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Abstract Bjcé. are assumed to beonrelativistic While the non-

I . lineard f formalism outlined here is readily adapted to the
The Beam Equilibrium Stability and Transport (BEST)case of gperiodic applied focusing force, for present pur-

o e o o by J95 e ke U onaah focusodel n i e
' P y plied focusing force is described by

effects in intense charged particle beams described se?f[-)
cons_istently by thg VIasov—MaxweII eqqation;. This code F;_“OC - _ijjw%jQCL, (1)
provides an effective numerical tool to investigate collec-
tive instabilities, periodically-focused beam propagation ivherex | = zé, + yé, is the transverse displacement,
in alternating-gradient focusing fields, halo formation, an@ndwgs; = const is the effective betatron frequency for
other important nonlinear process in intense beam proptiansverse oscillation. For example, in the absence of back-
gation. ground ions f; = 0), to describe the two-stream interac-
tion between the beam iong & b) and background elec-
trons (j = e), we normally assumé&, = [.c = 0. The
1 INTRODUCTION AND THEORETICAL space-charge intensity is allowed to be arbitrarily large,
MODEL subject only to transverse confinement of the beam ions

For accelerator applications to spallation neutron sourcc—@,’ the apphed_ focu_smg force, and the background elec-
rons are confined in the transverse plane by the space-

tritium production, and heavy ion fusion, space-char eel X )
P y P g harge potentiap(x, t) due to the excess ion charge. In the

fects on beam equilibrium, stability, and transport proper‘E ) o .
ties become increasingly important. To understand thegéectrostatlc approximation, we represent the self-electric
d self-magnetic fields bfg® = —V¢(x,t) and B® =

collective process at high beam intensity, it is necessa ’ .

to treat the nonlinear beam dynamics self-consistently us- x Ax(=, t)cfz’ respectwely. Eor present purp()Qse, assum-

ing the nonlinear Vlasov-Maxwell equations|[1, 2, 3]. Re!NY perturba}nons with long aX|a'I wavelengthiy < 1)

cently, thedf formalism, a low-noise, nonlinear perturba—and neglecting the 'perturbed axial force on the clharge com-
onents, the nonlinear Vlasov-Maxwell equation in the

tive particle simulation technique, has been developed f i ional bh b : d
intense beam applications, and applied to matched-be yS-J |1rge2§|]ona phase spage, p, ) can be approximate

propagation in a periodic focusing field[4, 5, 6, 7, 8] an
other related problems. This paper reports recent advances g b )

in applying thedf formalism to simulate the nonlinear dy- f& tuvu- 9z [yjmwijeL

namics of an intense beam. The BEST code described 9 )
here is a 3D multispecies nonlinear perturbative particle +e;Vi(p—BiA)]- @}f]’(aﬁ,pbt) =0,
simulation code, which can be applied to a wide range of +

important collective processes in intense beams, such agd

the electron-ion two-stream instability[9, 10], periodically-

focused beam propagation[11, 12], and halo formation. In Vig= —47fzej/d2pfj($,l7pt),

the the theoretical model[9, 10, 13], we consider a thin, J

continuous, high-intensity ion beafy = b), with char-
acteristic radius,, propagating in the:-direction through
background electron and ion componefits= e, i), each
of which is described by a distribution functign(z, p,t). Here, V, = e,9/0x + €,0/0y andv = Ve, +
The charge componentg = b, e,i) propagate in the-  (v,m;) " 'p, .

direction with characteristic axial momentumm,;j;c,

where V; = f;c is the directed axial velocityy; = 2 NONLINEAR 6F SIMULATION

(1 — sz-)_l/Q is the relativistic mass faCtO(fj andmj are METHOD AND THE BEST CODE
the charge and rest mass, respectively, of a j-th species par-

ticle, andc is the speed of light ivacua For each com- In the nonlineadf formalism, we express the total distribu-
ponent(j = b,e, ), the transverse and axial particle ve-tion function asf; = f;o + df;, wheref; is aknownso-
locities in a frame of reference moving with axial velocitylution to the nonlinear Vlasov-Maxwell equations (2) and

3)
viAz = _4ﬂzejﬁj/d2pfj(wapj_vt)'
J
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(3), and determine the detailed evolution of the perturbedall. Even though it is a perturbative approach, te
distribution functiony f; = f; — fj0. Thisis accomplished method is fully nonlinear and simulates the original non-
by advancing the weight function definedty = 6 f;/f;,  linear Vlasov-Maxwell equations. Compared with conven-
together with the particles’ positions and momenta. Thgonal particle-in-cell simulations, the noise levebiisim-
equations of motion for the particles, obtained from thelations is significantly reduced. In addition, tffenethod
characteristics of the nonlinear Vlasov equation (2), arean be used to studynear stability properties provided

given by the factor(1 — w;;) in Eq. (5) is approximated by, and
the forcing term in Eq. (4) is replaced by the unperturbed
dzji =Ve. + (v;m;) " 'pL s force (i.e., advancing particles along the unperturbed or-
dt ! Y v (4) bits). Implementation of the 3D multispecies nonlinear
dl;tji _ —’ijngijji —e; V(6 — BiA.). of simulation method Qescribed above is embodied in the
BEST code at the Princeton Plasma Physics Laboratory.

labels the i-th simulation particle of The code advances the particle motions using a 4th-order
the j-th species. The weight functions, as functions of Runge-Kutte method, and solves Maxwell’s equations by

phase space variables, are carried by the simulation paﬁi-faSt Fourier transform and finite-difference method in

cles, and the dynamical equations oy are easily derived cylindrical geometry. Written in Fortran 90/95, the code
from the definition ofi; and the Vlasov equation (2). Fol- utilizes extensively the object-oriented features provided
j .

lowing the algebra in Refs. [4, 5, 6, 7], we obtain by the computer language. The NetCDF scientific data
format is implemented for large-scale diagnostics and vi-
1 dfjo 5 dp, j; sualization. The code has achieved an average speed of
Eﬂ ' ( dt )7 40us/(particlex step) on a DEC alpha personal workstation
(5) 500au computer.

Here the subscriptji”

dw-i
d—tj = —(1—wj)

)

(6, As)— (56,6 A.) 3 SIMULATION RESULTS

wheredp = ¢ — ¢y anddA, = A, — A,y. Here, the FOr brevity, we present here illustrative simulation results
equilibrium solutions ¢y, Ao, f;jo ) Solve the steady-state for a single-species thermal equilibrium ion beam in a con-
(8/0t = 0) Vlasov-Maxwell equations (2) and (3) with Stant focusing field. In this case, equilibrium properties
8/0z = 0 andd/09 = 0. A wide variety of axisymmetric depend on the radial coordinate= (z* + y*)'/2. The
equilibrium solutions to Egs. (2) and (3) have been investthermal equilibrium distribution function is given by

gated in the literature. The perturbed distributigf; is ob-

)
tained through the weighted Klimontovich representation foo (7, P, ) = 7%%;%%
N, N ‘ex {_Pi/%bmb + yompwdyr? /2 + en(go — ﬁbAzo)}
0fi = = > wiid(@ — z;)d(pL —piji)  (6) P T
st i—1 (8)

whereN; is the total number of actual j-th species particlesyherer, is the density of beam particles at= 0, and
andNy; is the total number ddimulationparticles for the j-  7; is the transverse temperature of the beam ions in energy
th species. Maxwell’'s equations are also expressed in termgits. It is also assumed that the beam is centered inside
of the perturbed fields and perturbed density according taa cylindrical chamber with perfectly conducting wall lo-
cated at- = r,,. The equilibrium self-field potentiaks,

Viép = —47T26j5”j7 and A, can be determined numerically from Maxwell’s
J equations (3). First, we examine the nonlinear propaga-

V30A, = _4ﬁzej5j5nj7 .tio.n propertieg of the beam. A random initial perturbation
; is introduced into the system, and the beam is propagated

N, from¢ = 0tot = 50073, wherers = wp,'. The simula-
on; = /d2p5fj(w,pb t) = N Z wiiU(, z4). tion results show that the perturbations do not grow and the
Ny, = beam propagates quiescently, which agrees with the nonlin-
(7) ear stability theorem[14, 15] for the choice of equilibrium
distribution function in Eq. (8). Shown in Fig. 1 is a plot of
Here,U(z, z;;) represents the method of distributing parthe change in transverse emittance-squared (normalized by
ticles on the grids in configuration space. The nonlinedr,’/w3,), d¢* = ¢*(t) — 5 , versus normalized timg/ 7,
particle simulations are carried out by iteratively advandor perturbations about the thermal equilibrium distribution
ing the particle motions, including the weights they carryin Eqg. (8). The system parameters in Fig. 1 correspond to
according to Egs. (4) and (5), and updating the fields bgrotons with~, = 1.85, and normalized beam intensity
solving the perturbed Maxwell’s equations (7) with appro& 3,c7s/eo = 0.025, whereK = 2Nye? /vimy, 322 is the
priate boundary conditions at the cylindrical conductingelf-field perveance, and, is the number of beam ions per
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unit axial length. The amplitudes of the initial random perulation code, it provides several unique capabilities. Since
turbation in weights in Fig. 1i30~4, which leads to the the simulation particles are used to simulate only the per-
very small offset inde2. It is evident from Fig. 1 that the turbed distribution function and self-fields, the simulation
variations in beam emittancée2, remain extremely small noise is reduced significantly. The perturbative approach
for perturbations about a thermal equilibrium beam. As also enables the code to investigate different physics effects
separately, as well as simultaneously. The code can be eas-
ily switched between linear and nonlinear operation, and
used to study both linear stability properties and nonlinear
beam dynamics. These features, combined with 3D and
multispecies capabilities, provide us with an effective tool

Tt

0 100 200 300 400 500 to investigate the electron-ion two-stream instability, pe-
v/, riodically focused solutions in alternating focusing fields,

halo formation, and many other important problems in non-

Figure 1: Plot ofie? versug /75 linear beam dynamics and accelerator physics. Finally, the

BEST code is readily adapted to the case where the ap-
second example, we study the linear surface mode for pgytied focusing force,F;f"c, corresponds to a periodic fo-
turbations about a thermal equilibrium beam in the spaceusing quadrapole field or solenoidal field, and the effects
charge-dominated regime, with flat-top density profile andf the axial self-field fieldF;, = —é.e;0¢(x,t)/0z on
K Byers/e0 > 1. These modes are of practical interest bethe particle dynamics are retained self-consistently. Results
cause they can be destabilized by a two-stream electron-iefithese studies will be reported in future publications.
interaction when background electrons are present[9, 10].

The BEST code, operating in its linear stability mode, has 5 ACKNOWLEDGMENT
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