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Abstract

The Beam Equilibrium Stability and Transport (BEST)
code, a 3D multispecies nonlinear perturbative particle
simulation code, has been developed to study collective
effects in intense charged particle beams described self-
consistently by the Vlasov-Maxwell equations. This code
provides an effective numerical tool to investigate collec-
tive instabilities, periodically-focused beam propagation in
in alternating-gradient focusing fields, halo formation, and
other important nonlinear process in intense beam propa-
gation.

1 INTRODUCTION AND THEORETICAL
MODEL

For accelerator applications to spallation neutron sources,
tritium production, and heavy ion fusion, space-charge ef-
fects on beam equilibrium, stability, and transport proper-
ties become increasingly important. To understand these
collective process at high beam intensity, it is necessary
to treat the nonlinear beam dynamics self-consistently us-
ing the nonlinear Vlasov-Maxwell equations[1, 2, 3]. Re-
cently, theδf formalism, a low-noise, nonlinear perturba-
tive particle simulation technique, has been developed for
intense beam applications, and applied to matched-beam
propagation in a periodic focusing field[4, 5, 6, 7, 8] and
other related problems. This paper reports recent advances
in applying theδf formalism to simulate the nonlinear dy-
namics of an intense beam. The BEST code described
here is a 3D multispecies nonlinear perturbative particle
simulation code, which can be applied to a wide range of
important collective processes in intense beams, such as
the electron-ion two-stream instability[9, 10], periodically-
focused beam propagation[11, 12], and halo formation. In
the the theoretical model[9, 10, 13], we consider a thin,
continuous, high-intensity ion beam(j = b), with char-
acteristic radiusrb propagating in thez-direction through
background electron and ion components(j = e, i), each
of which is described by a distribution functionfj(x,p, t).
The charge components(j = b, e, i) propagate in thez-
direction with characteristic axial momentumγjmjβjc,
where Vj = βjc is the directed axial velocity,γj =
(1 − β2

j )−1/2 is the relativistic mass factor,ej andmj are
the charge and rest mass, respectively, of a j-th species par-
ticle, andc is the speed of light invacuo. For each com-
ponent(j = b, e, i), the transverse and axial particle ve-
locities in a frame of reference moving with axial velocity

βjcêz are assumed to benonrelativistic. While the non-
linearδf formalism outlined here is readily adapted to the
case of aperiodicapplied focusing force, for present pur-
pose we make use of asmooth-focusingmodel in which the
applied focusing force is described by

F foc
j = −γjmjω

2
βjx⊥, (1)

wherex⊥ = xêx + yêy is the transverse displacement,
andωβj = const is the effective betatron frequency for
transverse oscillation. For example, in the absence of back-
ground ions (fi = 0), to describe the two-stream interac-
tion between the beam ions (j = b) and background elec-
trons (j = e), we normally assumeVe = βec w 0. The
space-charge intensity is allowed to be arbitrarily large,
subject only to transverse confinement of the beam ions
by the applied focusing force, and the background elec-
trons are confined in the transverse plane by the space-
charge potentialφ(x, t) due to the excess ion charge. In the
electrostatic approximation, we represent the self-electric
and self-magnetic fields byEs = −∇φ(x, t) andBs =
∇×Az(x, t)êz , respectively. For present purpose, assum-
ing perturbations with long axial wavelength (k2

zr2
b � 1)

and neglecting the perturbed axial force on the charge com-
ponents, the nonlinear Vlasov-Maxwell equation in the
five-dimensional phase space(x,p⊥) can be approximated
by[9, 10, 13]{ ∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥

+ ej∇⊥(φ − βjAz)] · ∂

∂p⊥

}
fj(x,p⊥, t) = 0,

(2)

and

∇2
⊥φ = −4π

∑
j

ej

∫
d2pfj(x,p⊥, t),

∇2
⊥Az = −4π

∑
j

ejβj

∫
d2pfj(x,p⊥, t).

(3)

Here, ∇⊥ = êx∂/∂x + êy∂/∂y and v = Vj êz +
(γjmj)−1p⊥.

2 NONLINEAR δF SIMULATION
METHOD AND THE BEST CODE

In the nonlinearδf formalism, we express the total distribu-
tion function asfj = fj0 + δfj , wherefj0 is aknownso-
lution to the nonlinear Vlasov-Maxwell equations (2) and
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(3), and determine the detailed evolution of the perturbed
distribution functionδfj ≡ fj − fj0. This is accomplished
by advancing the weight function defined bywj ≡ δfj/fj ,
together with the particles’ positions and momenta. The
equations of motion for the particles, obtained from the
characteristics of the nonlinear Vlasov equation (2), are
given by

dxji

dt
= Vj êz + (γjmj)−1p⊥ji,

dp⊥ji

dt
= −γjmjω

2
βjx⊥ji − ej∇⊥(φ − βjAz).

(4)

Here the subscript “ji” labels the i-th simulation particle of
the j-th species. The weight functionswj , as functions of
phase space variables, are carried by the simulation parti-
cles, and the dynamical equations forwj are easily derived
from the definition ofwj and the Vlasov equation (2). Fol-
lowing the algebra in Refs. [4, 5, 6, 7], we obtain

dwji

dt
= −(1 − wji)

1
fj0

∂fj0

∂p⊥
· δ

(dp⊥ji

dt

)
,

δ
(dp⊥ji

dt

)
≡ dp⊥ji

dt

∣∣∣∣∣
(φ,Az)−→(δφ,δAz)

,

(5)

whereδφ = φ − φ0 and δAz = Az − Az0. Here, the
equilibrium solutions (φ0, Az0, fj0 ) solve the steady-state
(∂/∂t = 0) Vlasov-Maxwell equations (2) and (3) with
∂/∂z = 0 and∂/∂θ = 0. A wide variety of axisymmetric
equilibrium solutions to Eqs. (2) and (3) have been investi-
gated in the literature. The perturbed distributionδfj is ob-
tained through the weighted Klimontovich representation

δfj =
Nj

Nsj

Nsj∑
i=1

wjiδ(x − xji)δ(p⊥ − p⊥ji), (6)

whereNj is the total number of actual j-th species particles,
andNsj is the total number ofsimulationparticles for the j-
th species. Maxwell’s equations are also expressed in terms
of the perturbed fields and perturbed density according to

∇2
⊥δφ = −4π

∑
j

ejδnj ,

∇2
⊥δAz = −4π

∑
j

ejβjδnj ,

δnj =
∫

d2pδfj(x,p⊥, t) =
Nj

Nsj

Nsj∑
i=1

wjiU(x,xij).

(7)

Here,U(x,xij) represents the method of distributing par-
ticles on the grids in configuration space. The nonlinear
particle simulations are carried out by iteratively advanc-
ing the particle motions, including the weights they carry,
according to Eqs. (4) and (5), and updating the fields by
solving the perturbed Maxwell’s equations (7) with appro-
priate boundary conditions at the cylindrical conducting

wall. Even though it is a perturbative approach, theδf
method is fully nonlinear and simulates the original non-
linear Vlasov-Maxwell equations. Compared with conven-
tional particle-in-cell simulations, the noise level inδf sim-
ulations is significantly reduced. In addition, theδf method
can be used to studylinear stability properties provided
the factor(1 − wji) in Eq. (5) is approximated by1, and
the forcing term in Eq. (4) is replaced by the unperturbed
force (i.e., advancing particles along the unperturbed or-
bits). Implementation of the 3D multispecies nonlinear
δf simulation method described above is embodied in the
BEST code at the Princeton Plasma Physics Laboratory.
The code advances the particle motions using a 4th-order
Runge-Kutte method, and solves Maxwell’s equations by
a fast Fourier transform and finite-difference method in
cylindrical geometry. Written in Fortran 90/95, the code
utilizes extensively the object-oriented features provided
by the computer language. The NetCDF scientific data
format is implemented for large-scale diagnostics and vi-
sualization. The code has achieved an average speed of
40µs/(particle×step) on a DEC alpha personal workstation
500au computer.

3 SIMULATION RESULTS

For brevity, we present here illustrative simulation results
for a single-species thermal equilibrium ion beam in a con-
stant focusing field. In this case, equilibrium properties
depend on the radial coordinater = (x2 + y2)1/2. The
thermal equilibrium distribution function is given by

fb0(r,p⊥) =
n̂b

2πγbmbTb

×exp
{
−p2

⊥/2γbmb + γbmbω
2
βbr

2/2 + eb(φ0 − βbAz0)
Tb

}
(8)

wheren̂b is the density of beam particles atr = 0, and
Tb is the transverse temperature of the beam ions in energy
units. It is also assumed that the beam is centered inside
a cylindrical chamber with perfectly conducting wall lo-
cated atr = rw. The equilibrium self-field potentialsφ0

andAz0 can be determined numerically from Maxwell’s
equations (3). First, we examine the nonlinear propaga-
tion properties of the beam. A random initial perturbation
is introduced into the system, and the beam is propagated
from t = 0 to t = 500τβ, whereτβ ≡ ω−1

βb . The simula-
tion results show that the perturbations do not grow and the
beam propagates quiescently, which agrees with the nonlin-
ear stability theorem[14, 15] for the choice of equilibrium
distribution function in Eq. (8). Shown in Fig. 1 is a plot of
the change in transverse emittance-squared (normalized by
V 2

b /ω2
βb), δε2 = ε2(t) − ε20 , versus normalized timet/τβ,

for perturbations about the thermal equilibrium distribution
in Eq. (8). The system parameters in Fig. 1 correspond to
protons withγb = 1.85, and normalized beam intensity
Kβbcτβ/ε0 = 0.025, whereK = 2Nbe

2/γ3
b mbβ

2
b c2 is the

self-field perveance, andNb is the number of beam ions per
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unit axial length. The amplitudes of the initial random per-
turbation in weights in Fig. 1 is10−4, which leads to the
very small offset inδε2. It is evident from Fig. 1 that the
variations in beam emittance,δε2, remain extremely small
for perturbations about a thermal equilibrium beam. As a

Figure 1: Plot ofδε2 versust/τβ

second example, we study the linear surface mode for per-
turbations about a thermal equilibrium beam in the space-
charge-dominated regime, with flat-top density profile and
Kβbcτβ/ε0 � 1. These modes are of practical interest be-
cause they can be destabilized by a two-stream electron-ion
interaction when background electrons are present[9, 10].
The BEST code, operating in its linear stability mode, has
recovered very well-defined eigenmodes with mode struc-
tures and eigenfrequencies which agree well with theoret-
ical predications. ForKβbcτβ/ε0 � 1, and azimuthal
mode numberl = 1, the dispersion relation for these modes
is given by[1, 9, 10]

ω = kzVb ± ω̂pb√
2γb

√
1 − r2

b

r2
w

, (9)

whererb is the radius of the beam edge, andrw is location
of the conducting wall. In Eq. (9),̂ω2

pb = 4πn̂be
2
b/γbmb is

the ion plasma frequency-squared, andω̂pb/
√

2γb w ωβb

in the space-charge-dominated limit. Shown in Fig. 2 is
the comparison between plots of the eigenfrequency versus
rw/rb obtained from the simulations (diamonds and trian-
gles) and that predicted by Eq. (9) (solid curves). The pa-
rameters for this case are chosen close to the space-charge
limit with Kβbcτβ/ε0 = 6.59, and the perturbation has
normalized axial wavenumberkzVb/ωβb = 2π. It is clear
from Fig. 2 that the simulation results agree well with the-
ory.

Figure 2: Eigenfrequency versusrw/rb.

4 CONCLUSION AND FUTURE WORK

The BEST code has been tested and applied in different
scenarios. As a 3D multispecies perturbative particle sim-

ulation code, it provides several unique capabilities. Since
the simulation particles are used to simulate only the per-
turbed distribution function and self-fields, the simulation
noise is reduced significantly. The perturbative approach
also enables the code to investigate different physics effects
separately, as well as simultaneously. The code can be eas-
ily switched between linear and nonlinear operation, and
used to study both linear stability properties and nonlinear
beam dynamics. These features, combined with 3D and
multispecies capabilities, provide us with an effective tool
to investigate the electron-ion two-stream instability, pe-
riodically focused solutions in alternating focusing fields,
halo formation, and many other important problems in non-
linear beam dynamics and accelerator physics. Finally, the
BEST code is readily adapted to the case where the ap-
plied focusing force,F foc

j , corresponds to a periodic fo-
cusing quadrapole field or solenoidal field, and the effects
of the axial self-field fieldF s

jz = −êzej∂φ(x, t)/∂z on
the particle dynamics are retained self-consistently. Results
of these studies will be reported in future publications.

5 ACKNOWLEDGMENT

This research was supported by the Department of Energy
and the APT Project and LANSCE Division of Los Alamos
National Laboratory.

6 REFERENCES

[1] R. C. Davidson,Physics of Nonneutral Plasmas(Addison-
Wesley Publishing Co., Reading, MA, 1990), and references
therein.

[2] T. P. Wangler,Principles of RF Linear Accelerators(John
Wiley & Sons, Inc., New York, 1998).

[3] M. Reiser, Theory and Design of Charged Particle Beams
(John Wiley & Sons, Inc., New York, 1994).

[4] W. W. Lee, Q. Qian, and R. C. Davidson, Phys. Lett. A230,
347 (1997).

[5] Q. Qian, W. W. Lee, and R. C. Davidson, Phys. Plasmas4,
1915 (1997).

[6] P. H. Stoltz, W. W. Lee, and R. C. Davidson, Nucl. Instrum.
Methods Phs. Res.415, 433 (1998).

[7] P. H. Stoltz, R. C. Davidson, and W. W. Lee, Phys. Plasmas
6, 298 (1999).

[8] Alex Friedman, private communication.

[9] R. C. Davidson, H. Qin, and T. -S. Wang, Phys. Lett. A252,
213 (1999).

[10] “Kinetic Description of Electron-Proton Instability in High-
Intensity Proton Linacs and Storage Rings Based on the
Vlasov-Maxwell Equations,” R. C. Davidson, H. Qin, P. H.
Stoltz, and T. -S. Wang, submitted for publication (1999).

[11] P. J. Channell, Physics of Plasmas6, 982 (1999).

[12] R. C. Davidson, H. Qin, and P. J. Channell, to be published
(1999).

[13] R. C. Davidson and C. Chen, Parti. Accel.59,175 (1998).

[14] R. C. Davidson, Physical Review Letters81, 991 (1998).

[15] R. C. Davidson, Physics of Plasmas5, 3459 (1998).

1628

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


