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Abstract

We compute the two-loop QCD helicity amplitudes for the process ete™ — ¢gg. The amplitudes

are extracted in a scheme-independent manner from the coefficients appearing in the general tensorial
structure for this process. The tensor coefficients are derived from the Feynman graph amplitudes by
means of projectors, within the conventional dimensional regularization scheme. The actual calculation
of the loop integrals is then performed by reducing all of them to a small set of known master integrals.
The infrared pole structure of the renormalized helicity amplitudes agrees with the prediction made by
Catani using an infrared factorization formula. We use this formula to structure our results for the finite
part into terms arising from the expansion of the pole coefficients and a genuine finite remainder, which is
independent of the scheme used to define the helicity amplitudes. The analytic result for the finite parts
of the amplitudes is expressed in terms of one- and two-dimensional harmonic polylogarithms.
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1 Introduction

The three-jet production rate in electron—positron annihilation [1,2] and related event shape observables were
measured to a very high precision at LEP, where they were used in particular for the determination of the
strong coupling constant «;. At present, the error on the extraction of a from these data is dominated by
the uncertainty inherent in the theoretical next-to-leading order (NLO) calculation [3-7] of the jet observables
(see [8] for a review). The planned TESLA [9] linear eTe ™~ collider will allow precision QCD studies at energies
even higher than at LEP. Given the projected luminosity of TESLA, one again expects the experimental errors
to be well below the uncertainty of the NLO calculation.

The calculation of next-to-next-to-leading order (NNLO), i.e. O(a?), corrections to the three-jet rate in
ete™ annihilation has been considered as a highly important project for a long time [10]. In terms of matrix
elements, it requires the computation of three contributions: the tree level v* — 5 partons amplitudes [11-13],
the one-loop corrections to the v* — 4 partons amplitudes [14-17], and the two-loop (as well as the one-loop
times one-loop) corrections to the v* — 3 partons matrix elements. In a previous publication [18], we have
derived both the interference of the tree and two-loop matrix elements and the self-interference of the one-loop
amplitudes averaged over all external helicities. In the present work, we extend this calculation to compute
the two-loop helicity amplitudes for the process ete™ — gqg.

The most precisely measured observables related to ete™ — 3 jets are the jet production rate itself and
a number of event-shape variables. The calculation of these phenomenologically most relevant applications,
which also dominate the extraction of ag, at NNLO accuracy requires only the helicity averaged squared
matrix element at the two-loop level derived in [18]. Nevertheless, the helicity amplitudes presented here are
interesting for a number of reasons:

e Oriented event-shape observables, which measure the spatial orientation of the final-state jets relative
to the direction of the incoming beams require, even for unpolarized beams, the calculation of the
polarization tensor of the virtual photon mediating the interaction. This polarization tensor can be
recovered from the helicity amplitudes.

e Likewise, to determine the direction of the decay leptons in the crossed process, V' + 1 jet production
at unpolarized hadron colliders, it is necessary to compute the polarization tensor of the vector boson.

e Polarization of the beams is an important option for the future linear ete™ collider TESLA [9], thus
providing a direct measurement of event-shape observables in polarized eTe™ annihilation.

e NNLO predictions for (V + 1)-jet production at the RHIC polarized proton—proton collider and for
(2 + 1) jet production at a currently discussed polarized upgrade of the HERA collider do require the
calculation of the two-loop helicity amplitudes. These observables would then form part of a full NNLO
determination of the polarized parton distribution functions in the proton.

e The study of formal aspects of two-loop matrix elements, such as their collinear limits or their high
energy behaviour can be carried out more elegantly on the basis of the underlying helicity amplitudes.

Two-loop helicity amplitudes have up to now only been derived for 2 — 2 bosonic scattering processes
with all external legs on-shell: for gg — v [19], vy — v [20,21] and gg — gg [22,23]. The latter calculation
also confirmed earlier results for the squared two-loop gg — gg matrix element [24]. In the above calculations,
which were all carried out within dimensional regularization [25-27] with d = 4—2¢ space-time dimensions, two
different methods were used to access the helicity structure of the matrix element: explicit contraction with
the external polarization vectors [19,20, 22, 23] or projection onto the individual components of the Lorentz-
invariant decomposition of the amplitude [21]. Once these are applied to expose the helicity structure, one is
left with the task of computing a large number of two-loop integrals. Using integration-by-parts [27-29] and
Lorentz-invariance [30] identities, these can be reduced [31] to a small number of so-called master integrals,
which were derived for massless on-shell two-loop four-point functions in [32-37]. If an explicit contraction
with the external polarization vectors is performed, one also has to compute two-loop integrals over the (d—4)
dimensional subspace of loop momenta, which reduce however to simple vacuum diagrams [23]. For 2 — 2
scattering processes with external fermions and all external legs on-shell (ete™ — ete™, ¢4 — ¢'T, 97 — qq,



qq — 99, q@ — g7 and q@ — ), only the squared, helicity-averaged two-loop matrix elements were computed
so far [38-41].

The method employed here to extract the two-loop helicity amplitudes for eTe™ — ggg is similar to the
approach of [21] by applying projections on all components of the Lorentz-invariant decomposition of the
amplitude. Using this approach, the corresponding one-loop helicity amplitudes were derived in [6]. The
master integrals relevant in the present context are massless four-point functions with three legs on-shell and
one leg off-shell. The complete set of these two-loop integrals was computed in [42], while earlier partial results
had been presented in [43,44]'. The master integrals in [42] are expressed in terms of two-dimensional harmonic
polylogarithms (2dHPLs). The 2dHPLs are an extension of the harmonic polylogarithms (HPLs) of [47]. All
HPLs and 2dHPLs that appear in the divergent parts of the planar master integrals have weight < 3 and can
be related to the more commonly known Nielsen generalized polylogarithms [48,49] of suitable arguments.
The functions of weight 4 appearing in the finite parts of the master integrals can all be represented, by
their very definition, as one-dimensional integrals over 2dHPLs of weight 3, hence of Nielsen’s generalized
polylogarithms of suitable arguments according to the above remark. A table with all relations is included
in the appendix of [42]. Numerical routines providing an evaluation of the HPLs [50] and 2dHPLs [51] are
available.

After carrying out ultraviolet renormalization of the amplitudes in the MS scheme, one is left with poles
which are purely of infrared origin. The infrared pole structure of the amplitudes can be predicted using
Catani’s infrared factorization formula [52]. We use this formalism to present the infrared poles and the finite
parts of the helicity amplitudes in a compact form.

This paper is structured as follows: in Section 2, we outline the calculational method used to derive the
helicity amplitudes and discuss the techniques used to extract the ultraviolet and infrared pole structure.
We also elaborate on the relation to previous work. The two-loop helicity amplitudes are computed (in the
Weyl-van der Waerden formalism, which is briefly described in the Appendix) in Section 3. Finally, Section 4
contains a discussion of the results and conclusions.

2 Method

2.1 Notation

We consider the production of a quark—antiquark—gluon system in electron—positron annihilation,

e"(ps) + e (ps) = v*(pa) — q(p1) + a(p2) + g(p3) - (2.1)

It is convenient to define the invariants

s12 = (p1 +p2)?, s13 = (p1 +p3)?, 803 = (p2 +p3)? (2.2)
which fulfil
Pi= (1 +p2+p3)° = s12 + 513 + 523 = s123 (2.3)

as well as the dimensionless invariants

T = 512/8123 ) Y= 813/5123 s z = 823/5123 , (24)

which satisfy z +y + z = 1.
The renormalized amplitude | M) can be written as

M) =V*HS,(q:9:4) » (2.5)

INote that an alternative approach avoiding the need to use the integration-by-parts and Lorentz-invariance identities to
reduce the integrals appearing in the Feynman diagrams to a basis set has recently been proposed [45,46]. This method relies on
obtaining analytic expressions for the basic topologies with arbitrary powers of the propagators and arbitrary dimensions, which
can often be found in terms of nested sums involving I'-functions. The I'-functions can be directly expanded in e and the nested
sums related to multiple polylogarithms.




where V* represents the lepton current and S,, denotes the hadron current. In a previous paper [18], we have
considered the unpolarized decay process

7" (pa) — a(p1) + a(p2) + 9(ps3) - (2.6)

for which the amplitude is obtained from Eq. (2.5) by replacing the lepton current by the polarization vector
of the virtual photon €}. The hadron current may be perturbatively decomposed as

s a _ Qg _ Qg
Su(g; 9;4) = Viraeq/Amag T}, (3,20)@;9;61) + (g) SV(g;9:9) + (g) §P(g;9:9) + O(a )) , (27

where e, denotes the quark charge, a is the adjoint colour index for the gluon and ¢ and j are the colour
indices for quark and antiquark. ag is the QCD coupling constant at the renormalization scale y, and the
S,(f) are the i-loop contributions to the renormalized amplitude. Renormalization of ultraviolet divergences is
performed in the MS scheme.

2.2 The general tensor

The most general tensor structure for the hadron current S, (g¢; g; 4) is

S.(q:9:9)

I
Sl

p1)p3u(p2) (Ar1€3.p1 p1y + A12€3.p1 P2y + A13€3.01 P3y)
p1)pP3u(p2) (A21€3.p2 p1yu + Az2€3.p2 P2y + A23€3.D2 P3y)
)
)

Sl

P1)Yuu(p2) (Bi€e3.p1 + Baes.ps)

w(p1)¢au(p2) (Cipip + Co2p2u + Cspsy)

1u(p1)¢sPsuu(p2)

Doti(p1)vupsfsu(p2) (2.8)

where the constraint e3 - p3 = 0 has been applied. All coefficients are functions of s13, so3 and si23. The
above tensor structure is a priori d-dimensional, since the dimensionality of the external states has not yet
been specified. The hadron current is conserved and satisfies

Su(:9:0) i =0 (2.9)

I

(
(
(
u(

+ 4+ + 4+ +
b

it must also obey the QCD Ward identity when the gluon polarization vector €3 is replaced with the gluon
momentum,

Su(4;9;9) (€3 — p3) = 0. (2.10)

These constraints yield relations amongst the 13 distinct tensor structures and applying these identities gives
the gauge-invariant form of the tensor,

Su(¢:9:9) = Aq1(s13, 523, 5123)T11u + A12(513, 523, 5123) T124 + A13(513, 523, 5123)T134
+  Azi(s13,523,5123) D21, + A22(513, 523, S123) T2, + A23(513, 523, 5123)T23,
+ B(s13, S23, 8123)Tm (2.11)

where A;; and B are gauge-independent functions and the tensor structures 77, and T}, are given by

S S
Ty, = u(p1)psu(p2)es-pipi, — %ﬂ(pl)yfzwpz)pm + %ﬂ(pl)%ﬁﬂuwpz% (2.12)
S S
Toy, = u(p1)psu(p2)es-papr, — SSQ(P1)¢3U(p2)PJM+%Q(Pl)'yu}63¢3u(p2)v (2.13)
1
T, = 5923 ( u(p1) Yl (p2)es.pr + 2“(?1)%%% (P2)>
1
— 813 ( pl Y p2 €3.p2 + 2U(p1)%153¢3u(p2)> (2-14)



Each of the tensor structures satisfies both current conservation and the QCD Ward identity. The coefficients
are further related by symmetry under the interchange of the quark and antiquark,

A21(S13752375123) = —A12(823,813,8123),
Ago(s13, 823, 5123) = —A11(8s23,513, 5123),
Az3(s13, 523, 5123) = —Ai13(823,513, 5123),
B(s13,523,5123) = DB(s23,513,5123). (2.15)

2.3 Projectors for the tensor coefficients

The coefficients A;; and B may be easily extracted from a Feynman diagram calculation, using projectors
such that

Z P(X) €4Su(q;9:7) = X (s13, 523, 5123). (2.16)

spins

The explicit forms for the seven projectors in d space-time dimensions are,

(s235123d + s13512(d — 2)) .+
A = 5 T *
P(A11) 553,52, (d — 3)s125 11 €4

_ (s13+523)(d = 2)
25%35%2 (d - 3)8123

sz S €y

 ((s23 + s12)d + 2813) 4 o (s235123(d — 2) + s13512(d — 4))TT et
25128{’3 (d — 3)8123 13 4 25238%25%35123 (d — 3) 21 4

(513 +825)([d=4) 14 n (s23 +512)(d — 4)

+ . TT . 6*
2(d — 3)8%28123813823 22 4 28238128%38123 (d — 3) 23 4
1
S Y
2513575 (d — 3) !
(s13 + s23)(d — 2) T« (d — 2)(s23512(d — 4) + s138123(d — 2)) s
P(A = - T/, - e+ T, €
( 12) QS%SS%Q(CZ — 3)8123 1 4 28%35%2823@[ — 3)8123(d — 4) 12 4
B (d—2)(s13 + s12) Th . e " (D —6)(d—2)(s13 + s23) — 4812)TJr e
28%3812523(d — 3)5123 13 4 2(d — 4)5%28135238123(d — 3) 21 4
~ (s23812(d — 4) + s135125(d — 2>)TT et (2523 + (513 + 512)(d — 2>)TT e
28%28138%3 (d — 3)8123 22 4 28128138%38123 (d — 3) 23 4
d—2
( ) TT : 627

2(d — 4)s25513823(d — 3)

((s23 + s12)d + 2s13) X

P(A1z) = - 2512505 (d — 3)5123 T1T1 "€y

(s13523(d — 2) + s125123d)
25755125235123(d — 3)
(513 4 s12)(d — 4)

25125135235123(d — 3)

1

_ (d —2)(s13 + s512)
25%5512893(d — 3)s123
((512 + s523)(d —2) +2813) . 4,
25%,512523(d — 3)s123 ' T
(513 + s12) (523 + 512)(d — 4)
25255125355123(d — 3)

Tsz "€

TIT3 ey +

T2T2'€Z_

T2T3 “€)

T €
+28238%3512(d - 3) 4
(s23512(d — 2) + s13512(d —4)) ¢ . | (—4s12+ (s13 +8523)(D —6)(d —2)) + .
P(A = - T, e + T/, €
( 21) 28%38%2823 (d — 3)8123 1 4 2(d — 4)8%28138238123 (d — 3) 12 4
S23 + S12)(d — 2) + 2s13) o (d—2)(s235123(d — 2) + s13512(d — 4)) N
( T1T3 ceqt ) ( T2T1 €y

25%25135338123 (d — 3) (d — 4)

(523 + 512)(d — 2) T
23 " €4

28%3512823@[ — 3)8123

(513 + s23)(d — 2)

a 28%28335123 (d - 3)
(d—2)

(d — 4)8%2813823(d - 3)

T, € —
22 4 28135%3812 (d — 3)8123

+2 TT-eZ,



(513 + 523)(d — 4) «  (523812(d —4) + 5135123(d — 2)) »
P(A22) = 2513525 523(d — 3)S123 TlTl e 2525513535 (d — 3)s123 TlTQ "4
(513 4 s12)(d — 4) Tt e (s13 +523)(d—2) 4
28138%3812(61 — 3)8123 13 4 28%28338123(61 — 3) 21 4
(s23s12(d — 2) + s135123d) (s13d + s12d + 2523)
2535575 (d — 3)s123 25128555123(d — 3)
1
+25%35%2(d -3)
(s23 + s12)(d — 4)

(Az23) 25235125%38123@—3) e

Tsz €) —

Tg:s "€

TT'EZL
(2523 + (513 + 512)(d = 2)) . 4

28135%3812(d - 3)8123 12 €
_ (513 + s12)(s23 + 512)(d — 4) Th e (523 + 512)(d — 2)
28%38128%38123(d - 3) 13 4 28138%3812(61 - 3)8123

((s13 + s12)d + 2523)

T
Ty - €

: d — 2) 4 s125123d)
B Th e (s13523( Th L e
25128335123(d — 3) 22 €4 * 28138128335123(d — 3) 23 €
J— . 6
28%3813512(d — 3) 4
1 (d—2) 1
PB) = ——— _ _7f . T e +
(B) 2(d —3)s3ys3, 1t 2(d — 4)s3ys13503(d —3) 12 1T 2s93519(d — 3)s2,
(d—2) d 1 i 1
+ T e+ =T €5 —
2(d — 4)s2,513503(d — 3) 24 * 253,575(d — 3) " 22 1 2s13819(d — 3)s25
1
+ T . e,
Q(d— 4)8%2813823 4

2.4 The perturbative expansion of the tensor coefficients

Each of the unrenormalized coefficients A;; and B has a perturbative expansion of the form

2
AP = Virae,/Ara, TS [Ag?}’“u (52) A0+ (52) 4f™ +(’)(oz§)} ,

2
B _ \/meq\/m T?j [B(O),un+ (;_S) B(1)7un+ (%) B(Q)’un-i-O(Oég)] 7
m ™

where the dependence on (s13, S23, S123) is implicit. At tree level,

(0),un
Ay (513,803, 8123) = 0,
2
0),un _
B (513,523, 5123) = .
513523

(2.18)

(2.19)

(2.20)

The one-loop contributions can be written in terms of the one-loop box integral in d = 6 — 2¢ dimensions,

Box5(sj, Sik, siji), and the one-loop bubble, Bub(s;;), as follows:

(1),un
A7 (513,823, S123) =

(d—4) (d—4)
N{——F8B _ B _B
( 2(813 I 812)813 Ub(5123) 2812813 [ ub(Slg) ub(5123)]
((d - 2)823812 + (d — 4)823813 —+ 4812(812 + 813))
B Bub — Bub
2512813(s13 + 512)2 [Bub(s23) — Bub(si23)]

—4)(4 -2
—(d Sz + (d Js23) BOX6(813752375123)>

4512513



1 (d—4)
+N (2(— Bub(slgg) +

Bub — Bub
S13 + S12)S13 (Bub(saz) whloizs)

252,
(s12 + $13)(dsa3 + 4513) + 2823513
2(s13 + s12)28%3
d—4)(d—6
Ld-1)d-0)
4513

[Bub(s23) — Bub(s123)]

(d — 2)(d823 + 4813)

6
Box”(s12, 813, 5123) + 5
4s73

Box’(s12, 523, 8123)) ) (2.21)

(1),un _
Ajy7 (513,523, 8123) =

(d —10) ((d—10)s13 — 4s12)
" (‘m [Bub(sia) = Bubsuan)) = 2 s ¥ o) (D ub(s22) — Buboaaa)]

A(d — 4)s15 — (d—2)(d — 10
= o= =2 ﬁw>Bm%ﬁ&@&&%0
512513

1{(d-2) ((d —2)s12 + 2(d — 6)s23)
— Bub — Bub
+N (2823813 [Bub(s12) ub(s1za)] + 2593512(523 + S12)

(d — 6)(812 + 2513)

2512513(513 + 512)

+ ((d —2)%s12513 + 4(d — 4)s12523 + 2(d — 4)(d — 6)s13523)
4512513523

— -2 2(d -4
(d—6)((d 4)312 +2(d — 4)s13) BOX6(5127523,8123)>7 (2.22)
512513

[Bub(s13) — Bub(s123)]

[Bub(s23) — Bub(s123)]

Box®(s19, 513, 5123)

_|_

(1),un
Ajg" 7 (513, 523, S123) =

(d—6) (d — 4)(d — 6)
N(m [Bub(saz) — Bub(si23)] + B Te— BOX6(513, 595, 8123)>

1 (d—4) (d—4)
t§ <_ﬁ Bub(sias) = 55y [BuP(s13) — Bublaraa)]

N (4812835 — ds12(s13 + 523)% — 2(d — 2)s13523(513 + 523))
2(s23 + 513)2575523
(2(d — 3)s13 + ds12)
2513(s13 + s12)
d—2)(ds12 +2(d —4)s
( )( 12432 ( )513) B0X6(512,823,8123)>, (2.23)
13

[Bub(s12) — Bub(si23)]

[Bub(s3) — Bub(s123)] — (d— 4)((61;:2112 + 4593)

Box®(s12, 513, 5123)

BW (515, 503, 5123) =
d?> —3d+4
N| —— Bub
(4(d — 4)813823 v (8123)
(4(d — 3)s12(s12 + s23) + (d — 4)(d — 7)s23513)
2512523(S23 + s12)s13(d — 4)

n (4(d - 3)8%2 -+ (d - 2)(d - 7)813823)

8512513523

+

[Bub(s13) — Bub(si23)]

Box’(s13, 523, 5123))

(16 — 5d)

+ R S A
4(d — 4)813823

1 ((7d—16—d2)

L (d=16=d7) oy
N\ D@ Dsrgngs DUP(s128) +

[Bub(s12) — Bub(s123)]



 (s12 4+ (d —6)s23)
2(s23 + $12) 823512

A(d — d—4)(d — 6)su: d—2 :
~ (4(d = 3)s23512 + ( )(d —6)s13523 4 ( )s12513) Box6(512,513,5123)>
4512513523

+{513 — 523}. (2.24)

Explicit expansions of the one-loop integrals around ¢ ~ 0 in terms of HPLs and 2dHPLs are listed in
Appendix A of [18].

Similarly, the unrenormalized two-loop A(IQJ)’un and B coefficients were obtained analytically (making
extensive use of the computer algebra programs MAPLE [53], FORM2 [54] and FORM3 [55], where the latter
two are particularly well suited for handling the large-size expressions arising at intermediate stages of the
calculation) in terms of a basis set of two-loop master integrals. This basis set comprises 14 planar topologies
and 5 non-planar topologies. Five of the topologies require more than one master integral, so that in total
24 master integrals are needed. A more detailed discussion can be found in Ref. [18]. However, we note that
Laurent expansions for each of these master integrals have been derived in [42] by solving differential equations
for the master integrals (equations that are differential with respect to the momentum scales involved in the
diagram). The e-expansions of A(Q)’un and B()"" can therefore be obtained by directly substituting the
e-expansions of the individual master integrals.

[Bub(s13) — Bub(sia3)]

2.5 Relation to previous work

We have considered the case where the correlations with the lepton current are ignored in a previous paper [18].
In this instance, the squared amplitude for the process v* — ¢gg, summed over spins, colours and quark
flavours, was denoted by

The perturbative expansion of 7 (x,y, z) at renormalization scale u? = q2 = S103 reads:
T(xz,y,2) = 167 aZe Qg T (z,y,2) + M T (z,y, 2)
Y ) ) ) 27T ) )
as(QQ) (6) 30,2
where
) O A y 2\ 20-y—z) —2eyz
TO@y,2) = (MOMD)+ (MM, (2:28)
TOW,y2) = (MOMD)+ (MOIME) + (MO M), (229)

where V = N2? — 1, with N the number of colours. 7™ (z,y, z) was first derived in [3,4] through to O(e")
while an explicit expression for it to all orders in € was given in [6]. The contribution to 7% (z,y, z) from the
interference of two-loop and tree diagrams

TERXD (1 g 2) = (MO|MD) 4+ (MO|MO) | (2.30)
as well as the one-loop self-interference
T(ﬁ,[lxl])(x’% 2) = <M(1)|M(1)> (2.31)

were first derived in [18].



It is straightforward to obtain the interference of the tree and i-loop amplitudes in terms of the tensor
coefficients, Ary and B. We find

(MO MOy =

|4 i
B {2(1 —¢€) ((s125123 + S12513 + S13523) — €(S13 + S23) (812 + $13)) Agl)(8137 523,5123)

+ (2(512 + 823)2 —2¢ (5123523 + (s12 + 523)2) + 262(813 + 523)(s12 + 523)) AS (513,523, 5123)
+ 2 (523 — €(513 + 523)) (5123 — €(513 + 523)) Aﬁ?(slg, 523,5123)

2 2 2 2 2\ n(i
+ 2 (573 + S35 + 25125123 — 2€(8793 — S12513 — S12523 — S13523) + € (513 + S23)°) BW(s13, 523, 5123)

+{p1 = pz}}- (2.32)

The above relation holds for the unrenormalized as well as for the renormalized matrix element, involving
the appropriate unrenormalized or renormalized tensor coefficients respectively. Similar, but more lengthy,
expressions can easily be obtained for the interference of i- and j-loop amplitudes. We have checked that
inserting the expressions for A(Iz} and B® into Eq. (2.32) reproduces our earlier results [18] at the one- and
two-loop level both at the master integral level and after making an expansion in e.

2.6 Ultraviolet renormalization

The renormalization of the matrix element is carried out by replacing the bare coupling oy with the renor-
malized coupling oy = as(p?), evaluated at the renormalization scale p?

2
eor o 12 (52) (- 50) () v b -

where
Se = (4m)e™ with Euler constant v = 0.5772. ..

and p3 is the mass parameter introduced in dimensional regularization [25-27] to maintain a dimensionless
coupling in the bare QCD Lagrangian density; 5y and (31 are the first two coefficients of the QCD S-function:

o - MCa—ATeNe 17C% —10CATr Ny — 6CxTrNp | (230
6 6
with the QCD colour factors
Ca=N C _ N Th = (2.35)
AT FT N B '

We denote the i-loop contribution to the unrenormalized coefficients by Ay}’un and B(®)"™ using the same
normalization as for the decomposition of the renormalized amplitude (2.7); the dependence on (s13, 23, S123)

is always understood implicitly. The renormalized coefficients are then obtained as

A = o
AY = st
AR = seag - Shsoag, (2.36)
and
BO) B(O)ﬂm7



B(l) _ S*lB(l),un . @B(O),un
€ 2¢

)

2
B(Z) _ SE_QB(Q)’un . 32_66056—13(1),un . <% . %) B(O),un. (237)

For the remainder of this paper we will set the renormalization scale ;2 = ¢2. The full scale dependence
of the tensor coefficients is given by

2 2\ 2 2
ViraegVaras T { (%) Aglj) + (%) [A%) + 25014%) In (l(;_Q) ] + (’)(ozg)},

/ 2 2
draegvA4Tos ng {B(O) + (OéSQ(H )) [B(l) +ﬁoB(0) In (u_z)]
T q

2
i (CVS(,“Q)) {B(Q) + (2503(1) + 513(0)) In <Z_22> + ﬂ(Q)B(O) In2 <M—22) ] + O(a‘g)}. (2.38)

21 q

Ay

B

2.7 Infrared behaviour of the tensor coefficients

After performing ultraviolet renormalization, the amplitudes still contain singularities, which are of infrared
origin and will be analytically cancelled by those occurring in radiative processes of the same order. Catani [52]
has shown how to organize the infrared pole structure of the one- and two-loop contributions renormalized
in the MS scheme in terms of the tree and renormalized one-loop amplitudes. The same procedure applies to
the tensor coefficients. In particular, the infrared behaviour of the one-loop coefficients is given by

(1) (1),finit
AIJ - AIJ ev

B — W ()BO 4 ph)fnite (2.39)

while the two-loop singularity structure is

2 2),finite
AT = IO AT
1 Bo _e, L(1=2¢) (Bo
B(® = _TIW TV () = 221D ey 2 (04 ) 1MW9 H® B
< 1010~ (100 + e i (T k) 100 + HO (0
+IW () BW) 4 p@) finite (2.40)
where the constant K is ; )
6 T 10
K=|——-—]C4s— —TgrNr. 2.41
(18 6) AT g TREE (241)

The finite remainders A%’ﬁnite and BO-nite romain to be calculated.

For this particular process, there is only one colour structure present at tree level which, in terms of the
gluon colour a and the quark and antiquark colours i and j, is simply T';. Adding higher loops does not
introduce additional colour structures, and the amplitudes are therefore vectors in a one-dimensional space.
Similarly, the infrared singularity operator I (1)(6) is a 1 x 1 matrix in the colour space and is given by

Y 1 3 Bo 1 1 3
Vo= N[+ 2+ 2 ) si3+8m)— (= +2)s 2.42
(© 2I'(1 —¢) "1 T 2N (813 + S23) ~vi\e T ) (242)
where (since we have set yu? = s193)
Sij = (—8123> . (2.43)
Sij

Note that on expanding 8;;, imaginary parts are generated, the sign of which is fixed by the small imaginary
part +i0 of s;;. The origin of the various terms in Eq. (2.42) is straightforward. Each parton pair ¢j in
the event forms a radiating antenna of scale s;;. Terms proportional to S;; are cancelled by real radiation



emitted from leg i and absorbed by leg j. The soft singularities O(1/€?) are independent of the identity of
the participating partons and are universal. However, the collinear singularities depend on the identities of
the participating partons. For each quark we find a contribution of 3N/(4¢) and for each gluon we find a
contribution of fy/(2¢) coming from the integral over the collinear splitting function.
Finally, the term of Eq. (2.40) that involves H @ (€) produces only a single pole in € and is given by
eV

H® (¢) = yPs Vin) e)H(Q) 7 (2.44)

where the constant H(?) is renormalization-scheme-dependent. As with the single-pole parts of I (1)(6)7 the
process-dependent H?) can be constructed by counting the number of radiating partons present in the event.
In our case, there is a quark—antiquark pair and a gluon present in the final state, so that

2 2 2
H® =20 + HP (2.45)
where, in the MS scheme:
1 5 1172 5 2 89 Np
H? = (=2 = N24 — N2+ (——=—— | NNp— — 2.46
9 (2€3+12Jr 144) T NET\ T T 108 FTAN (2.46)
7. 409 11m? 1 41 72 3 3 w2\ 1
H? = Z =~ _ T N2 (e — — Sy TR I
a (4@’ %64 96 ) 7% T8 o) T\ TR TR ) W
2 25\ (N2—1)N
m™ 25\ (N"-1Nr , (2.47)
48 216 N
so that
589  1lx2 1 41 72 3 w2\ 1
H® = A + =2 N2 . = _ _ 24 2 ) -
TV D Tl T wm) T\ e T T e
19 72 1 2\ Np 5
-— 4+ — | NN —— — — | ==+ _N3z. 2.48
+( 18+36> F+<54 24)N+27F (248)

The factors Héz) and ng) are directly related to those found in gluon—gluon scattering [24], quark—quark
scattering [39] and quark—gluon scattering [40] (which each involve four partons) as well as in the quark form
factor [56-59] and gluon form factor [60]. We also note that (on purely dimensional grounds) one might
expect terms of the type S%j to be present in H(). Of course such terms are 1+ O(¢) and therefore leave the
pole part unchanged, only modifying the finite remainder. At present it is not known how to systematically
include these effects.

3 Helicity amplitudes

We can extend the results of the previous section to include Z boson exchange,

et (ps) + e~ (ps) = (Z°,7") (pa) — a(p1) + a(p2) + 9(p3) , (3.1)

where the off-shell vector boson now distinguishes between left- and right-handed fermions by keeping track
of the helicity of the final state quarks.? A convenient method to evaluate the helicity amplitudes is in terms
of Weyl-van der Waerden spinors, which is described briefly in Appendix A and in detail in [61,62].

It is also straightforward to include the spin-correlations with the initial state by contracting the hadronic
current with the lepton current V), for fixed helicities of the initial state electron (and positron). Using the
spinor calculus of Appendix A we can express the lepton current V,, in terms of the helicities of the incident

2Note that the full matrix element for any process should be summed over both photon and Z-boson exchange.
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et and e~ (with momenta p; and pg respectively). Explicitly,

VJ(@*‘—I—7 e —)= eoprGApg;B%, Vf(e*‘—l—7 e —)= eoprGA-pg;B P —%ZTZMZ’
Vi(et— e 4) = eal‘prMpGB%, VMZ(eJF—, e +)= eaprMpGB - M%RESZTZMZ'
(3.2)
The hadronic current S, is related to the fixed helicity currents, Sz, by
Sula+; g\T-) = Ry, 1, V20,78 4 (a5 905 7-), (3.3)
Sula—3 973 q+) = LY., V20458 i 5 (a—: X TH). (3.4)

As in Eq. (2.7), the gauge boson coupling is extracted from S 5. As mentioned earlier, the left- and right-
handed currents couple with a different strength when the vector boson is a Z.
The currents with the quark helicities flipped follow from parity conservation:

Sipla—=39Xq+) = (Spalg+;9(=2);7-))" - (3.5)
Charge conjugation implies the following relations between currents with different helicities:
Sip(arg; 9AqAg) = (—1)8 i (@7 gA; gAq)- (3.6)

All helicity amplitudes are therefore related to the amplitudes with A; = + and Ay = —.
Explicitly, we find

D D C
— P1ipP2 P2B P3ipP2 P2B P16BP3P3A
Siplatigrg—) = a(y,z) 42222 3ADT2 L ACBZS T34
aplatigHia) .2) (p1p3)(p3p2) (v:2) (p1p3)(p3p2) (v:2) (p1p3)(p3p2)*
(p1p3)*
+0(y,2) —————(P1in+DPoin+Pain) - 3.7
(y,2) <p1p3><p1p2>*( 1AB 2AB 3,43) (3.7)

The other helicity amplitudes are obtained from S ; 5 (¢+; g+; §—) by the above parity and charge conjugation
relations, while the coefficients «, 5 and 7 are written in terms of the tensor coefficients:

S938

aly,z) = % <23(S13, 823, 8123) + A12(s13, S23, S123) — A11(813, 523, S123)>,
S b

By, z) = f (28233(813, 523, 8123) + 2(s12 + 513)A11 (513, 523, S123)

+523(A12(513, 523, s123) + A13(513, 523, 5123))) ;

S138
Yy, 2) = ¥<A11(813,Sz3,8123)—A13(513,823,8123)),
5128
6(y,2) = - = 13A11(513,823,8123)- (3.8)

When the hadron tensor is contracted with €, or the lepton current V#, the final term of Eq. (3.7) vanishes®.
Furthermore, current conservation implies the following relation between the four helicity coefficients,

25123

aly,z) = By, z) —v(y,2) — d(y,2) = 0. (3.9)

S12

This relation is fulfilled automatically once the tensor coefficients are inserted and does therefore not yield a
further reduction of the tensor basis.

3And for this reason was omitted in Ref. [6].
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As with the tensor coefficients, the helicity amplitude coefficients «, 8 and y are vectors in colour space
and have perturbative expansions:

2 .
Q = Virayira, T¢, [Q<0> + (;‘—W) o 4 (;‘—F) 0 4 O(ag)] , (3.10)

for Q = a, 8,7. The dependence on (y, z) is again implicit.
The ultraviolet and infrared properties of the helicity coefficients match those of the tensor coefficients,

00 — Q(O),un7
Q(l) _ S*lﬂ(l);un . @Q(O),un
€ 2¢ )
- 360 B 353
9(2) _ 29(2),un _ 2F0 IQ(I),un _(FZL  2F0 Q(O),un 11
SE 2e SE 4e ¢2 ’ (3 )
and
o — I(l)(e)Q(O) _‘_Q(l),ﬁnite,
1 B . T(1=2¢) (B
@ _ [_Limerme - oo e Po 1\ 1M 26) + H® () | 0©
Q < 2I (e)I'V(e) . I'V(e)+e Ta—0 <6 + (2¢) + (¢)
_‘_1’(1)(6)9(1)_’_Q(Z),ﬁnite7 (312)

where IV () and H® (¢) are defined in Eqs. (2.42) and (2.44) respectively.
At leading order
a(y,2) =0y,z) =1 and  4O(y,2)=0. (3.13)

The renormalized next-to-leading order helicity amplitude coefficients can be straightforwardly obtained to
all orders in € from the tensor coefficients using Eqgs. (2.21)—(2.24). For practical purposes, they are needed
through to O(€?) in evaluating the infrared-divergent one-loop contribution to the two-loop amplitude, while
only the finite piece is needed for the one-loop self-interference. They can be decomposed according to their
colour structure as follows:

) 1
QWfinite(, 2) = N ag(y, z) + N ba(y,z) + Pocaly, z) - (3.14)

The expansion of the coefficients through to €2 yields HPLs and 2dHPLs up to weight 4 for aq, bo and up
to weight 3 for co. The explicit expressions are of considerable size, such that we only quote the €’-terms
here (although these have been known already for a long time [6]). The expressions through to O(e?) can be
obtained in FORM format from the authors. An example of the size and structure of those coefficients can be
found in [18], where we explicitly list the helicity-averaged one-loop times one-loop and tree times two-loop
matrix elements. The one-loop coefficients read:

2
aa(y,2) = —; -t %H(O;z) - %H(O,Z)G(O;y) — %H(l,o;z) - gg(o;y) n %G(l,o;y)
_ﬁH(O; z) - ﬁ (1 + 2H(0; z)) +0(e),
baly,2) = QZ_yQ (H((); 2)G(1 = z;y) + H(1;2)G(=29) — G(—2,1 — z,y)) + % ( — H(0; 2)
+2H(0; 2)G(1 — z; ) — H(1; 2) + 2H(1; 2)G(—2;9) + G(1 — z;9) — 2G(—2,1 — 2; y))
+ﬁ_z)H(0; Z) - %H(O; Z) + mH(O; Z) + ﬁ (1 + QH(O; z)) + g _ ZH(O; Z)

50 2)G( — 5y) + FH(O,152) - TH(1;2) + H(1; 2)G(—29) = 3H(1;2)G(0:)
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3 1 1 1
+2G(1 = 59) + 5G(1 - 2,0:9) — G(=2,1 = 5y) + 3G(0, 1 5y) - 5G(1,0:) + O(e)

Calyrz) = —H(0:2) — 1G(0:y) + 5+ O()

w9 = -5 =T 20 - SHO e - Su0L0s) - Sei) + Seo)
+ﬁH(O, z)+ O(e)

batr.s) = (S HOG - sy) ~ HG(-5i0) + G20 - 220) + o (- H(052)
+2H(0;2)G(1 — z;y) — H(1;2) + 2H(1; 2)G(—2;9) + G(1 — z;y) — 2G(—2,1 — z; y))
+% ( —9H(0:2)G(1 — z;y) + H(1; 2) — 2H(1; 2)G(—2y) — G(1 — 239) + 2G(—2,1 — 2 y))
by~ H) + GO = 0)) 5 — () + g ()
~G(1 - =) + ; - zH(O;z) + %H(O;Z)G(l _ )+ %H(O, 12) — ZH@;Z)
FH(12)G(~5y) — H2)G(0:9) + G~ 259) + 3G(1 — 2,0:9) — G(-2,1 - )
+%G(0, 1—2y) - %G(Lo;y)) +0(e) ,

Gol:2) = —H(0:2) ~ 1G(0m) + T+ 0)

mls) = —3+ ﬁH(O; o)+ ﬁ (1-10:2) +0(0).

by(y,2) = i + o (— H0:2)G(1 = 29) = H(12)G(—2:9) + Gl(=2.1 = 29)) = 7o H(0:2)

( (0:2) + H(1; 2) — G(1 —z;y)) + Q(T_'ZW(H(l;z) els) —z;y)) - m

+ﬁ( H(1:2) + G(1 = 219)) = =5 (0:2) + 5 (— 1+ H0:2)) + 00

cy(y,2) = 0. (3.15)

It should be noted that these finite pieces of the one-loop coefficients can equally well be written in terms of
ordinary logarithms and dilogarithms, see [3,6]. The reason to express them in terms of HPLs and 2dHPLs
here is their usage in the infrared counter-term of the two-loop coefficients, which cannot be fully expressed
in terms of logarithmic and polylogarithmic functions.

The finite two-loop remainder is obtained by subtracting the predicted infrared structure (expanded
through to O(e)) from the renormalized helicity coefficient. We further decompose the finite remainder
according to the colour structure, as follows:

, 1
Q@finite(y 2y = N2Aq(y, 2) + Baly, 2) + mC'Q(y, z) + NNrDq(y, 2)
N 4
+57 Bay,2) + NiFa(y. 2) + Ny (N - N) Ga(y,2) , (3.16)

where the last term is generated by graphs where the virtual gauge boson does not couple directly to the
final-state quarks. This contribution is denoted by Nr and is proportional to the charge weighted sum of
the quark flavours. In the case of purely electromagnetic interactions we find,

Eq €q

€q

NF,'y = (317)
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Including Z-interactions, the same class of diagrams yields not only a contribution from the vector component
of the Z, which for the right-handed quark amplitude is given by

£, (L + 7)
Npgz=—""—"_—"2 (3.18)

’ 2RZ,
but also a contribution involving the axial couplings of the Z [63]. This contribution vanishes if summed over
isospin doublets. The large mass splitting of the third quark family induces a non-vanishing contribution
from this class of diagrams, which can however not be computed within the framework of massless QCD
employed here, but can only be obtained within an effective theory with large top-quark mass. In contrast to
the vector contribution from these diagrams, which is finite, one could expect divergences in the axial vector
contribution, which would be cancelled by the single unresolved limits of the corresponding axial contributions
to four-parton final states [14,15]. Results from the four-parton final states show that this axial contribution
is numerically very small [64].

The helicity coefficients contain HPLs and 2dHPLs up to weight 4 in the A, B, C, G-terms, up to weight 3
in the D, E-terms (which do moreover contain only a limited subset of purely planar master integrals) and up
to weight 2 in the F-term. The size of each helicity coefficient is comparable to the size of the helicity-averaged
tree times two-loop matrix element quoted in [18]. We do therefore only quote the A- and D-terms of each
coefficient, which form the leading colour contributions, and which turn out to be numerically dominant,
approximating the full expressions to an accuracy of about 20%. The complete set of coefficients in FORM
format can be obtained from the authors.

These leading colour terms are:

A(y(yaz) =
1 2 _ . . NS T , ,
=5 {w 13H(0; 2) + 6H(1, 0; 2) + 6G(L, 0; y)} B33 [w 13H(0; 2) + 6H(1, 0; 2)
z z z 5
+6G(150,y):| - WG(O7:U) - 16(1 — y) + 12(1 —y— 2)2 |:_ ? - 5H(07 Z)G(O7y) - 5H(1,O7Z)
5G(1,0; : M7 H(0: 2) 1 28H(0: 2)G(0: ) + 28H(L, 0: ) + 11G(0:
G, 00)| + ey =y [T 1H(0:2) + 28H(0:2)G(0; ) + 28H(1,0:2) + 11G(0;)
. Z2 1171—2 . . . .
—28G(1,0; y)} T P [ + 11H(0; 2)G(0; ) + 11H(1, 0; 2) — 11G(1,0; y)}
1 1 o,
+m(}(0,y) + m { % + (?)H(O7 z)+3H(1;2) — G(1 —z;y) + G(O,y)) + 63
355

—?H(O; z) — 6H(0; 2)G(1 — z,0;y) + 10H(0; 2)G(0; y) + 45H(0, 0; z) + 12H(0, 0; ) G(0; y)

+18H(0,1,0;2) — H(1,0;2) — 6H(1,0; 2)G(1 — z;y) + 6H(1,0; 2)G(0; y) + 12H(1,0,0; z) + 18H(1,1,0; 2)
1

+6G(1 — 2,1,0;y) — 6G(0, 1, O;y)} + m |:7T2( — 8+ 9H(0; 2) + 9H(1; 2) — 3G(1 — z;9)

+3G(0;y)) + 18¢s — % — 65H(0; z) — 18H(0; 2)G(1 — z,0;y) + 39H(0; 2) G(0; y) + 81H(0, 0; z)

+36H(0,0; 2)G(0; y) + 54H(0,1,0; z) — 48H(1,0; 2) — 18H(1, 0; 2)G(1 — 2; ) + 18H(1,0; 2)G(0; )
+36H(1,0,0;2) 4+ 54H(1,1,0; 2) + 18G(1 — 2,1,0; ) + 15G(0; ) — 18G(0, 1,05 9/) — 9G(1,0;y)}

1 2 o) 2 . _ . v c) .
+48(1 - 2)2[ 212H(1; 2) — 72G(0;y) + 12¢z — 6H(1,0; 2)G(0; ) — 12H(1, 1,0; 2) 6G(0,1,0,y)}
+m { —47?H(1; 2) — 20°G(0;y) + 24¢3 — 13H(0; 2) — 12H(1,0; 2)G(0; ) — 24H(1, 1,0; 2)

2 928
—20G(0;y) — 12G(0, 1, 0; y)} + 288 [ -5 - 5H(0; z) + 12H(0; 2)G(1 — z;y) + 36H(0; 2)G(0; )

—12H(0; 2)G(1; y) + 24H(0, 1; 2) + 24H(1; 2)G(1 — z;y) — 24H(1; 2)G(—%;y) — 12H(1; 2)G(1;y)
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+24H(1,0; 2) + 12H(1,1; 2) — 44G(1 — z; ) + 12G(1 — 2,0;y) — 24G(1 — 2, L;9) + 24G(—2,1 — z;9)
—24G(0,1 — z;y) + 49G(0; y) — 24G(0, 1; y) + 12G(1,1 — 2z;y) + 44G(1;y) — 36G(1,0; y) + 24G(1, 1; y)}
117t 1 [_ 89959

C3 N Y . 2
= (317 — 18H(0; 2) + 90H(1; 2) — 72G(1 — 2) — 18G(05y) — 18G(1; )] I
2149

ST H(0;z) — 66H(0; 2)G(1 — 2,0;y) — 18H(0; 2)G(1 — z,1,0;y) + 36H(0; 2)G(—2,1 — 2,0; y)
—36H(0; 2)G(0,1 — z,0;y) — 66H(0; 2)G(0; y) + 126H(0; 2)G(0, 0; y) — 18H(0; 2)G(0, 1, 0; y)
+18H(0; 2)G(1,1 — z,0;y) — 3H(0; 2)G(1,0; y) — 36H(0; 2)G(1,0,0; y) + ?H(O, 0;2)

FT72H(0,0; 2)G(0: ) + 36H(0, 0; 2)G(0, 0; ) + 72H(0,0,1,0; 2) + 3H(0, 1, 0; 2) — 18H(0, 1, 0; 2)G(1 — 2; 9)
£36H(0, 1,0; 2)G(—zy) + 18H(0, 1,0; 2)G(0; ) — 18H(0, 1,0; 2)G(1; y) + 36H(0, 1,1, 0; 2)

—71H(1,0; z) — 66H(1,0; 2)G(1 — z;y) + 18H(1,0; 2)G(1 — z,0;y) + 36H(1,0; 2)G(—2,1 — z; )
—36H(1,0;2)G(—2,0;y) — 36H(1,0; 2)G(0,1 — z;y) + 96H(1, 0; 2)G(0; y) + 18H(1,0; 2)G(1,1 — 2;¥)
“18H(1,0; 2)G(1, 0; y) + 72H(1,0,0; 2) + 36H(1, 0, 0; 2)G(0; y) + 72H(1,0,1,0; 2)

+36H(1,1,0; 2)G(1 — z;y) — 36H(1,1,0; 2)G(—2z;y) — 18H(1,1,0; 2)G(1;y) + 36H(1,1,0,0; 2)
+18H(1,1,1,0; 2) + 18G(1 — 2,0, 1,0; ) + 66G(1 — 2, 1,0; ) + 36G(1 — 2,1, 1,0; )

“36G(—2,1— 2,1,0;y) — 36G(—2,0,1,0;y) + 36G(0,1 — 2,1,0; ) + 43—9G(0;y) +160G(0,0; )
—36G(0,0,1,0;y) — 30G(0,1,0;y) + 36G(0,1,1,0; ) — 18G(1,1 — 2,1,0;9) + 71G(L, 0 1))
“126G(1,0,0;y) + 54G(1,0,1,0: ) — 66G(1, 1,0; y) + 36G(1, 1,0,0: ) — 36G(1, 1, 1,0; y)}

——— — —— —11H(0;2)

{ 4472 2345
3 18

11 1
il = H(0;2) + ——— | — 11 — 22H(0; 25+ —
+”T{ TS AR T ) ( ’2)} T2t g

—66H(0; 2)G(0;y) — 66H(1,0; z) — 110G(0;y) + 66G(1,0; y)} }

Da(y, 2) =
m (0;2) — mH(O;z) + m [%2 +H(0; 2)G(0: y) + H(1, 0; 2)
~G(1,0:)| + m - %2 + H(0; 2) — 2H(0; 2)G(0; ) — 2H(1, 0 2) — G(0: ) + 2G(1, 0 )
+4(1_z7;_2)2 [ —~ %2 — H(0; 2)G(0; y) — H(1,0; 2) + G(1,0; y)} - ﬁ(}(o; y)

m [7T2 + 25H(0; 2) — gH(O; 2)G(0;y) — 9H(0, 0; 2) + 6H(1, 0; 2)}

+ 4m% 4+ 38 4 37H(0; 2) — 6H(0; 2)G(0; ) — 36H(0, 0; z) + 24H(1,0; 2) — 3G(0; y)]

=l
1

ST E—— [H(0:2) +2G(0)| + =

—%Cg + ﬁ {@ — 25H(0; z) + 24H(0; 2)G(1 — z,0; y) + 29H(0; 2) G(0; y) — 36H(0; 2)G(0,0; y)

18
F6H(0; 2)G(1, 0; ) — 28H(0, 0; 2) — 36H(0, 0; 2)G(0; ) — 6H(0, 1, 0; 2) + 40H(L, 0; 2)
+24H(1,0; 2)G(1 — z; ) — 30H(1, 0; 2)G(0; y) — 36H(1,0,0; 2) — 24G(1 — 2,1, 0;y) + 53G(0; y)

—82G(0,0;y) + 6G(0,1,0;y) — 40G(1,0;y) + 36G(1,0,0; y) + 24G(1, 1, 0; y)}

22 h(0:2) 4 26(1 - 21y) - Gory) — 26(1:3)|

+iw{ﬁH(O; 9+ 50 1_ 3 {1 + 2H(0; z)} + 5 [8% - ? +13H(0: 2) + 12H(0; 2)G(0: y)
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F12H(1, 0; 2) + 31G(0; y) — 12G(1, 0; y)}}

Ap(y,2) =

: z N L 477
"0y T Ha—y T o ae [ S H(1:2) - —5—G(1 - 21y) — 94H(0;2)G(1 - 2,0:)

—94H(0,1,0; z) — 99H(1, 0; 2) — 94H(1,0; 2)G(1 — z; y) + 94H(1,0; 2)G(0; y) + 94H(1,1,0; z)

z [_ 4772

+94G(1 - 2,1,05y) + 94G(0, 1,05 y) — 99G(1, 0; y)} Ty 1)

+ 11 + 44H(0; 2)
z [57r2 w2

C94H(0: 2)G(0; ) — 94H(1, 0; 2) — 55G(0; ) + 94G(1, o;y)} ST ie i SR

6 2
2 3 3
—ZG(O;y) +3¢3 + 5H(0; 2)G(0; y) + 5H(1,0; 2) — §H(17 0;2)G(0;y) — 3H(1,1,0;2) — §G(0, 1,0;y)

z 1972 53
- H(0; ) — 38H(0; y) — 38H(1,0; 2) — =G(0;
120—y—2) { 3 + 5H(0; ) — 38H(0; 2)G(0; y) — 38H(1,0; 2) 1 G(0;y)

22 {
8(y + z)°
+33H(1,0; 2) + 66H(1,0; 2)G(1 — 2z;y) — 66H(1,0; 2)G(0; y) — 66H(1,1,0;2) — 66G(1 — 2,1,0; y)
2

=
16(y + 2)?

222

16(y + 2)
22 [_ 532

48(1 —y — 2)? 6

—5G(1,0;y)} +

+38G(1,0; y)} + — 1172H(1; 2) + 117%G(1 — z;9) + 66H(0; 2)G(1 — 2,0;%) + 66H(0, 1, 0; 2)

—66G(0,1,0;y) + 33G(1,0; y)} n [+ 2272 — 33H(0; z) + 132H(0; 2)G(0; y) + 132H(1, 0; 2)

+33G(0; y) — 132G(1, o;y)} + [117{2 — 11H(0; 2) + 66H(0; 2)G(0; ) + 66H(1, 0; )

+11G(0;y) — 66G(1,0; y)] + — 53H(0; 2)G(0;y) — 53H(1, 0; 2) + 53G(1, 0; y)]

222

=y =3 {117# — 11H(0; 2) + 66H(0; 2)G(0; ) + 66H(1, 0; 2) + 11G(0; ) — 66G(1, 0; y)}
23 1172 1172
i rE e

—33H(1,0;2)G(1 — z;y) + 33H(1,0; 2)G(0; y) + 33H(1,1,0; 2) + 33G(1 — 2,1,0;y) + 33G(0, 1, 0; y)}

G(1 — z;y) — 33H(0; 2)G(1 — z,0;y) — 33H(0, 1, 0; 2)

z3 [ 1172

+8(y +z)3 2

23 1172

16(y + 2)? [ 2

— 33H(0; 2)G(0; /) — 33H(L, 0; ) + 33G(1L, 0; y)} +

3 11 2
=T 11H(0;2)G(0;y) — 11H(1, 0; 2)

— H . . _ Hl . 1 .
33H(0:2)G(0; ) — 33H(1,0:2) + 33G(1,0:p)| + g [ = =

23 1172

16(1—y—z)2[ 6

F11G(1, o;y)} + £ 11H(0; 2)G(0; ) + 11H(1,0; 2) — 11G(1,0;y)}

= U (0 2)G(0:y) — TTH(L,0: 2) + 11G(1, 0: > o
+8(1—y—z){_ 6 - (72) (7y)_ (a 7Z)+ (7 7y)}+m (,y)
TRI=2) 1 2 [772(% — 3H(0;2) = 3H(L; 2) + G(1 - z39) — G(03y)) — 6¢3 + 3—25H(0 2)

+6H(0; 2)G(1 — z,0;y) — 10H(0; 2)G(0; y) — 45H(0, 0; z) — 12H(0, 0; 2)G(0; y) — 18H(0, 1, 0; 2)
+H(1,0;2) + 6H(1,0; 2)G(1 — 2z; ) — 6H(1,0; 2)G(0;y) — 12H(1,0,0; z) — 18H(1, 1,05 2)

_6G(1— 2,1,0:y) + 6G(0, 1,0 y) +;[—7—7T2H(1'z)+7—772(}(1—z )+ 14H(0: 2)C(1 — 2,0:1)
) ) 7y b ) 7y 8(y+z) 3 ) 3 7y b ) 7y
+14H(0,1,0; 2) + 25H(1,0; z) + 14H(1,0; 2)G(1 — 2z;y) — 14H(1,0; 2)G(0; y) — 14H(1,1,0; 2)
1 72 2
—14G(1 — 2,1,0;y) — 14 1,0; 2 1,0; —— | —H(1 — 1y) — 2(-
G(1=21,0,9) = MG(0, 1,0:9) + 25G(1L,0:y)| + g —5 [ H(1:2) + T G(0p) 2
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1 1372
241—-y—2)L 6

+H(1,0; 2)G(0; y) + 2H(1,1,0; 2) + G(0, 1, 0; y)} + + 10H(0; 2)G(0; y) + 13H(1,0; 2)

2
+10G(0;y 7G(1,o;y)} + 2”—88 [ - ? ~ 5H(0; 2) + 12H(0; 2)G(1 — 2;y) + 36H(0; 2)G(0; )

0;y) —
—12H(0; 2)G(1;y) + 24H(0, 1; z) + 24H(1; 2)G(1 — 2z;y) — 24H(1; 2)G(—2;y) — 12H(1; 2)G(1; y)
+24H(1,0; 2) + 12H(1,1; 2) — 44G(1 — z;y) + 12G(1 — 2,0;y) — 24G(1 — 2, L;9) + 24G(—2,1 — z;9)
0,1

—24G(0,1 — z;9) + 49G(0; y) — 24G(0,1;y) + 12G(1,1 — z; y) + 44G(1;y) — 36G(1,0;y) + 24G(1, 1; y)}

3604 [317— 18H(0; ) + 90H(1; 2) — 72G(1 — 2;3) — 18G(0;y) — 18G(1; y} 144{ 79987
@H(O, z) — 132H(0; 2)G(1 — #,0;y) — 36H(0; 2)G(1 — 2,1, 0;y) + 72H(0; 2)G(—=2,1 — z, 0; y)
—72H(0 2)G(0,1 — 2,0;y) — 150H(0; 2)G(0; y) + 252H(0; 2)G(0, 0; y) — 36H(0; Z)G(O, 1,0;y)
36H(0; 2)G(1,1 — 2,0;y) — 6H(0; 2)G(1, 05 y) — 72H(0; 2)G(1,0, 0; ) + 23H(0, 0; 2)
+144H(0, 0; 2)G(0; y) + 72H(0, 0; 2)G(0, 0; y) + 144H(0, 0,1, 0; z) + 6H(0, 1, 0; 2)

—36H(0,1,0; 2)G(1 — z;y) + 72H(0, 1, 0; 2) G(—=2; y) + 36H(0, 1, 0; 2)G(0; y) — 36H(0, 1,0; 2)G(1; y)
+72H(0,1,1,0; z) — 160H(1,0; 2) — 132H(1,0; 2)G(1 — z; ) + 36H(1,0; 2)G(1 — z,0; )
+72H(1,0;2)G(—2,1 — z;y) — 72H(1,0; 2)G(—2,0; y) — 72H(1,0; 2)G(0, 1 — z; y) + 192H(1, 0; 2) G(0; y)
+36H(1,0;2)G(1,1 — z;y) — 36H(1,0; 2)G(1,0; y) + 144H(1,0,0; z) + 72H(1,0,0; 2) G(0; y)
+144H(1,0,1,0; 2) + 72H(1,1,0; 2)G(1 — 2z;y) — 72H(1,1,0; 2)G(—2z;y) — 36H(1, 1, 0; 2) G(1; y)
$72H(1,1,0,0; 2) + 36H(1, 1, 1,0; 2) + 36G(1 — 2,0,1,0; ) + 132G(1 — 2,1,0; ) + 72G(1 — 2,1,1,0; 1)

8
—72G(—2,1—-2,1,0;y) — 72G(—2,0,1,0; ) + 72G(0,1 — 2,1,0; y) + gG(O; y) + 320G(0, 0;y)
—72G(0,0,1,0;y) — 60G(0,1,0;y) + T2G(0,1,1,0;y) — 36G(1,1 — 2, 1,0;y) + 160G(1, 0; 1))
—252G(1,0,0;y) + 108G (1,0, 1,05 ) — 132G (1, 1,05 ) + 72G(1,1,0,0;9) — 72G(1,1,1,0; y)

. 11 1 4472 1751
+zw{mH(0 z)+ 23+ r [ 3 T 1§ 11H(0; z) — 66H(0; 2)G(0; y) — 66H(1,0; 2)

~110G(0: ) + 666(1,0:)] }

Ds(y,z) =
2

#[— A (1) + ﬁeu — z;y) + 8H(0; 2)G(1 — z,0; ) + 8H(0, 1, 0; 2) + 9H(1, 0; )
4(y+z)2 3 bl 3 ’y ) ) ?y ) ) ) ) )

+8H(1,0;2)G(1 — z;y) — 8H(1,0; 2)G(0; y) — 8H(1,1,0;2) — 8G(1 — 2,1,0;y) — 8G(0,1,0; )

19G(1, o;y)] n m {? — 1 — 4H(0; 2) + 8H(0; 2)G(0; y) + 8H(L, 0; 2) + 5G(0; ) — 8G(1, 0; y)}
z 2 z T
+m |: — F — H(O; Z)G(O,y) - H(]., 0; Z) + G(]., 0; y)} + m [T — 2H(0 z)

+14H(0; 2)G(0; ) + 14H(1,0; 2) + 5G(0; y) — 14G(1, 0; y)} + m?H(1; 2) — m2G(1 — 2;9)

52
2(y +2)° [
—6H(0; 2)G(1 — z,0;y) — 6H(0,1,0; z) — 3H(1,0; z) — 6H(1,0; 2)G(1 — z;y) + 6H(L,0; 2)G(0; y)

52
Ay + 2)?
2

ol

+6H(1,1,0;2) + 6G(1 — 2,1,0;y) + 6G(0,1,0; y) — 3G(1, O;y)} + [ — 27% 4+ 3H(0; 2)

—12H(0; 2)G(05y) — 12H(1,0; 2) = 3G(0; ) + 12G(1, 0 )| + — 7% + H(0; 2)
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22 52

m o + 5H(0; 2)G(0;y)

—GH(0; 2)G(03) — GH(L,0:2) — G(0; ) + 6G(L,0:)] +

2

41—y —2)
+6G(1,0;y)] n Q(yzijz)él [ - 7;2H(1 o)+ = G(l — 21y) + 3H(0; 2)G(1 — 2,05 y) + 3H(0,1,0; 2)
+3H(1,0; 2)G(1 — z;y) — 3H(1,0; 2)G(0; y) — 3H(1,1,0;2) — 3G(1 — 2,1,0;y) — 3G(0, 1, 0; y)}

3 71_2

4(y + 2)? [7

F5H(1,0; 2) — 5G(1,0; y)} {— 72 4 H(0; 2) — 6H(0; 2)G(0: y) — 6H(1,0; 2) — G(0; 1)

23 71'2
M TTEE [7 + 3H(0; Z>G(0,y)+3H(1,0,z)—3G(1,0,y>} +
3 2

+3H(1,0; 2) — 3G(1, 0; y)} + 2(yz+ ) [% + H(0; 2)G(0; ) + H(1,0; 2) — G(1, 0; y)}

2’3 7T2 2’3 Y
TR |- & — H0:2)G(05y) — H(1,0:2) + G(L,0; )| + T r—— =

FH(L,0;2) ~ G(1,0;p)] - — %~ 95H(0; 2) + SH(0; 2)G(0:)

+ 3H(0; 2)G(0; )

2

+ +H(0; 2)G(0; )

G(0;y) +

1
12(1—y) 72(1 - 2) [

53 [ FH:2) -

+9H(0, 0; ) — 6H(1,0; z)} + 7T—Gr(l — z;y) — H(0;2)G(1 — 2,0;y) — H(0,1,0; 2)
—2H(1,0; 2) — H(1,0; 2)G(1 — 2;9) + H(1,0; 2)G(0; y) + H(1,1,0; 2) + G(1 - 2, 1,0;9) + G(0, 1,0; 9

6

1 2
=2G(L,00)] + gy =3[~ T~ H0:2)G0:p) ~ H(1,0:2) = G(0w) + G(1,05)
395 19 1 2977
72[ — H(0:2) +2G(1 = 1) — G(05y) = 2G(Liy) | = 5.6+ 1 | 75~ — L0H(0:2)

+24H(0; 2)G(1 — 2,0; y) + 29H(0; 2)G(0; y) — 36H(0; 2)G(0, 0; y) + 6H(0; 2)G(1,0; y) — 28H(0, 0; 2)
—36H(0,0; 2)G(0;y) — 6H(0, 1,0; z) + 40H(1, 0; z) + 24H(1, 0; 2)G(1 — z;y) — 30H(1,0; 2)G(0; y)

“36H(1,0,0; 2) — 24G(1 — 2, 1,0;y) + 56G(0; 1)) — 82G(0,0; ) + 6G(0,1,0;1) — 40G(1, 0; )
+36G(1,0,0;y) + 24G(1,1 o;y)]

. 1 1 1872 46
+z7r{ - mH(O, z) + 8 {T -3 + 13H(0; 2) + 12H(0; 2)G(0, y) + 12H(1, 0; z) + 31G(0; y)

~12G(1,0; y)} }

A’Y(yvz) =
1 2 N SN . L, .
D) [ = 7%+ 13H(0; 2) - 6H(1,0; 2) — 6G(1,0:)| + red (72— 13H(0; 2)
1172 1172
+6H(1,0; 2) + 6G(1, 0; y)} n H(1; 2) (1~ 2:5) + 22H(0: 2)C(1 — 2,0:)

el
16(y + 2)? 3
+22H(0, 1,0; z) + 55H(1, 0; 2) + 22H(1, 0; 2)G(1 — z;y) — 22H(1,0; 2)G(0; y) — 22H(1, 1,0; 2)
1172

“22G(1 — 2,1,0;y) — 22G(0,1,0;y) + 55G(1, o;y)} n m [T ~ 11 — 22H(0; 2)

z 7T2 71—2
Si—y—2p {gH(l,Z) + 5 G0y

z {10#2
Byl 3

F22H(0; 2)G(0; y) + 22H(1, 0; 2) + 33G(0; 1)) — 22G(1, 0; y)} +

+ 13H(0; 2)

—2¢s + H(1,0; 2)G(0; ) + 2H(1,1,0; 2) + G(0, 1, 0; y)} n

2 29 2
~ | H( )

+20H(0; 2)G(0; ) + 20H(1, 0; 2) + 20G(0; ) — 20G(1, 0; y)} S
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_227r2
3
+44H(1,0; 2)G(0; y) + 44H(1,1,0; 2) + 44G(1 — 2,1, 0;y) 4+ 44G(0,1,0; y) — 33G(1, 0; y)}

(1 — z;y) — 44H(0; 2)G(1 — z,0;y) — 44H(0,1,0; z) — 33H(1,0; z) — 44H(1,0; 2)G(1 — z; )

z 4472
+16(y+ )2 {_ 3
22 2272
+16(y+ 2) [_ 3
22 52
+12(1 —y—z)? [ 6

+ 33H(0; 2) — 88H(0; 2)G(0; ) — 88H(1, 0; z) — 33G(0; y) + 88G(1, 0; y)}

+ 11H(0; z) — 44H(0; 2)G(0; y) — 44H(1,0; 2) — 11G(0; y) + 44G(1,0;y)}

22 [ 2272
16(1 —y — 2)
23 [ 1172

8(y +2)*

+ 5H(0; 2)G(0; ) + 5H(1, 0; 2) — 5G(1,0; y)} +

F1TH(0; 2) — 44H(0; 2)G(0; 1) — 44H(1,0; 2) — 11G(0; ) + 44G(1, 0 y)} +

1172
2

(1 = zy)+ 33H(0; 2)G(1 — 2,0;y) + 33H(0, 1, 0; 2) + 33H(1,0; 2)G(1 — z; y)

23 1172
—33H(1,0: 2)G(0: y) — 33H(1, 1,0; 2) — 33G(1 — 2, 1,0: ) — 33G(0, 1, 0: } 7[—

(1,0;2)G(0; ) ( z) (1—2,1,0;9) ( Y) S Torl 2
23 {11#2

H(0; - H(1,0; z) — 33G(1,0;
+B3(0;2)G(05) +33H(1,0:2) = 33G(1L,0:0)| + 1= | =5

+ 33H(0; 2)G(0;y) + 33H(1,0; z)
23 [117r2
8(y+z)L 6

-33G(1, o;y)} n (0; 2)G(0; ) + 11H(1, 0; 2) — 11G(1, 0 y)}

P [ 17w, )G(0;y) — 11H(L, 0: 2) + 11G(1,0; )}
16(1—y—z)2 6 7Z 7y ) 7Z ) 7y

23 {11#2
81—y—2)L 6

1
— — 3H(0; 2)

1 2
+ 48(1— 2)2 {” (5

+ 11H(0; 2)G(0; y) + 11H(1, 0; 2) — 11G(1, o;y)} n

—3H(1;2) + G(1 — z;9) — G(0; ) — 63 + %H(O; z) + 6H(0; 2)G(1 — z,0;y) — 10H(0; 2)G(0; y)
—45H(0,0; z) — 12H(0, 0; 2)G(0; y) — 18H(0, 1, 0; z) + H(1,0; z) + 6H(1,0; 2)G(1 — z;y)
—6H(1,0;2)G(0;y) — 12H(1,0,0; 2) — 18H(1,1,0;2) — 6G(1 — 2,1,0;y) + 6G(0, 1, 0; y)}

48(11 3 [71-2( _ g + 3H(0; 2) + 3H(1; 2) — G(1 — z;9) + G(0; y)) +6C3 + %77 _ %H(O; 2)

—6H(0; 2)G(1 — z,0;y) + 4H(0; 2)G(0; y) + 45H(0, 0; z) + 12H(0, 0; 2)G(0; y) + 18H(0, 1, 0; 2)
—T7H(1,0;2z) — 6H(1,0; 2)G(1 — z;y) + 6H(1, 0; 2)G(0; y) + 12H(1,0,0; z) + 18H(1,1,0; z)
(

+6G(1 —2,1,0;y) — 10G(0; y) — 6G(0,1,0; y) + 6G(1,0; y)} + — 72 + 13H(0; 2)

e

48(1 —y —2)
17, 217

—GH(1,0; 2) — 6G(1,0; )] + 5 [ - =5  23H(0; 2) + 6H(0: 2)G(0: ) + 6H(1,0; 2) + 10G (0 y)

11 11 11
161 — 22 52 F 5= {1 - HO; 2)} - 1_6}

1 1 z w2 w2
T H(o: - - " H )~ g — s
2y A+ a5 Ay +2)° [ g Hli2) = 3G = zy)
—2H(0; 2)G(1 — z,0;y) — 2H(0, 1,0; z) — 5H(1,0; 2) — 2H(1,0; 2)G(1 — z; y) + 2H(1, 0; 2) G(0; y)
2
- %+1+2H(0;z)

—6G(1,0;y)} +m{
D, (y;2) =

H(0; z) +

z
+2H(1,1,0; 2) + 2G(1 — 2,1,0;y) + 2G(0,1,0; y) — 5G(1, 0; }+
( ) ( Y) ( Y) (1,0;9) T+
2

: [—%—H(o;z)

—2H(0; 2)G(0; y) — 2H(1,0; 2) — 3G(0;y) + 2G(1, 0;) | + T
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22 [ 272 272

“2H(0; 2)G(0: y) — 2H(1, 0; 2) — 2G(0; ) + 2G(1, o;y)} n - SH(L2) + -G - z1)

2(y + 2)°
+4H(0; 2)G(1 = 2,0;y) + 4H(0,1,0; 2) 4+ 3H(1, 0; 2) + 4H(1,0; 2)G(1 — z; y) — 4H(1,0; 2)G(0; )
22 e
- 12) —4G(1 — 2,1,0;y) — 4G(0, 1,0; 1,0; —~ __|= _3H(0;
IH(1,1,0:2) ~ 4G(L ~ 2. 1,05y) — 46(0. 1,0:9) + 3G(1,0:9)| + 75 [T — 3H(0: 2

+8H(0; 2)G(0;y) + 8H(1,0; 2) + 3G(0; y) — 8G(1, 0; y)} + 4(yi ) {? — H(0; 2) + 4H(0; 2)G(0; )
HAH(1,0; 2) + G(0;y) — 4G(1,0; )] + 6(1_27;%)2 - %2 — H(0; 2)G(0; ) — H(1,0; 2) + G(1,0; y)
+4(1_27;_Z) {? — H(0; 2) + 4H(0; 2)G(05 ) + 4H(1,0; 2) + G(0; ) — 4G(1,0; )|

+2(y27—:’z)4 [W;H(l; z) = 7T;G(l — 2;9) — 3H(0;2)G(1 — 2,0;y) — 3H(0,1,0; z) — 3H(1,0; 2)G(1 — 2;9)
F3H(1,0;2)G(0; y) + 3H(1,1,0; 2) + 3G(1 — 2,1,0; ) + 3G(0, 1,0;y)] n 2(;7;)3 [ _ %2

“3H(0; 2)G(0; y) — 3H(1, 0; 2) + 3G(1, 0; y)} n 4(%;)2 [ - %2 — 3H(0; 2)G(0;y) — 3H(1,0; 2)
+3G(1,0:)] + Q(yzi 3 - %2 — H(0;2)G(05y) — H(1,0;2) + G(1,039)] + 4(1_275_2)2 {%2
+H(0:2)G(0; ) + H(1,0;2) — G(1,03)| + 2(1_27;_@ - %2 — H(0:2)G(0; ) — H(1,0; 2) + G(1,0;)]
+ﬁ [ —m? — 25H(0; 2) + gH(O; 2)G(0;y) + 9H(0,0; z) — 6H(1,0; z)} + m [%2 —38
+65H(0; 2) — 3H(0: 2)G(0; ) — 18H(0, 05 2) + 12H(1,0; 2) + 3G(05y) | - B3 _1y —H0:2) + %
_4_58H(0; 2) = 4L8G(O?y> + i”{ - 8(1712)&1(0;3) 3T [— 1+ H(O;z)} + é} (3.19)

JFrom the Q(finite 5nq Q(2).finite 3¢ i hossible to recover the finite pieces of the helicity-averaged tree
times two-loop and one-loop squared matrix elements by squaring (3.7):

1—y)(1—y— . 1- .
.Finite(QXO)(iL',y,Z) - 8VR ( y)( Y Z) a(2),ﬁn1te(y7 Z) + yﬂ(Q),ﬁmte(y7 Z)
Yz Yy
—y@mite(y ) 4 (y < Z)] 7
1—y— 1 :
Finite V>V (z,y,2) = 4VR|1—-y— z) (7( yyz 2) + 5) |oz(1)’ﬁmte(y, 2)|?

l—y—2z =z (1) finite 2 l-y—2z y (1) finite 2
(P D) ey (TR 4 ) e

2—2z

) a(l),ﬁnite(y, Z)B*(l),ﬁnite(y, Z)

,ﬁnite(

+(—3+y+z+

(1),ﬁnite(

~(1-y-2)a y, z )y (finite(y )

—(1 4y + z) pfinite(y o )yxfinite(y, ) 4 (y 2)1 : (3.20)

It is important to notice that (3.20) corresponds, by the very nature of the Weyl-van der Waerden helicity
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formalism, to a scheme with external momenta and polarization vectors in four dimensions (internal states are
always taken to be d-dimensional), which is sometimes called the 't Hooft—Veltman scheme [27]. This scheme
is different from the conventional dimensional regularization used in [18], where all external momenta and
polarization vectors are d-dimensional. Nevertheless, one obtains from (3.20) the same F inite(2%0) (z,y,2) as
in Eq. (4.17) and Finite(™*V (2,5, 2) as in Eq. (4.25) of [18], since all scheme-dependent terms are correctly
accounted for by the finite contributions arising from expanding the tree level and one-loop contributions in
the renormalization and infrared factorization formulae.

It should also be noted that only the O(e°) terms of Q(M-finite contribute to Finite'*V(z,y, 2), terms
subleading in € are not required, since no term is multiplied with a divergent factor. Comparing the size
of these O(e?) terms (3.15) with the size of Finite'*Y(2,y, 2) in [18], it becomes clear that the squared
one-loop amplitude can be evaluated much more elegantly by squaring the finite remainders of the helicity
amplitudes than by computing the squared matrix element.

4 Conclusions and Outlook

In this paper, we have presented analytic formulae for the one- and two-loop virtual helicity amplitudes to the
process v* — qgg. These amplitudes have been derived by defining projectors, which isolate the coefficients
of the most general tensorial structure of the matrix element at any order in perturbation theory. Once
the general tensor is known, the helicity amplitudes follow in a straightforward manner — they are linear
combinations of the tensor coefficients. We applied the projectors directly to the Feynman diagrams and used
the conventional approach of relating the ensuing tensor integrals to a basis set of master integrals. This latter
step is identical to that employed to evaluate the interference of tree- and two-loop graphs in Ref. [18], apart
from the fact that the projector is no longer the tree-level amplitude. As anticipated, the finite remainder
from the interference of tree- and two-loop amplitudes can be reconstructed from the appropriate helicity
amplitudes, with the difference between treating the external states in d dimensions or four dimensions being
isolated in the infrared-singular terms.

The results presented here therefore complement the earlier calculation of the interference of tree- and two-
loop graphs in Ref. [18]. Knowledge of the helicity amplitudes allows additional information on the scattering
process. In particular, observables that require knowledge of the polarization tensor of the virtual photon,
such as oriented event shapes in unpolarized ete™ scattering or event shapes in polarized eTe™ scattering,
can be described at two-loop order.

Similar results can in principle be obtained for (2 + 1)-jet production in deep inelastic ep scattering or
(V + 1)-jet production in hadron—hadron collisions. However, the rather different domains of convergence
of the HPLs and 2dHPLs makes this a non-trivial task, and we defer this to a later paper. Nevertheless,
the helicity approach will provide information on the direction of the decay leptons in (V + 1)-jet production
(with or without polarized protons). Determination of the polarized parton distribution functions in polarized
electron—proton scattering will also benefit from the knowledge of the two-loop helicity amplitudes in the
appropriate kinematic region.

Even though the evaluation of two-loop QCD matrix elements is becoming well established, the virtual
corrections form only part of a full NNLO calculation. They must be combined with the one-loop corrections
to v* — 4 partons [14-17], where one of the partons becomes collinear or soft, as well as tree-level processes
~v* — 5 partons [11-13] with two soft or collinear partons in a way that allows all of the infrared singularities
to cancel one another. This task is far from trivial, even though the factorization properties of both the one-
loop, one-unresolved-parton contribution [65-70] and the tree-level, two-unresolved-parton contributions [71-
74] have been studied. Early studies for the case of photon-plus-one-jet final states in electron—positron
annihilation in [75, 76], which involves both double radiation and single radiation from one-loop graphs,
indicate the feasibility of developing a numerical NNLO program implementing the experimental definition
of jet observables and event-shape variables, and significant progress is anticipated in the near future.
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A  Weyl-van der Waerden spinor calculus

The basic quantity is the two-spinor 14 or ¢4 and its complex conjugate v 4 or 1/)‘4. Raising and lowering of
indices is done with the antisymmetric tensor e,

€AB_€AB_EAB_€AB_(_1 O)' (A1)

We define a antisymmetric spinorial “inner product”:

(h19h2) = b1 aeBAPop = b1 ast = —piihoa = —(WPathr), (A.2)

and .
(P1tpa)* =y 193 (A.3)

Any momentum vector k, gets a bispinor representation by contraction with o*:

ko + ks ki +ik
"’ _
kw—?w@—<m—% m—m)’ (A4)
where o0 is the unit matrix and o; are the Pauli matrices. Since

UZBUVAB = 29", (A.5)
we have

kigp™® =2k -p (A.6)
For light-like vectors one can show that

kip=Fkjiks, (A7)

where

ha = < Uk - Z%/j,ﬁo — ks > , (A8)

so that for light-like vectors we have

2k - p = (kp)(kp)* = | (kp)|*. (A.9)
The following relation is often useful: ' _
UfleUl?D = 25AC53D . (A.IO)

For massless spin—% particles the four-spinors can be expressed in two-spinors as follows:

wio) = vt = (%),

u_(p) = U+(p)=(p?g>7
iie) = o(a)=(0, —igz ),
u-(q9) = vi(q)=(ig% 0). (A.11)
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The Dirac v matrices now become

0 —iot:
T _ BA
= ( onAB ) : (A.12)
so that, for example: _
s (@ v-(p) = ¢,0""Ppp . (A.13)

The general electroweak vertex for vector boson V' coupling to two fermions is denoted by ieéijfl‘ff 1f2
where 7 and j are the colour labels associated with the fermions f; and fo respectively. The vertex contains
left- and right-handed couplings,

1-— Y5 1 + Y5
I‘nylf2 - L}/leryu (T) +RJ‘{1f27M <T> , (A.14)

where for a photon,
L}1f2 = R}lfz = _ef15f1f27 (A.15)

and for a Z-boson,

Igl — sin? Oey, —sinfwey,

5f1f2. (A.lﬁ)

z zZ
Lf1f2 - 6f1f2’ Rflfz -

sin Oy cos Oy, cos Oy

Here, e represents the fractional electric charge, Ig the weak isospin and 6y the weak mixing angle. In the
Weyl-van der Waerden notation, the vertex I‘l‘f’f 12 becomes,

0 —iLY o .
TVififz — . fif2"uBA . (A.17)
-V AB

. ZRf1f2UM 0

For the polarization vectors of outgoing gluons and photons we use the spinorial quantities

ehL(k) = \/Ek;ng (A.18)
eiglk) = \/ilz‘b“lgB (A.19)

The gauge spinor b is arbitrary and can be chosen differently in each gauge-invariant expression. A suitable
choice can often simplify the calculation.
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