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Abstract

The Vlasov-Maxwell equations are used to investigate
properties of the electron-ion two-stream instability for a
continuous, high-intensity ion beam propagating in thez-
direction with directed axial velocityVb = βbc through a
background population of (stationary) electrons. The anal-
ysis is carried out for arbitrary beam intensity, consistent
with transverse confinement of the beam particles, and ar-
bitrary fractional charge neutralization. Stability proper-
ties are calculated for dipole perturbations with azimuthal
mode number̀ = 1 about monoenergetic ion and electron
distribution functions.

1 INTRODUCTION

Periodic focusing accelerators and transport systems[1, 2]
have a wide range of applications ranging from basic sci-
entific research, to applications such as spallation neu-
tron sources, tritium production, and heavy ion fusion.
For a one-componenthigh-intensity beam, considerable
progress has been made in describing the self-consistent
evolution of the beam distribution functionfb(x,p, t) and
the self-generated electric and magnetic fields in kinetic
analyses[1, 3, 4, 5, 6] based on the Vlasov-Maxwell equa-
tions. In many practical accelerator applications, however,
an (unwanted) second charge component is present. When
a second charge component is present, it has been recog-
nized for many years[7, 8, 9, 10, 11, 12] that the rela-
tive streaming motion of the high-intensity beam particles
through the background charge species provides the free
energy to drive the classicaltwo-streaminstability[13].

In the present analysis, we apply the Vlasov-Maxwell
equations[1, 14] to describe the self-consistent interaction
of the ion and electron distribution functions with the ap-
plied field and the self-generated electric and magnetic
fields. The analysis can be applied to ion beams rang-
ing from the emittance-dominated, moderate-intensity pro-
ton beams in proton linacs and storage rings, to the low-
emittance, space-charge-dominated ion beams in heavy ion
fusion.

2 THEORETICAL MODEL AND
ASSUMPTIONS

The present analysis [14] considers a continuous ion beam
with distribution functionfb(x,p, t), and characteristic ra-
dius rb and axial momentumγbmbβbc propagating in the
z-direction through a background population of electrons
with distribution functionfe(x,p, t). The ions have di-
rected axial velocityVb = βbc, and the background elec-
trons are assumed to be nonrelativistic and stationary with∫
d3ppzfe ' 0 in the laboratory frame. Theappliedfocus-

ing force on a beam ion is modeled by

Ffoc = −γbmbω
2
βbx⊥ ,ψ (1)

wherex⊥ = xêx + yêy is the transverse displacement,
(γb − 1)mbc

2 is the ion kinetic energy,mb is the ion rest
mass,c is the speed of lightin vacuo, andωβb = const.
is the effective betatron frequency for the applied focus-
ing field. Assuming that the ion density exceeds the back-
ground electron density, the space-charge force on an elec-
tron, provides transverse confinement of the background
electrons by the electrostatic potentialφ(x, t). It is fur-
ther assumed that the ion motion in the beam frame is
nonrelativistic. The electrostatic potentialφ(x, t) is de-
termined self-consistently from Poisson’s equation∇2φ =
−4πe(Zbnb − ne) , and thez-component of vector poten-
tial Az(x, t) is determined self-consistently from∇2Az =
−4πZbeβbnb , where the electrons are assumed to carry
zero axial current in the laboratory frame. Here,nb(x, t) =∫
d3pfb(x,p, t) andne(x, t) =

∫
d3pfe(x,p, t) are the

ion and electron densities, respectively.
Finally, the stability analysis assumes perturbations with

sufficiently long axial wavelength and high frequency that
k2

zr
2
b � 1, |ω/kz − βbc| � vTbz , and |ω/kz| � vTez .

Here,vTbz = (2Tbz/γbmb)1/2 andvTez = (2Tez/me)1/2

are the axial thermal speeds of the beam ions and the back-
ground electrons, respectively. Furthermore, the perturbed
axial forces are treated as negligibly small, and the anal-
ysis neglects the effects of Landau damping due to axial
momentum spread.

We make use of these assumptions to simplify the theo-
retical model[14]. First, we introduce the reduced distribu-
tion functions defined byFj(x,p⊥, t) =

∫
dpzfj(x,p, t)
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for j = b, e. Because
∫
dpzpzfe ' 0 for the electrons, the

nonlinear Vlasov equation forFe(x,p⊥, t) is given by{ ∂

∂t
+

p⊥
me

· ∂

∂x⊥
+ (e∇⊥φ) · ∂

∂p⊥

}
Fe(x,p⊥, t) = 0 ,

(2)

where−e is the electron charge, and∇⊥ ≡ êx∂/∂x +
êy∂/∂y. The ions, however, have large directed axial ve-
locity Vb ' βbc, and the Vlasov equation forFb(x,p⊥, t)
becomes{ ∂

∂t
+ Vb

∂

∂z
+

p⊥
γbmb

· ∂

∂x⊥
− (

γbmbωβb
2x⊥

+ Zbe∇⊥ψ
) · ∂

∂p⊥

}
Fb(x,p⊥, t) = 0 .

(3)

Here, +Zbe is the ion charge, andψ(x, t) ≡ φ(x, t) −
βbAz(x, t). The self-field potentialsφ(x, t), andψ(x, t) in
Eqs. (2) and (3) are determined self-consistently from(

∂2

∂x2
+

∂2

∂y2

)
φ = −4πe

(
Zb

∫
d2pFb −

∫
d2pFe

)
,

(
∂2

∂x2
+

∂2

∂y2

)
ψ = −4πe

(
Zb

γ2
b

∫
d2pFb −

∫
d2pFe

)
.

(4)

We assume that the beam propagates axially through a per-
fectly conducting cylindrical pipe with radiusr = rw. En-
forcing [Es

θ ]r=rw = [Es
z ]r=rw = [Bs

r ]r=rw = 0 readily
givesφ(r = rw, θ, z, t) = 0, andψ(r = rw, θ, z, t) = 0.
Here, the constant values of the potentials atr = rw have
been taken equal to zero.

3 EQUILIBRIUM PROPERTIES

Under quasisteady equilibrium conditions with∂/∂t = 0,
we assume axisymmetric beam propagation and negligi-
ble variation with axial coordinate(∂/∂θ = 0 = ∂/∂z).
The equilibrium distribution functions for the beam ions
and background electrons are of the general formF 0

b =
F 0

b (H⊥b) andF 0
e = F 0

e (H⊥e), where

H⊥b =
1

2γbmb
p2
⊥ +

1
2
γbmbω

2
βbr

2 + Zbe[ψ0(r) − ψ̂0] ,

H⊥e =
1

2me
p2
⊥ − e[φ0(r) − φ̂0] .

(5)

Here,r = (x2+y2)1/2 is the radial distance from the beam
axis,H⊥b andH⊥e are exact single-particle constants of
the motion, and̂ψ0 ≡ ψ0(r = 0) andφ̂0 ≡ φ0(r = 0) are
constants.

There is wide latitude in specifying the functional forms
of the equilibrium distribution functions[14]. In the present
analysis, we assume monoenergetic ions and electrons,
with distribution functions

F 0
b (H⊥b) =

n̂b

2πγbmb
δ(H⊥b − T̂⊥b) ,

F 0
e (H⊥e) =

n̂e

2πme
δ(H⊥e − T̂⊥e) .

(6)

Here, n̂b and n̂e ≡ fZbn̂b are positive constants corre-
sponding to the ion and electron densities,f = const.
is the fractional charge neutralization, andT̂⊥b and T̂⊥e

are constants corresponding to the on-axis(r = 0) val-
ues of the transverse ion and electron temperatures, respec-
tively. Without presenting details[14], some algebraic ma-
nipulation of Eqs. (4) – (6) gives the step-function density
profiles n0

j(r) = n̂j = const., for 0 ≤ r < rb, and
n0

j(r) = 0 for rb < r ≤ rw, andj = b, e. Here, the
beam radiusrb is related to other equilibrium parameters
by ν̂2

b r
2
b = 2T̂⊥b/γbmb andν̂2

e r
2
b = 2T̂⊥e/me, where the

(depressed) betatron frequenciesν̂b andν̂e are defined by

ν̂2
b = ω2

βb −
1
2

(
1
γ2

b

− f

)
ω̂2

pb = const.,

ν̂2
e =

1
2
γbmb

Zbme
(1 − f)ω̂2

pb = const. ,

(7)

andω̂2
pb = 4πn̂bZ

2
b e

2/γbmb is the ion plasma frequency-
squared.

4 STABILITY ANALYSIS AND
DISPERSION RELATION

For small-amplitude perturbations, a stability analysis pro-
ceeds by linearizing Eqs. (2)–(4). Perturbed quantities are
expressed asδψ(x, t) = δψ̂l(r) exp(ikzz + ilθ − iωt),
δFb(x,p⊥, t) = δF̂ l

b(r,p⊥) exp(ikzz + ilθ − iωt), etc.,
whereImω > 0 is assumed, corresponding to instabil-
ity (temporal growth),kz is the axial wavenumber, andl
is the azimuthal harmonic number. The linearized Vlasov
equations are formally integrated by using the method of
characteristics[14]. For perturbations about the monoener-
getic ion and electron distribution functions in Eq. (6), we
obtain[14] the kinetic dispersion relation

[ 2
1 − (rb/rw)2`

+
ω̂2

pb

`γ2
b ν̂

2
b

Γ`
b(ω − kzVb)

][ 2
1 − (rb/rw)2`

+
ω̂2

pe

`ν̂2
e

Γ`
e(ω)

]
=
ω̂2

pe

`ν̂2
e

· ω̂
2
pb

`ν̂2
b

Γ`
e(ω)Γ`

b(ω − kzVb) .

(8)

whereω̂2
pe = 4πn̂ee

2/me. Here, the ion and electron sus-
ceptibilities are defined by[14]

Γ`
b(ω − kzVb) = − 1

2`

∑̀
m=0

`!
m!(`−m)!

×

(`− 2m)ν̂b

[(ω − kzVb) − (`− 2m)ν̂b]
,

Γ`
e(ω) = − 1

2`

∑̀
m=0

`!
m!(`−m)!

(`− 2m)ν̂e

[ω − (`− 2m)ν̂e]
,

(9)

for general azimuthal harmonic numberl.
A careful examination[14] of Eq. (8) for̂ne 6= 0 shows

that the strongest instability (largest growth rate) occurs for
azimuthal mode number̀= 1, corresponding to a simple
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(dipole) displacement of the beam ions and the background
electrons. For̀ = 1, we findΓ1

e(ω) = −ν̂2
e/[ω

2 − ν̂2
e ] and

Γ1
b(ω − kzVb) = −ν̂2

b /[(ω − kzVb)2 − ν̂2
b ], and introduce

the collective oscillation frequencies defined by

ω2
e ≡ ν̂2

e +
1
2
ω̂2

pe

(
1 − r2b

r2w

)
=

1
2
γbmb

Zbme
ω̂2

pb

(
1 − f

r2b
r2w

)

ω2
b ≡ ν̂2

b +
ω̂2

pb

2γ2
b

(
1 − r2b

r2w

)
= ω2

βb +
1
2
ω̂2

pb

(
f − 1

γ2
b

r2b
r2w

)

(10)

where use is made of̂ω2
pe = (γbmb/Zbme)fω̂2

pb. Substitut-
ing into Eq. (8) and rearranging terms, the` = 1 dispersion
relation can be expressed in the compact form

[(ω − kzVb)2 − ω2
b ][ω2 − ω2

e ] = ω4
f , (11)

whereωf is defined by

ω4
f ≡ 1

4
f

(
1 − r2b

r2w

)2
γbmb

Zbme
ω̂4

pb . (12)

In the absence of background electrons (f = 0 and
ωf = 0), Eq. (11) gives stable collective oscillations of
the ion beam with frequencyω − kzVb = ±ωb, whereωb

is defined in Eq. (11). Forf 6= 0, however, the ion and
electron terms on the left-hand side of Eq. (11) are cou-
pled by theω4

f term on the right-hand side, leading to one
unstable solution withImω > 0 for a certain range of ax-
ial wavenumberkz . It is important to recognize that the
dispersion relation (11) is applicable over a wide range of
normalized beam intensity and fractional charge neutral-
ization. That is, Eq. (11) can be applied to the emittance-
dominated, moderate-intensity ion beams(ω̂2

pb/ω
2
βb . 0.2,

say) in proton linacs and storage rings. On the other hand,
Eq. (11) can also be applied to the low-emittance, very
high-intensity ion beams (̂ω2

pb/ω
2
βb approaching2γ2

b , for
f = 0) envisioned for heavy ion fusion.

A careful examination of Eq. (11) shows that the
unstable, positive-frequency branch has frequency and
wavenumber(ω, kz) closely tuned to the values(ω0, kz0)
defined byω0 = +ωe andω0 − kz0Vb = −ωb. In this
regime, expressingω = ω0 + δω andkz = kz0 + δkz , and
assuming|δω| � 2ωe, the dispersion relation (11) is given
to good approximation by

δω(δω − δkzVb)[1 − (δω − δkzVb)/2ωb]

= −Γ2
0 ≡ − ω4

f

4ωeωb
.

(13)

At moderate beam intensities withΓ2
0 � 1, the unstable

solution to Eq. (13) satisfies|δω − δkzVb| � 2ωb. In
this regime, Eq. (13) can be approximated by the quadratic
form δω(δω − δkzVb) = −Γ2

0 ≡ −ω4
f/4ωeωb. This

quadratic dispersion relation supports an unstable solu-
tion with growth rateImδω = Γ0[1 − (δkzVb/2Γ0)2]1/2

for δkz in the (symmetric) interval,−2Γ0 < δkzVb <
2Γ0. The maximum growth rate is(Imδω)max = Γ0 ≡

ω2
f/2(ωeωb)1/2, which occurs forδkz = 0. For exam-

ple, for a proton beam(Zb = 1, mb/me = 1836) with
relativistic mass factorγb = 1.85, a moderate value of
normalized beam intensitŷω2

pb/ω
2
βb = 0.1, large wall

radiusrw/rb → ∞ and fractional charge neutralization
f = 0.1, we obtain(Imδω)max = 0.127ωβb, correspond-
ing to a particularly virulent growth rate for the electron-
proton (e-p) instability. For this choice of system parame-
ters, the central oscillation frequency and wavenumber are
ω0 = 13.03ωβb andkz0Vb = 14.03ωβb.

5 CONCLUSIONS

The general kinetic formalism[14] outlined here can also
be applied to perturbations about a wide range of non-
monoenergetic equilibrium distribution functions. A de-
tailed, self-consistent stability analysis based on Eqs. (2)–
(4) for continuously varying profiles is beyond the scope
of the present article. It is sufficient to note that the
spread in (depressed) betatron frequencies[7, 14] associ-
ated with continuously varying profiles is expected to lead
to a thresholdin beam intensity and/or fractional charge
neutralization for the onset of instability.
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