Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

KINETIC DESCRIPTION OF ELECTRON-P ROTON INSTABILITY IN
HIGH-INTENSITY LINACS AND STORAGE RINGS

Ronald C. Davidson, Hong Qin, and W. Wei-li Lee
Plasma Physics Laboratory
Princeton University, Princeton, NJ 08543
Tai-Sen F. Wang
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract 2 THEORETICAL MODEL AND

ASSUMPTIONS
The Vlasov-Maxwell equations are used to investigate ) ) ) _
properties of the electron-ion two-stream instability for af N€ present analysis [14] considers a continuous ion beam
continuous, high-intensity ion beam propagating in the Wlth dlstrlbutlop functionf,(x, p, t), and charaqtensﬁc ra-
direction with directed axial velocity;, = G,c through a dius7, and axial momentuny,m; 3¢ propagating in the
background population of (stationary) electrons. The ana:f_—_dlregtm_n th_TOUgh a _background popula’_uon of electr_ons
ysis is carried out for arbitrary beam intensity, consisterith distribution functionf. (x, p,¢). The ions have di-
with transverse confinement of the beam particles, and dfcted axial velocity;, = fyc, and the background elec-
bitrary fractional charge neutralization. Stability properiTons are assumed to be nonrelativistic and stationary with
ties are calculated for dipole perturbations with azimuthal @°pp=fe = 0 in the laboratory frame. Thappliedfocus-
mode numbef = 1 about monoenergetic ion and electrorind force on a beam ion is modeled by
distribution functions. Ffoe = _'Ybnlbw[%bxj_ W 1)
wherex, = zé, + yé, is the transverse displacement,
(75 — 1)mypc? is the ion kinetic energyy, is the ion rest
mass,c is the speed of lighin vacug andwg, = const.

o ) is the effective betatron frequency for the applied focus-
Periodic focusing accelerators and transport systems|[1, nZJg field. Assuming that the ion density exceeds the back-

have a wide range of applications ranging from basic scround electron density, the space-charge force on an elec-
entific research, to applications such as spallation neyy, provides transverse confinement of the background
tron sources, tritium production, and heavy ion fusiong|ectrons by the electrostatic potentisx, ¢). It is fur-
For a one-componenbigh-intensity beam, considerableiher assumed that the ion motion in the beam frame is
progress has been made in describing the self-consistepinrelativistic. The electrostatic potentiaix, t) is de-

evolution of the beam distribution functiofy(x, p,?) and  tarmined self-consistently from Poisson’s equafichy —
the self-generated electric and magnetic fields in kinetig4m(zbnb — n.) , and thez-component of vector poten-

analysesl[1, 3, 4, 5, 6] based on the Vlasov-Maxwell equiyy) 4, (x, ¢) is determined self-consistently froW? A, =
tions. In many practical accelerator applications, howeveL47TZb65bnb . where the electrons are assumed to carry
an (unwanted) second charge component s present. Whgt axial currentin the laboratory frame. Herg(x, ) =

a second charge component is present, it has been rec%:apfb(x’p’t) andn.(x,t) = [d*pf.(x,p,t) are the
nized for many years[7, 8, 9, 10, 11, 12] that the relaj,, ang electron densities, respectively.

tive streaming motion of the high-intensity beam particles gjnq|ly, the stability analysis assumes perturbations with
through the background charge species provides the frggsriciently long axial wavelength and high frequency that
energy to drive the classicalo-streaninstability[13]. k§r§ < 1, |w/ks — Boc| > vrpe, and|w/k.| > vre..

In the present analysis, we apply the Vlasov-MaxwelHere,vry. = (2T5./yms)'/? andvr.. = (2T../me)"/?
equations[1, 14] to describe the self-consistent interactiare the axial thermal speeds of the beam ions and the back-
of the ion and electron distribution functions with the apground electrons, respectively. Furthermore, the perturbed
plied field and the self-generated electric and magnetexial forces are treated as negligibly small, and the anal-
fields. The analysis can be applied to ion beams rangsis neglects the effects of Landau damping due to axial
ing from the emittance-dominated, moderate-intensity pronomentum spread.
ton beams in proton linacs and storage rings, to the low- We make use of these assumptions to simplify the theo-
emittance, space-charge-dominatedion beams in heavy iatical model[14]. First, we introduce the reduced distribu-
fusion. tion functions defined by’ (x, p1,t) = [ dp.f;(x,p,t)
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for j = b, e. Becausef dp.p. f. ~ 0 for the electrons, the Here, 7, andn. = fZ,n, are positive constants corre-

nonlinear Vlasov equation far. (x, p_ , t) is given by sponding to the ion and electron densitigs,= const.
9 pL 9 9 is the fractional charge neutralization, aihd, and 7', .
{5 e Bxs + (eV.1o)- op. }Fe(X7 p1,t) =0, are constants corresponding to the on-gxis= 0) val-

@) ues of the transverse ion and electron temperatures, respec-
tively. Without presenting details[14], some algebraic ma-
where —e is the electron charge, arld, = €,0/9x + nipulation of Egs. (4) — (6) gives the step-function density
é,0/0y. The ions, however, have large directed axial Veprof||93n (r) = f; = const., for0 < r < r,, and

locity Vi, ~ fyc, and the Vlasov equation fdr,(x, p.,t) nd(r) = 0forr, < r < r, andj = be. Here, the

becomes beam radiusrb is related to other equilibrium parameters

0 0 PL 0 2 by © rb = 2le/7bmb andi? rb = 2TJ_e/me, where the
{at Vg 0z + Yomy  OX| (%mbwﬁ boXL 3) (depressed) betatron frequencigand?, are defined by
0
+Zb€vl¢) }Fb(x Pl ) =0. .9 2 1 1
opL Dy =Wy — 5 ?—f pbfconst
b

Here, +Zye is the ion charge, and(x,t) = ¢(x,t) — 1 (7)
By A (x,t). The self-field potentialg(x, t), andy (x, ¢) in P2 = b

Egs. (2) and (3) are determined self-consistently from 2 Zyme

92 92 andw?, = 4mh,Z2e? /yymy is the ion plasma frequency-
<@ > ¢ = —4me (Zb/d2pr /d pF> , squarped.

(1-— f)c?);b = const. ,

2 2
(% a )w—— (éé’ / d*pF, — / deFe> . 4 STABILITY ANALYSIS AND
K @ DISPERSION RELATION

We assume that the beam propagates axially through a pEfr small-amplitude perturbations, a stability analysis pro-
fectly conducting cylindrical pipe with radius= r,,. En- ~ ceeds by linearizing Egs. (2)—(4). Perturbed quantities are
forcing [Ef],—r, = [ES)y=r, = [Bf],=r, = 0 readily expressed agiy(x, t) 0! (r) exp(ik.z + il0 — iwt),
giveso(r = 1y, 0, 2,t) = 0, andep(r = 1,0, 2,t) = 0.  6Fp(x,pL,t) = SF} » (1, pL) exp(ik.z +ilf — iwt), etc.,
Here, the constant values of the potentials at r, have Wherelmw > 0 is assumed, corresponding to instabil-

been taken equal to zero. ity (temporal growth) k. is the axial wavenumber, and
is the azimuthal harmonic number. The linearized Vlasov
3 EQUILIBRIUM PROPERTIES equations are formally integrated by using the method of

characteristics[14]. For perturbations about the monoener-
Under quasisteady equilibrium conditions wiilidt = 0,  getic ion and electron distribution functions in Eq. (6), we
we assume axisymmetric beam propagation and negligibtain[14] the kinetic dispersion relation
ble variation with axial coordinat§) /00 = 0 = 9/0z).

The equilibrium distribution functions for the beam ions { 2 o+ ?)b Fz( k V)} { 2
and background electrons are of the general féffn= 1—(rp/rw)? VD VT = (ro/7w)?
Fl?(HJ_b) andFeo = FS(HJ_S), where o2 o2 A2
A ETw)| = o pETL W — ki Vi)
Hip— — Ly 4z — g0y, 2 vz 55 '
1b 2y IM 2% bW b ) (®)
1 0 0
Hie= 2—mepl —elo”(r) —¢7]. wherew?, = 4rnce?/m.. Here, the ion and electron sus-
(5) ceptibilities are defined by[14]
Here,r = (2 +y?)'/? is the radial distance from the beam
axis, H,;, and H, . are exact single-particle constants of Tf(w — k. Vp) = ~5 Z , g
the motion, and)® = ¢°(r = 0) and¢? = ¢°(r = 0) are o THE—m)
constants. (£ —2m)iy ©)
There is wide latitude in specifying the functional forms [(w — k. Vb) - (6 - 2m)z>b} ’
of the equilibrium distribution functions[14]. In the present N
‘o (£ —2m)D.
analysis, we assume monoenergetic ions and electrons[ (w) = = Z ,
with distribution functions 2 mi( g - w = (€= 2m)ve]
F)(Hyp) = 1 S(Hypy—T1p), for general azimuthal harmonic number
27i7bmb (6) A careful examination[14] of Eq. (8) fai. # 0 shows
FOH,,) = Ne S(H . — Tle) ) that the strongest instability (largest growth rate) occurs for
TMe azimuthal mode numbéer= 1, corresponding to a simple

1624



Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

(dipole) displacement of the beam ions and the backgroua@/Q(wewb)W, which occurs fordk, = 0. For exam-
electrons. Fof = 1, we findT'} (w) = —92/[w? — 2] and  ple, for a proton beaniZ, = 1, m;/m. = 1836) with
Il (w— k. Vp) = —02/[(w — k:V,)? — D2], and introduce relativistic mass factory, = 1.85, a moderate value of
the collective oscillation frequencies defined by normalized beam intensity?, /w3, = 0.1, large wall
radiusr,, /1, — oo and fractional charge neutralization

W= 4 1@2 (1 — i) _ Lowme W2 (1 — fﬁ) f = 0.1, we obtain(/méw)mas = 0.127wgy, correspond-
‘ co2re Lt 2 Zyme P s ing to a particularly virulent growth rate for the electron-
9 .o W 2 ) 1., 1 Tg proton (e-p) instability. For this choice of system parame-
wp =V + ﬁ < - _2) =Wy + 5%pb <f - ?r_g) ters, the central oscillation frequency and wavenumber are
’ "(10) wo = 13.03wg andk.oVh = 14.03ws.
where use is made 6, = (ypms/Zyme) f@2,. Substitut- 5 CONCLUSIONS

ing into Eq. (8) and rearranging terms, the- 1 dispersion

relation can be expressed in the compact form The general kinetic formalism[14] outlined here can also

be applied to perturbations about a wide range of non-

[(w—kV3)? — W2)[w? — w?] = wjlf , (11) mpnoenergetic _equilibrium _distributiqn functions. A de-
tailed, self-consistent stability analysis based on Egs. (2)—
wherew; is defined by (4) for continuously varying profiles is beyond the scope
o 2 of the present article. It is sufficient to note that the
A= 1 f ( Ty ) Wb - a (12) spread in (depressed) betatron frequencies[7, 14] associ-
F= r2 ) Zyme PP ated with continuously varying profiles is expected to lead

to athresholdin beam intensity and/or fractional charge

In the absence of background electroyfs € 0 and o\ yralization for the onset of instability.

wy = 0), Eq. (11) gives stable collective oscillations of

the ion beam with frequenay — k,V, = twy, wherew,

is defined in Eq. (11). Fof # 0, however, the ion and 6 ACKNOWLEDGEMENT
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