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Abstract

T -odd, CP -violating correlations of polarizations and momenta provide a promis-

ing testing ground for new physics beyond the standard model. We estimate the

contribution of the minimal supersymmetric extension of the standard model to

two such observables: in the production of t�t, we look for a term proportional

to Jt �
�
pq � pt

�
|where Jt is the polarization of the t quark and pq;t are the

momenta of the initial and �nal particles|and �nd that it is of the order of

10�2 � (�W =�). In the production of W+W�, we look for a term proportional

to EW �
�
pq � pW

� �
pq �EW

�
|where EW is the transverse polarization of W| to

�nd that it can be as large as 10�1 � (�W=�).
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1. Observables which, in a given cross section, are made out of an odd number

of momenta and polarizations change sign under time reversal.

If we assume that CPT invariance holds, such a T -odd correlation can arise

either because of �nal state interactions [1] or because of a violation of CP invari-

ance.

The former is a consequence of the unitarity of the S matrix and carries no new

dynamical information. It is a background that can be subtracted by taking the

di�erence between the process we are interested in and its CP conjugate [2]. This

way, the truly (that is, CP -odd) time-reversal-violating observable is isolated.

Such observables are negligible in the standard model|where the only possible

CP -odd source of such a T -odd correlation is in the Kobayashi-Maskawa quark-

mixing matrix, the e�ect of which is, however, suppressed by the unitarity of the

matrix itself|and, for this reason, they provide a promising testing ground for

physics beyond the standard model [3, 4, 5].

New physics may be unveiled either because some of the �nal states are made of

new particles or because of its e�ects in the radiative corrections to the amplitude

of the process. We follow this latter path and include one-loop corrections in the

framework of the minimal supersymmetric extension of the standard model [6].

This model is of interest here inasmuch as time reversal invariance can be violated

to a larger degree than in the standard model because of the presence of coupling

strengths that cannot be made real by a suitable rede�nition of the particle �elds.

We consider two processes which should give rise to measurable T -odd and CP -

violating observables.

The �rst one is the production of t�t pairs in hadron q�q collisions and in e+e�

annihilation:

e�e! t�t ; (1)

in which we look for terms in the cross section proportional to

Jt � (k� p)

jk� pj ; (2)

where Jt is the polarization vector of one of the produced t quarks, k and p are two

vectors characterizing the scattering plane|hereafter chosen to be k, the center-of-

mass momentum of the colliding pair, and p, the momentum of the �nal t quark.

Because the vector product k� p de�nes a vector perpendicular to the production
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plane, only the component of the t quark polarization that is transverse to this

plane can appear in the correlation (2); therefore, Jt will denote such transverse

polarization only.

As pointed out before, a transverse polarization of the t-quarks can be generated

either in interactions between the �nal-state fermions, through the imaginary part of

the loop integrals the amplitude|the so-called unitarity background|or by CP -

violating phases in the Lagrangian. After a CP -transformation, the transverse

polarization of the t quark and the �t anti-quark which originate in the �nal-state

interactions should be equal while they should point in opposite directions in the

case where they arise from CP -violating pieces in the Lagrangian.

Let us then suppose that we can measure the transverse polarizations of t and

�t in future collider experiments, using, for instance, the method discussed in [3].

A comparison between the two transverse polarizations would make it possible to

remove the unitarity background because any di�erence between them would imply

CP -violation in the t�t production process.

It is also possible to single out the T -odd, CP -violating contribution by a direct

estimate of the degree of transverse polarization due to �nal-state interactions. The

QCD one-loop contribution, governing the leading behavior in the standard model,

has been computed in [3]. An enhancement of the predicted polarization e�ect

would then be a signal of new physics.

The chiral structure of the supersymmetric amplitude is such that (2) is pro-

portional to the mass of the t quark. It is for this reason that the t quark, with its

large mass [7], is such a good candidate for observing a non-vanishing value of (2).

For mt in the present experimental range, and supersymmetric masses around 200

GeV, the supersymmetrical correction is of one order of magnitude smaller than a

one-loop radiative correction within the standard model, which we can take to be

typically of the order of 10�1 � (�W=�), where �W � g2=4�.

The second process that we consider is the production of W+W� pairs in

q�q! W+W� or e�e! W+W� ; (3)

in which we estimate the term in the cross section proportional to the correlation

EW � (k� p)

jk� pj
k �EW

jkj ; (4)

where EW is the transverse polarization of one of the �nal vector bosons; as before,

k and p are, respectively, the center-of-mass momentum of the colliding pair and
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of the W's. EW has two components, one parallel to the reaction plane which gives

a non-vanishing contribution to the scalar product with k, and one transverse to

such a plane and appearing in the triple product in (4). These two components of

the transverse polarization of W must both be di�erent from zero in order for the

observable (4) to be measurable.

As in the case of the t quarks, the correlation (4) takes opposite signs for the

polarization of, respectively,W+ and W� if it originates from CP -violating phases

in the Lagrangian and the same sign if it comes from the unitarity background.

The T -odd correlation (4) arising from the CP -violating part of the Lagrangian

turns out to be of the same order as the previous one in the t�t production|except

in a narrow range of scattering angles in the backward direction, where it grows

to become of the same order of a one-loop radiative correction within the standard

model.

Both the t quark and the W boson will become copiously available as new ac-

celerators (the LEPII, LHC and SSC) come into operation. This will make possible

not only a detailed study of their properties, but also an e�cient test of the possible

non-vanishing of the T -odd correlations (2) and (4).

2. Let us �rst �x our notation by writing those parts of the minimal supersymmetric

extension of the standard model we need.

The imaginary phases relevant for us arise from the mixing matrices of the

neutralinos and the charginos. The neutralino mass eigenstates �0i are related to

the weak eigenstates

 0

j =
�fW 3; eB;fH0

1
;fH0

2

�
(5)

through the neutralino mixing matrix N :

�0iL = Nij  
0

jL ; i = 1; 2; 3; 4 ; (6)

where the subscript L denotes the left-handed components of the �eld. The chargino

mass eigenstates !�i are de�ned by

!+

i = Vij 
+

j and !�i = Uij 
�

j ; i = 1; 2 ; (7)

where

 +

j =
�
�i�+;fH+

2

�
and  �j =

�
�i��;fH�

1

�
(8)
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are the two-component weak interacting spinor �elds of the winos �� and the

charged higgsinos fH�

1 and fH+

2 . Here, V and U are two-by-two unitary matrices

that diagonalize the wino-higgsino mass matrix. Both the neutralino N and the

chargino V and U mixing matrices are determined by the supersymmetry breaking

mechanism and are in general complex numbers [6] that cannot be made real by a

rede�nition of the phases of the spinor �elds. These are the only terms we are going

to consider. The additional phases that could come from the ordinary Higgses give

no contribution to the correlations we are interested in.

We can construct the diagrams of Figs. 1 and 2 by means of the supersymmetric

Lagrangian [6]. In the computation we present in this letter, we make use, in

addition to those of the standard model, of only the following �ve terms:

L~t~tV i = igiV
i
�

�
�iL~t

�

L

$

@� ~tL + �iR~t
�

R

$

@� ~tR

�
; (9)

LZ ~�+ ~�� = gZZ�
X
i;j

�~�
+

i 
�
h
QL
ij(1� 5) +QR

ij(1 + 5)
i
~�+j + h:c: ; (10)

L ~�+ ~�� = �eA�
�~�
+

i 
� ~�+j �ij (11)

LW� ~�+ ~�0 =
g

2
W�

X
k;i

�~�
0

k
�
h
OL
ki(1 � 5) +OR

ki(1 + 5)
i
~�+i + h:c: ; (12)

L~tt~�0 =
g

2

X
k

�
~tL�t

�
fk(1 + 5) +

mt

MW

N�

k4(1 � 5)

�

+ ~tR�t

�
hk(1 � 5) +

mt

MW

Nk4(1 + 5)

��
~�0k + h:c: : (13)

A few comments on the notation are in order. The index i in (9) keeps track of

whether the scalar-quark vertex is coupled to  or Z. We have

g = g sin �W = e ; gZ = g=2 cos �W ;

�

L = �


R = 2=3 ;

�ZL = 1 � (4=3) sin2 �W ; �ZR = �(4=3) sin2 �W : (14)

Moreover, in (10)-(13) we have used the notation

fk � � 1p
2

�
Nk2 +

1

3
tan �WNk1

�
; (15)

hk � 2
p
2

3
tan �WN

�

k2 ; (16)

OL
ki � � 1p

2
Nk4V

�

i2 +Nk1V
�

i1 ; QL
ij � �Vi1V �

j1 �
1

2
Vi2V

�

j2 + sin2 �W ;

OR
ki � � 1p

2
N�

k3Ui2 +N�

k1Ui1 ; QR
ij � �Ui1U�

j1 �
1

2
Ui2U

�

j2 + sin2 �W :
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In (9) and below, ~�+i = (!+

i ; �!
�

i ) are four-component spinors, ~�+ci are their charge-

conjugate states, t is the quark �eld and ~tL;R are its scalar left- and right-handed

partners.

3. We turn now to estimating the observable (2) in the production of t�t in the

minimal supersymmetrical extension of the standard model.

The term in the t�tV i vertices which does not ip the helicities of t and �t and is

CP -violating is of the form:

�u(p)�i�u(�p0) = igi�u(p) P� 5u(�p0)Bi i = ; Z ; (17)

where p and p0 are the momenta of, respectively, t and �t and P = p � p0. The real

functions Bi depend on the speci�c diagram one considers.

There are �ve types of one-loop supersymmetric diagrams that can give a contri-

bution; they are depicted in Fig. 1. As we do not commit ourselves to any de�nite

scheme for the breaking of supersymmetry, and therefore leave arbitrary mixing

parameters in the Lagrangian, it is not important to compute all of them. Here we

consider the contribution of diagonal terms of the supersymmetric Lagrangian. In

this case, only the two diagrams of Figs. 1(a) and (b), in which scalar (left and

right handed) quarks are exchanged, give a contribution. The other diagrams have

no CP -violating phase. These diagrams of Figs. 1(a) and (b) assure the required

helicities of t and �t in the amplitude through the Higgsino coupling in (13). The

CP -violating phases appear entirely via the neutralino mixing matrix.

We thus obtain the following expression for Bi:

Bi = �g2 mt

MW

fm0

k

h
�Li Im(N4kfk)(I

L
k + 2aLk ) + �Ri Im(N4kh

�

k)(I
R
k + 2aRk )

i
: (18)

In eq. (18), IL;Rk and aL;Rk are de�ned by means of the loop integrals as follows:

I
L;R
k =

Z
d4k

(2�)4
1

k2 � (fmk
0)

2

1

(k � p0)2 � (fmL;R)2
1

(k + p)2 � (fmL;R)2
; (19)

and

(I�)
L;R
k =

Z
d4k

(2�)4
k�

1

k2 � (fmk
0)

2

1

(k � p0)2 � (fmL;R)2
1

(k + p)2 � (fmL;R)2

= aL;Rk P� + bL;Rk q� ; (20)
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where q = p + p0, fmL;R and fmk
0
are the masses of ~tL;R and �0k, respectively.

The matrix element for the process contains, beside the tree-level standard model

term, the following CP -violating amplitude:

i N
"
e2

s
�u(�k0)�u(k) �u(p) iP �B5u(�p0)

+
g2Z

s�M2
Z

�u(�k0)� (cV + cA5)u(�k) �u(p) iP �BZ5u(�p0)
#

� (2�)4�(p+ p0 � k � k0) : (21)

In eq. (21), cV � �(1=2) + 2 sin2 �W and cA � 1=2, N is the usual factor

containing the normalization of the states.

The cross section can now be computed. It contains the standard model tree-

level part d�t�t0 =d
 [8] together with the observable (2) which arises in the interfer-

ence with the one-loop supersymmetric amplitude (21). It can be written as

d�

d

=

d�t�t
0

d


 
1 +Dt

(J � p � k)

jp� kj
!
: (22)

Here J is the unit polarization vector perpendicular to the production plane, de�ned

by Jt = Dt � J. The degree of transverse polarization Dt, which gives the magnitude

of the T -odd, CP -violating e�ect we are after is in evidence. Our computation

yields:

Dt = �
�
1

T0
�p

s� sin# tan2 �W
s

s �M2

Z

(23)

�
(
cA

"
gV B +

 
2

3
� cV gV

2

1

sin2 �W cos2 �W

s

s�M2
Z

!
BZ

#

�� cos #gA
"
cV B �

 
c2V + c2A

4

1

sin2 �W cos2 �W

s

s�M2

Z

!
BZ

#)
;

where

T0 = 16s
d�t�t0 =d


�2W�
: (24)

In (24) gV = 1=2 � (4=3) sin2 �W , gA = 1=2 and � = jpj=E. The scattering angle is
denoted by #.

Even though (24) contains the result we are after, the presence in it of too

many parameters, coming from the neutralino-mixing matrix elements Nki and the

masses of the super particles in the loop, produces a rather cumbersome expression
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not suitable for numerical estimates. To bring it into a more intelligible form,

one that will allow us to obtain a reliable estimate of the e�ect, we make some

simpli�cations.

First of all, we consider only one CP -violating phase, �CP , such as

ImNk4fk = ImNk4h
�

k '
1

2
sin �CP : (25)

Moreover, the masses of the left and right squarks can be taken as equal. By

the same token, all supersymmetrical masses can be assumed to be of the same

order, and their value denoted by fM . We are thus left with only two arbitrary

supersymmetric parameters: one CP -violating phase and one supersymmetricmass.

Moreover, even though expression (24) is correct both below and above the threshold

for production of super particles, we are more interested in the case in which no

superparticles are produced, i.e. we are restricted to the regime

2mt <
p
s < 2fM : (26)

Under these assumptions, the integrals (19) and (20) can be computed to yield

I
L;R
k = I � 1

4�2s
eI (27)

where

eI � Z
1

0

dx
1p
�
arctan

(1� v) (1� x)p
�

; (28)

and

� � (1 � v)
h
(1� x)2 � v(1� x) + u

i
: (29)

The two parameters

v � 4m2

t=s and u � 4fM2=s : (30)

are such that v < 1 and u > 1 because of (26).

Similarly,

a
L;R
k = a � 1

4�2s

�
�1

2
ea� ; (31)

where

ea � Z
1

0

dx
1� xp

�
arctan

(1� v) (1� x)p
�

; (32)
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Hence, we obtain that

Bi ' ��W
�

sin �CP
mtfMW

�
~M( eI � ea)

s

�iL + �iR
2

: (33)

The value of ~Bi determines the order of magnitude of the e�ect. By assuming

maximum CP -violation (sin �CP = 1), the e�ect can be made of the order of mag-

nitude of a one-loop radiative correction (the factor �W=�) times a factor mt=MW

coming from the helicity-ip in the supersymmetric coupling; a suppression factor

comes from ~I � ~a which contains the dependence on fM .

We have evaluated the integrals (28) and (32) numerically to obtain the curves

depicted in Figs. 3(a)-(c) for di�erent choices of
p
s, mt and fM .

Figs. 3(a)-(b) show that the size of Dt scales as mt=
fM , becoming larger for

larger energies. In Fig. 3(c) we have also included the case of energies above the

threshold for the production of the supersymmetrical particles to show that the Dt

becomes one order of magnitude larger.

In the kinematical regime (26), at
p
s = 130 GeV and for fM = 100� 200 GeV,

the e�ect is of order

10�2 �
�
�W

�

�
; (34)

for maximal CP violation and �0:9 � cos# � 0. It becomes smaller for larger

supersymmetric masses (� 1 TeV)

4. Our second example, the observable (4) in the production of W+W�, can be

estimated as follows.

The most general Lorentz invariant coupling of a neutral current �� to a pair of

conjugate vector bosons W+

� W
�

� can be parameterized in terms of ten form factors

fi (see, for instance, [9], the notation of which we follow). Four of them are CP -

violating and potentially give rise to the correlation (4). However, as we want to

obtain just an estimate of the e�ect, we only need consider one, for example, f6

that is de�ned by the WWV i vertices as follows:

�i� = ~gi f
i
6����� q

�E�
�
E
�
+ i = ; Z (35)

where ~g = e and ~gZ = e cot �W . In (35) the E� are the W�-polarization 4-vectors,

q = p + p0; p and p0 being the momenta of, respectively,W� and W+.
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There are four types of loop diagrams which can give a contribution to (35)|

see Fig. 2. However, as long as we are not committed to a particular model of

supersymmetry breaking, to obtain an estimate of DW , it is su�cient to consider

just a class of them, as we did for the diagrams for the t-quark production. We

take only the vertex diagrams, depicted in Figs. 2(a) and 2(b), neglecting the

box-diagrams.

Since both the supersymmetricmasses and the imaginary phases have no de�nite

value, we can also make the further simpli�cation of considering the case i = j. This

leaves us with only one diagram, the one in Fig. 2(a), the other one, in Fig. 2(b),

being real under these assumptions. The CP -violating phases of the remaining

diagram arise only from the ~�0k ~�
+

i W
�-vertex, the diagonal couplings QL

ii and Q
R
ii in

the ~�i ~�iV vertex being real.

A straightforward algebraic manipulation gives

fZ6 = � 2g2

cos2 �W

X
k;i

fm0

k
fmiIm(OL

kiO
R�
ki )(Q

L
ii +QR

ii)I
L
k

f

6 = 4 g2

X
k;i

fm0

k
fmiIm(OL

kiO
R�
ki )I

L
k ; (36)

where ILk is the same integral as the one de�ned in (19) but for the masses of the

squarks being replaced by the masses ~mi of the charginos.

Correlation (4) in the relevant cross section arises from the interference of the

one-loop amplitude

i N
�
g

s
�� �u(�k0)�u(k) (37)

+
gZ

s�M2
Z

�Z� �u(�k0)� (cV + cA5) u(k)

#
(2�)4�(p+ p0 � k � k0) ;

where �i are given by (35), with the tree-level amplitude corresponding to diagrams

with Z, photon and neutrino being exchanged.

We assume the polarization of W� to be �xed and we take it to be transverse

to the momentum of W�. In this case EW can be chosen to have space components

only, EW = (0; EW ). EW can be decomposed into two real polarization vectors: one

perpendicular to the momentum of W� and parallel to the reaction plane and the

other transverse to the reaction plane. In the center-of-mass system we have also

(EW � p) = 0 and (EW � q) = 0. This way, after summing over the polarizations of

the other vector boson W+, we obtain the dependence of the cross section on the
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transverse polarization of W�. It can be written in the form:

d�

d

=

d�W
+W�

0

d


 
1 +DW

(EW� � k� p)

jk� pj
EW� � k
jkj

!
; (38)

where the tree-level standard model contribution d�W
+W�

0 =d
 [10] has been factor-

ized out to put in evidence the T -odd, CP -violating coe�cient DW , which deter-

mines the magnitude of the e�ect.

This coe�cient is now

DW =
� sin#

C0

(
f

6 sin

2 �W

"
4s

M2
W

 
sin2 �W +

cV

2

s

s�M2
Z

!
� s

2t

 
1� 2t

M2
W

!#

+
1

2
fZ6

s

s�M2

Z

"
4s

M2

W

 
cV sin2 �W +

c2V + c2A
2

s

s�M2

Z

!

� s

2t
(cV � cA)

 
1� 2t

M2

W

!#)
; (39)

where

C0 = 16 s
d�W

+W�

0 =d


�2W�
; (40)

and

t =M2

W � s

2
(1� � cos #) : (41)

Again we have a complicated expression that we want to simplify. As we have

done in the previous case, we take the supersymmetric masses at about the same

values fM and assume a unique CP -violating phase:

Im(OL
kiO

R�
ki ) = sin �CP =2 ; (42)

as well as

QL
ii = QR

ii ' 1=2 : (43)

We consider the energy range below the threshold for the production of the

superparticles.

Under these assumptions we obtain the following expressions for f6 and fZ
6
:

f

6 =

�W

�
sin �CP

2 ~M2

s
eI (44)

fZ
6

= ��W
�

sin �CP
~M2

s cos2 �W
eI; (45)
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where the integral eI has already been de�ned in (28), except that now

v � 4M2

W =s : (46)

Here, as compared to the t�t-production, the only dependence on the mass of the

produced particles is in the loop integral ~I, because of the form of the supersym-

metric couplings.

We can now use eqs.(44), (45) and (39) to obtain an estimate of the e�ect. A

numerical evaluation of DW for the same choice of energies and supersymmetrical

mass as before is given in Figs. 4(a)-(b). This time,DW is very much independent of

the supersymmetric masses and smaller at larger energies (there is no enhancement

above the threshold for the production of the superparticles). For maximal CP

violation and at
p
s = 280 GeV, the size of DW in most of the backward direction

is about of the same order as the one of Dt discussed above. It, however, grows

quite steeply in the narrow region where 0:90 � cos# � 0:95 to become of the order

of

10�1 �
�
�W

�

�
: (47)

5. The two T -odd and CP -violating observables we have computed within the

minimal supersymmetric extension of the standard model turn out to be rather

large. They are of the same order of magnitude as, or only one order of magnitude

smaller than, a one-loop radiative correction within the standard model itself. They

may provide independent bounds on the supersymmetric parameters (for present

limits see, for example, [11]) and clues on new physics if they are measured and

found to be di�erent from zero.
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Fig. 1: The supersymmetric loop diagrams that give a contribution to the

T -odd, CP -violating observable in the production of t�t.

Fig. 2: The supersymmetric loop diagrams that give a contribution to the

T -odd, CP -violating observable in the production of W+W�.

Fig. 3: The T -violating coe�cient Dt in the production of t�t.

Fig. 4: The T -violating coe�cient DW in the production of W+W�.
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