing number of CFT modes in the UV

must be interpreted as bulk gravity in order to encode the bulk geometry. Then it is

not meaningful to describe the state as a CFT-corrected 3+1 black hole. The situation

in 2+1 dimensions was in this regard better than one had any right to expect, since the

picture of a classical solution, the conical singularity, dressed by CFT corrections was

actually valid for masses all the way down to the scale M3/
√

g∗ ∼ M4, i.e., distances

much smaller than the CFT length cutoff ~/µUV ∼ L. The reason is that pure classical

gravity in 2 + 1 dimensions is topological, so the CFT corrections give the leading

dynamical effects of gravity. In that case, the length scale r0 ∼ L does not determine

any parametrically new mass scale.

Instead, in 3 + 1 dimensions the transition point defined by the equality rH ∼
L ∼ G4M ∼ (G5M)3/2 determines, through (2.1), (2.2) and (2.3), the new mass scale√

g∗M4. We can not sensibly describe black holes lighter than this as CFT-corrected

3 + 1 black holes. Nevertheless, the bulk description holds as long as the backreaction

in the bulk remains small. This is the case if M > M5 ∼ M4/g
1/6
∗ . This suggests that

the small black holes above this scale are additional states of the CFT, besides the light

modes of mass M < µUV . However, since they are very sensitive to the UV regulator

of the CFT, they are not suitable for testing our conjecture. Only for M >
√

g∗M4

can the light bulk KK modes be consistently interpreted as modes of a CFT and not

as gravity.

Therefore, in what follows we will focus on black holes with mass M >
√

g∗M4,

i.e., size r0 > L. Since their mass is much greater than M4, the backreaction of 〈Tµν〉
can be regarded as a small perturbation of the classical black hole solution and treated

order by order as an expansion in ~. In general, 〈Tµν〉 depends on the definition of the

quantum vacuum in a crucial way [3, 33]. There are three usual choices, each describing

a different physical situation:

(1) The Hartle-Hawking state, which describes a black hole in a thermal bath in

equilibrium with its own radiation. The state of the CFT is regular at the event horizon.

Far from the black hole 〈Tµν〉 describes a gas of 4D CFT radiation at the Hawking

temperature. This physical situation is incompatible with asymptotic flatness, and a

natural possibility is that a small backreaction results into a slowly expanding FRW

radiation universe containing a black hole.

(2) The Unruh state, which describes the process of black hole evaporation. The

stress-energy tensor is regular only at the future horizon, and there is a thermal flux
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of radiation at future null infinity. Consistent backreaction must produce a time-

dependent, quantum-corrected, evaporating black hole solution.

(3) The Boulware state, which describes a static configuration, with a stress-energy

tensor that vanishes at infinity but diverges at the horizon. The backreaction effects

convert the horizon into a null singularity. This singularity can be cut away by a static

interior solution if it is greater than the singular surface, such as a star.

According to our conjecture, the solution for a black hole on the RS2 brane must

correspond to one of these choices. It is now obvious why the search for a static,

asymptotically flat black hole solution on the brane has been fruitless so far: the state

(1) is not asymptotically flat, (2) is not static, and (3) does not have a regular horizon.

The physical reason why we expect that the black hole should sense the backreaction

is easy to see from AdS/CFT. As long as the bulk has asymptotic AdS5 geometry, on

the dual side the conformal symmetry of the CFT is valid in the infrared, and so its

spectrum is continuous, without a mass gap. Any black hole at a finite temperature will

therefore emit CFT modes with a thermal spectrum, which is precisely the Hawking

radiation5. On the bulk side, this must be described by a deformation of the bulk

geometry near the brane, which arises because the black hole appears as a source in

the classical bulk gravity equations.

We should recall here some proposals for static black hole solutions on the brane.

For reasons that will become clearer later, such solutions typically become singular in

the bulk, so they are not physical. A prototype for this sort of singular behavior is the

black string of [8]. Although the brane metric is perfectly regular, there is a divergence

of the curvature at the Cauchy horizon in the bulk.

The preceding discussion naturally leads us to considering a radiative solution as

the leading-order description of the exterior of a black hole localized on the brane.

The detailed description of this geometry on the bulk side would require either the

exact bulk solution, which has been missing so far, or a much better approximation

than the existing ones. On the side of the 3 + 1 CFT+gravity, a description at the

same level of rigor would require a careful backreaction analysis, where we should start

with a classical Schwarzschild black hole and perturb it by means of the 〈Tµν〉 in the

Unruh state evaluated in the classical background geometry. This analysis rapidly

5In the case of RS2 in AdS5 a step towards the ideas presented here was entertained by T. Tanaka
[34], and, simultaneously, by R. Maartens and one of us (NK) in the discussions reported in [35],
in order to explain the results of [9]. A naive argument that the bulk dynamics encodes the back-
reaction from Hawking radiation would lead one to expect that all brane-localized black holes are
time-dependent. This would be in conflict with the exact static 2+1 solutions of [14, 15]. Our conjec-
ture that the classical bulk dynamics encodes all quantum corrections at the level of planar diagrams
completely resolves this conflict. These exact solutions in fact strongly support the conjecture.
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becomes quite involved, because of the necessity for describing the near and far field

regions of the black hole differently: a negative energy density flux near the horizon,

well approximated by an ingoing Vaidya metric; the asymptotic infinity approximated

by an outgoing Vaidya metric, and a complicated geometry describing the transition

between these asymptotic forms in between. The far-field outgoing metric encodes the

flux of Hawking radiation pouring out of the black hole, which is described by the

stress-energy tensor

Tµν =
L(u)

4πr2
∇µu∇νu , (5.1)

where u is the retarded null coordinate and L(u) is the flux luminosity. The perturbed

geometry is

ds2 = −
(

1− 2G4M(u)

r

)
du2 − 2drdu + r2dΩ2 , (5.2)

where dM(u)
du

= −L(u). To check our conjecture, we should recover the relation between

L and M from leading-order corrections to the black hole geometry induced from the

bulk. To make any such calculation precise, we should relate the far-field solution (5.2)

to a near horizon one, and then match this solution to the interior. The matching

conditions will give the precise form of the relationship between the luminosity L and

the interior parameters.

In order to circumvent the details of the matching between the near and far regions,

we resort to a simpler, heuristic calculation that allows us to reproduce the correct

parametric dependence of the luminosity. Consider the radiative collapse of a large

dust cloud. Match this collapsing cloud of dust, whose dynamics is determined in

[9] by a leading-order bulk calculation, to an outgoing Vaidya metric (5.2), following

the work of [36]6. The quantum correction terms propagate through the matching

regions, and this relates the outgoing flux of radiation to the subleading correction in

the interior star geometry, which is ∝ (G4ML)2/R6, as calculated in [9], r.h.s. of their

eq. (6) (we only consider the limit Q = Λ = 0 of this equation, which is sufficient for

our purposes). Comparing to (5.1) we find L ∼ G4(ML)2/R4
0 ∼ ~g∗(G4M)2/R4

0, where

R0 is the radius of the matching surface. For a large collapsing mass, this will be near

2G4M , so L ∼ ~g∗/(G4M)2. This is the value that corresponds to a flux of Hawking

radiation of ∼ g∗ degrees of freedom of the CFT, at a temperature TH ∼ ~/(G4M),

as required. Replacing M(u) by M is consistent since L ∝ ~ and we are working

in an expansion in ~. Within this approach we cannot obtain a detailed formula with

accurate numerical coefficients, but it does reproduce the correct scalings with the black

6This appears in Ref. [37], who, however, had an outgoing Vaidya metric everywhere outside the
collapsing sphere, and also continued matching this solution to a Reissner-Nordstrom geometry very
far away. This latter step seems dubious, because this geometry is very likely singular in the bulk.
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hole and CFT parameters, in complete accord with our conjecture. A more detailed

analysis recovering the precise form of the matching conditions would be useful, since

it can display how the outgoing flux is turned on as a function of time.

What remains is to verify the consistency of the matching of geometries across the

horizon. A simple way to check this is to compare the quantum trace anomalies of

the backreacted states in the exterior and interior. The trace anomaly of the quantum

stress tensor is a local geometric quantity independent of which vacuum the field is in

[38, 39]. It has been studied in detail in the AdS/CFT context [40], and in particular in

the case of AdS braneworlds in [41, 42]. It gives us further insight into our problem, in

that it provides a simple leading-order consistency check, which a configuration must

pass in order to be described by the leading-order effects in the duality pair.

For a weakly coupled CFT in 3 + 1 dimensions the trace anomaly 〈T µ
µ〉 is, to

leading order, [3]

〈T µ
µ〉 =

~

(4π)2
(aC2 + bE + c∇2R), (5.3)

where C2 = RµναβRµναβ − 2RαβRαβ + R2/3 is the square of the Weyl tensor, E =

RµναβRµναβ − 4RαβRαβ + R2 is the Gauss-Bonnet term. The coefficients a, b and c

depend on the specific matter content of the theory, and in the case of D = 4 N = 4

SU(N) SYM,

〈T µ
µ〉 =

~N2

32π2

(
RµνRµν − R2

3

)
. (5.4)

Note the cancellation of the term RµναβRµναβ . Ref. [40] showed how this anomaly is

precisely reproduced from a computation in the AdS5 bulk. This result is perturbatively

identical to the familiar quadratic stress-energy correction terms that appear in the

effective long distance 3 + 1 gravity equations in AdS braneworlds [43], which can be

checked explicitly recalling g∗ ∼ N2 [41, 42].

If the CFT is deformed by relevant operators the behavior in the infrared changes,

and the bulk side of the geometry will be quickly deformed away from the AdS geometry.

When this occurs, the anomaly coefficients a, b, c in (5.3) will deviate away from the

values they take for N = 4 SYM, and generically a + b 6= 0, so the anomaly may

contain the contributions from RµναβRµναβ . The appearance of such terms implies

that the bulk is not asymptotically AdS5; it is very likely that a singularity will appear

in the bulk, at some finite distance from the brane7. On the other hand, the absence of

terms ∝ RµναβRµναβ does not imply that the bulk is asymptotically AdS. An example is

7The exception are the situations where the singularity can be dealt with in a physically motivated
manner. For instance, a singularity appears when supersymmetry is broken to produce either a
confining phase or a mass gap at some finite scale in the infrared, and its resolution is an interesting
problem [44].
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a radiation dominated FRW cosmology, with the CFT in a thermal state. In the bulk,

this corresponds to an AdS-Schwarzschild solution, where the singularity is hidden by

a horizon at a finite distance from the brane [45, 19, 46, 47], although the anomaly

vanishes.

We can now reinterpret the ‘no-go theorem’ of ref. [9] within the CFT+gravity

theory. There the authors considered the collapse of pressureless homogeneous dust

on a braneworld in AdS5, and following the standard general relativity routine, they

attempted to match this interior to an exterior metric, as opposed to a radiating one

as we advocated above. Because the interior geometry was a solution of the AdS5

braneworld junction conditions, it was guaranteed to satisfy the anomaly equation

(5.4). However, the exterior geometry, resembling a deformation of the Schwarzschild

geometry, was not required to fulfill these equations, but was tailor-made to satisfy

the matching conditions on the envelope of the collapsing dust. Requiring the exterior

geometry to be static, ref. [9] found that the Einstein tensor must have a nonvanishing

trace in the exterior region equal to

Gµ
µ = −12L2 (G4M)2

r6
. (5.5)

This led [9] to conclude that the exterior geometry can not be static.

The interpretation of this result is that (5.5) is the quantum anomaly induced by

the backreaction, which is inconsistent with the anomaly of the interior solution. One

can easily check that the trace (5.5) is proportional to RµναβRµναβ . Indeed, the trace

anomaly in the Schwarzschild background is [39]

〈T µ
µ〉 = ~

3(a + b)

π2

(G4M)2

r6
, (5.6)

which comes entirely from the Riemann-squared term. According to our discussion,

the interior and exterior geometries considered in [9] cannot belong in the same theory,

even if they were to be both interpreted in the AdS/CFT context. In fact, using the

AdS5/SYM/RS2 relation L2 = (4/π)~N2G4 in (5.5) suggests that the exterior theory

should have a + b = −2N2. Obviously, such matching is not physically sensible.8

Instead, one must look for a different exterior, where the metric correctly encodes the

quantum backreaction. This naturally leads to a time-dependent evaporating black

hole (5.2).

Indeed, the matching to the far-field Vaidya metric (5.2), is consistent with the

anomaly check. The tracelessness of the radiation stress-energy implies Rµ
µ = 0, and so

8Away from the horizon, the matching may be possible as a bubble at the interface between the
two phases. This might allow an interpretation of the solutions in [11].
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the anomaly vanishes, with no contributions from the RµναβRµναβ terms. Although this

argument by itself does not fully guarantee that the bulk will be free from singularities,

it passes the anomaly check with only minimal assumptions which are physically well-

motivated.

Therefore, barring exotic possibilities, we see that the classical bulk dynamics re-

quires braneworld black holes to be time-dependent. We have arrived at this conclusion

by studying only the dynamics projected on the 3 + 1 braneworld, but we would also

like to understand the picture from the point of view of the full bulk AdS5 spacetime.

Then the following questions arise naturally: (i) What is the bulk dual of the Hawking

radiation emitted by the black hole? (ii) Why should a classical black hole on the

brane have to emit anything? (iii) Why should this emission, which is classical from

the point of view of the bulk, appear as thermal radiation in the dual 3+1 picture?

The answer to (i) is obvious: in the 3 + 1 CFT+gravity theory, Hawking radiation

consists of CFT modes, whose dual in the bulk are KK gravitons. The bulk emission

consists of classical gravitational waves. To answer (ii) we have to find a natural

mechanism that causes the black hole to classically emit these waves into the bulk.

Observe that the black hole is moving along with the brane in AdS5. The brane is

a domain wall that is accelerating away from the center of AdS. So the black hole

also accelerates, and as a consequence it must emit gravitational waves. This means

that the bulk dual of Hawking radiation is gravitational bremsstrahlung. It would be

interesting to substantiate this qualitative idea with a more detailed analysis of the

relevant classical bulk physics. This will also shed light on the important question (iii),

which for now is left open. Note that the bulk solution must be time asymmetric, in

contrast to the lower-dimensional solutions of [14], where the black hole accelerates

eternally and the net flux of radiation vanishes.

We note in closing that working on the bulk side, one should be able to reproduce

the black hole luminosity L ∼ ~g∗/(G4M)2 by solving classical 5D equations. Indeed,

viewing it as a classical effect clarifies why this emission rate is so huge. This large

bremsstrahlung emission must not be confused with Hawking radiation into the bulk,

which is a much smaller effect, and which from the point of view of the 3+1 theory comes

from subleading, non-planar diagrams. The bulk view would also allow one to follow

the evolution of the evaporating black hole beyond the threshold rH ∼ L, M ∼ √g∗M4

at which the description in terms of a 3 + 1 theory of gravity+CFT breaks down, even

down to M5 � M4, as we have been arguing above. A black hole of size rH � L

is approximated near the horizon by a five-dimensional, static Schwarzschild solution.

Classical radiation into the bulk, and therefore 3 + 1 Hawking radiation into CFT

modes, is suppressed for such light black holes.

An intuitive understanding of why this happens may be gained from tunneling
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suppression [48]. While large black holes are shaped like pancakes around the brane,

they extend to distances larger than the AdS radius L. Thus they couple to all the CFT

modes, including the lightest ones, with M4 couplings, without any suppressions. On

the other hand, while the small black holes are bulging away from the brane, they are

much smaller than the AdS radius, and from the perturbative point of view, they live

inside the RS2 ‘volcano’. Hence their classical couplings to all bulk graviton modes are

tunneling-suppressed in the sense of [48], and are exponentially weaker than M4. Thus

the radiation rate must go down significantly. Hence the light black holes evaporate,

although more slowly, via bulk Hawking radiation9. Since this picture for the evolution

of an evaporating black hole is based on specific properties of the UV extension provided

by the bulk theory, there is no reason why it should apply to situations that do not

have an AdS/CFT dual description.

6. Conclusions

We have proposed here a radical change of perspective on how to view black holes in

the context of AdS/CFT correspondence. The previous work on black holes within

the AdS/CFT framework has been aimed at understanding a D + 1-dimensional black

hole sitting at the center of AdSD+1 in terms of the quantum states of a CFT at the

boundary. In this case, the black hole radiates via quantum effects in the bulk, and

one expects to learn about the quantum properties of a black hole by studying its dual

boundary description.

Instead, we put the black hole itself in the dual theory extended with dynamical

gravity. On the bulk side, this is realized by putting the black hole on a brane in the

cutoff AdS bulk, which localizes dynamical gravity. Then we can study the quantum

properties of a D-dimensional black hole in terms of classical physics in the bulk. The

quantum Hawking radiation of CFT modes is described as the emission of gravitational

waves into the bulk, and the classical bulk point of view may lead to a better under-

standing of quantum black hole evaporation. Each of these two approaches prompts

different classes of questions, which can be naturally answered within these frameworks.

We have provided strong support for this new point of view with a detailed analysis

of the black hole solutions on a 2-brane in AdS4 and their dual 2 + 1 CFT+gravity

description. Our analysis has also revealed new features of the spectrum of states of

the 2 + 1 CFT coupled to 2 + 1 gravity, and has shown explicitly that quantum effects

can censor singularities. We have found that the main properties of the quantum

9This effect has been argued to be subdominant relative to Hawking emission of non-CFT modes
on the brane, in theories where there may be additional degrees of freedom stuck to the brane [49].
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censorship mechanism in 2 + 1 dimensions are in fact quite general, and should remain

valid outside of the context of AdS/CFT. The censorship is however amplified in the

presence of many CFT modes, and this appears to be the main requirement that makes

the quantum censor efficient.

In the context of the RS2 model in AdS5, we have been able to argue why an

asymptotically flat, static, regular black hole localized on the brane, could not be

found. We emphasize again that while we have been working in the context of AdS

braneworlds like RS2, which have proven to be a very useful tool to study black holes,

we expect that many of our results should naturally extend to any CFT+gravity theory,

even if a dual bulk description along the lines of RS2 does not exist.

There remain a number of open issues. We have given a qualitative argument for

why a black hole on a brane should emit classical gravitational waves, but it is still

unclear why this emission, which can be analyzed and understood in purely classical

terms, should project on the brane as a thermal flux of radiation. The problem belongs

to a class of connections between classical effects in the bulk and thermal effects in the

dual theory. The conventional AdS/CFT approach tried to understand how a state

of the CFT encodes the classical causal structure of the bulk black hole. The present

problem is quite different and could be an easier one, since we may have some hope of

analyzing the classical bulk physics involved in the radiation.

An aspect of our conjecture that we have only barely touched upon is the choice of

vacuum of the CFT. It would be natural to expect that each consistent choice should

be associated to a bulk AdS solution. We have discussed a possible example in the

case of BTZ black holes. They admit both the M = −1/8G3 and M = 0 states as

consistent vacua, which we have conjectured to correspond to the two branches of black

holes localized on the brane. In 3+1 dimensions we also had alternative vacua, but we

have only examined the physics related to the Unruh vacuum, which models the late

time behavior of the collapse. The bulk dual of a black hole with backreaction from

the Hartle-Hawking state would be quite interesting as well: The asymptotic thermal

radiation is dual to a large black hole inside the AdS5 bulk. The motion of a brane in

this spacetime generates the radiation-dominated FRW evolution on the brane. Hence

the Hartle-Hawking state should be described in the dual bulk theory as a black hole

localized on a brane, which is itself moving in the background of a large bulk black hole

in the center of AdS5. The next-to-leading order corrections to the 2+1 asymptotically

flat black holes may lead to a similar picture. On the other hand, the Boulware state

should result in a null singularity that is localized on the brane. The static linearized

approximation in the RS2 model [1, 50] may then be interpreted as an approximation

of this solution. We believe that these questions merit further consideration and hope

to return to them in the future.
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