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Abstract

We describe a method for estimation of the discovery potential on new physics in planned experiments.

The effective significance of signal for given probability of observation is proposed for planned ex-

periments instead of the usual significances S1 =
ns√
nb

and S2 =
ns√

ns + nb

, where ns and nb are

the average numbers of signal and background events. Application of the test of equal-probability

allows to estimate the exclusion limits on new physics. We also estimate the influence of systematic

uncertainty related to nonexact knowledge of signal and background cross sections on the discovery

probability of new physics in planned experiments. An account of such systematics is very essential

in the search for supersymmetry at LHC.
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1 Introduction

One of the common goals in the forthcoming experiments is the search for new phenomena. In the forthcoming

high energy physics experiments (LHC, TEV22, NLC, ...) the main goal is the search for physics beyond the

Standard Model (supersymmetry, Z ′-, W ′-bosons, ...) and the Higgs boson discovery as a final confirmation of

the Standard Model. In estimation of the discovery potential of the planned experiments (to be specific in this

paper we shall use as an example CMS experiment at LHC [1]) the background cross section (the Standard Model

cross section) is calculated and for the given integrated luminosity L the average number of background events is

nb = σb · L. Suppose the existence of a new physics leads to additional nonzero signal cross section σs with the

same signature as for the background cross section that results in the prediction of the additional average number

of signal events 1) ns = σs · L for the integrated luminosity L.

The total average number of the events is < n >= ns+nb = (σs +σb) ·L. So, as a result of new physics existence,

we expect an excess of the average number of events. In real experiments the probability of the realization of n

events is described by Poisson distribution [2, 3]

f(n; λ) =
λn

n!
e−λ. (1)

Here λ =< n > is the average number of events. Remember that the Poisson distribution f(n; λ) gives [2]

the probability of finding exactly n events in the given interval of (e.g. space and time) when the events occur

independently of one another at an average rate of λ per the given interval. For the Poisson distribution the

variance σ2 equals to λ. So, to estimate the probability of the new physics discovery we have to compare the

Poisson statistics with λ = nb and λ = nb + ns. Usually, high energy physicists use the following “significances”

for testing the possibility to discover new physics in an experiment:

(a) “significance” S1 =
ns√
nb

[1, 4],

(b) “significance” S2 =
ns√

ns + nb

[5],

(c) “significance” 2 · S12 = 2(
√

ns + nb −
√

nb) [6, 7].

A conventional claim is that for S1 (S2) ≥ 5 we shall discover new physics (here, of course, the systematic

uncertainties are ignored). For nb � ns the significances S1 and S2 coincide (the search for Higgs boson through

the h → γγ signature). For the case when ns ∼ nb, S1 and S2 differ. Therefore, a natural question arises: what

is the correct definition for the significance S1, S2 or anything else ?

1) It should be noted that the existence of new physics can also lead to the decrease of the cross section due to destructive

interference or some nonlocal formfactors. In this paper we consider the case when the new physics existence leads to

additional positive contribution to the background cross section. The consideration of the opposite case is straightforward.
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It should be noted that there is a crucial difference between the planned experiment and the real experiment. In the

real experiment the total number of events nobs is a given number (already has been measured) and we compare it

with nb when we test the validity of the standard physics. So, the number of possible signal events is determined

as ns = nobs − nb and it is compared with the average number of background events nb. The fluctuation of the

background is σfb =
√

nb, therefore, we come to the S1 significance as the measure of the distinction from the

standard physics. In the conditions of the planned experiment when we want to search for new physics, we know

only the average number of the background events and the average number of the signal events, so we have to

compare the Poisson distributions f(n; nb) and f(n; ns + nb) to determine the probability to find new physics in

planned experiment.

In this paper we describe a method for estimation of the discovery potential and exclusion limits on new physics

in planned experiments. The effective significance of signal for given probability of observation is proposed for

planned experiments instead of the usual significances S1 =
ns√
nb

and S2 =
ns√

ns + nb

, where ns and nb are

the average numbers of signal and background events. We also estimate the influence of systematic uncertainties

related to nonexact knowledge of signal and background cross sections on the probability to discover new physics

in planned experiments. An account of such systematics is very essential in the search for supersymmetry at LHC.

The organization of the paper is the following. In the next Section mainly due to completeness we discuss the case

of real experiment. In Section 3 we describe a method for the estimation of new physics discovery potential in

planned experiment. Section 4 deals with estimation of exclusion limit. In Section 5 we estimate the influence

of the systematics related to nonexact knowledge of the signal and background cross sections on the probability

to discover new physics and set up exclusion limits on new physics in planned experiments. Section 6 contains

concluding remarks.

2 New physics discovery in real experiment

In this section well known situation with real experiment is reminded to pedagogical reasons. Consider the case

when the average number λ of the events in the Poisson distribution (1) is big λ � 1. In this case the Poisson

distribution (1) approaches the Gaussian distribution

fG(n; µ, σ) =

∫ n+0.5

n−0.5

PG(x; µ, σ2)dx, (2)

with PG(x; µ, σ2) = 1
σ
√

2π
· e−

(x−µ)2

2σ2 , µ = σ2, µ = λ and n ≥ 0. Note that for the Poisson distribution the

mean equals to the variance. According to common definition [3] new physics discovery corresponds to the case

when the probability that background can imitate signal is less than 5σ (here of course we neglect any possible

systematic uncertainties). Suppose we have observed some excess of events nobs > nb. The probability that for
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the background nb we shall observe events with n ≥ nobs is determined by standard formula

P (n ≥ nobs) =

∫ ∞

nobs

PG(x; nb, nb)dx =
1√
2π

∫ ∞

S1

exp(−x2/2)dx, (3)

where

S1 =
nobs − nb√

nb

≡ ns√
nb

(4)

According to common definition for S1 ≥ 5 the Standard Model is excluded (the probability that background can

imitate signal is less than 2.85 · 10−7) and we have new physics discovery 2).

Suppose some model with new physics predicts λ = ns + nb and

|nobs − ns − nb| ≤ k1 · σs+b, (5)

then for k1 = 1.64 (k1 = 1.96) the model with “new physics” agrees with experimental data at 90% C.L. ( 95%

C.L.). Here σ2
s+b = ns + nb.

For S1 ≥ 2 (S1 ≥ 3 ) in formula (3) the probability that background can imitate signal is less than 2.28% ( 0.14%)

and according to our definition we have weak (strong) evidence in favor of new physics.

Suppose that the measured number of events is such that

|nobs − nb| ≤ (k1 = 1.96) · (σb =
√

nb) (6)

It means that the Standard Model agrees at 95 % C.L. with experimental measurement. In this case we can also

obtain exclusion limit on new physics (limit on the average number of signal events ns) . Namely, for λ = ns + nb

we require that

|nobs − ns − nb| ≤ (k1 = 1.96) · (σs+b =
√

ns + nb) (7)

From the equation (7) we obtain 95% C.L. upper bound on the average number ns of signal events.

Consider now the case of the Poisson distribution (1). Suppose we have measured the number of events nobs > nb

(an excess of events). We define the statistical significance s of a signal [8] in the Standard Model by

1√
2π

∫ ∞

s

exp(−x2/2)dx =

∞
∑

k=nobs

f(k; nb). (8)

The formula (8) is nothing but the probability to observe n ≥ nobs of background events in an identical independent

experiments. Note that s is a function on nobs and nb, s = s(nobs, nb). If s ≥ 5 then by common definition we

have new physics discovery. For s ≥ 2 (s ≥ 3) according to our definition we have weak(strong) evidence in favor

of new physics. If the model with additional ns signal events obeys the inequality

|s(nobs, ns + nb)| ≤ (k1 = 1.96) (9)
2) Here we neglect any possible systematic uncertainties.
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then the model with new physics agrees at 95% C.L. with an experiment.

Suppose that we have observed the number of events compatible at 95% C.L. with the Standard Model, i.e.

s(nobs, nb) ≤ (k1 = 1.96). (10)

In this case one can obtain at 95% C.L. exclusion limit on the average number of signal events ns from the

inequality

s(nobs, ns + nb) ≤ (k1 = 1.96). (11)

3 Planned experiments.

As it has been mentioned in the introduction the crucial difference between planned experiment and real experiment

is that in real experiment we know the number of observed events, therefore we can compare the Standard Model

with experimental data directly, whereas in the case of planned experiment we know only the average number

of background events nb and the average number of signal events (for the case when we have new physics in

addition to the Standard Model). Therefore in the case of planned experiment an additional “input” parameter is

the probability of the discovery. Suppose we test two models: the Standard Model with the average number of

events λ = nb and the model with new physics and the average number of events λ = ns + nb.

To discover new physics we have to require that the probability β(∆) of the background fluctuations for n > n0(∆)

is less than ∆, namely

β(∆) =
∞
∑

n=n0(∆)+1

f(n; nb) ≤ ∆ (12)

The probability 1 − α(∆) that the number of events in a model with new physics will be bigger than n0(∆) is

equal to

1 − α(∆) =

∞
∑

n=n0(∆)+1

f(n; ns + nb) (13)

It should be stressed that if ∆ is a given number then α(∆) is a function of ∆ or vice versa we can fix the value

of α in formula (13) then ∆ is a function of α. The meaning of the probability of the discovery 1 − α is the

probability that in the case of new physics an experiment will measure the number of events bigger than n0 such

that the probability that the Standard Model can reproduce such number of events is rather small (β).

In other words we choose the critical value n0 for hypotheses testing3) about observability of new physics requiring

that Type II error β ≤ ∆. Then we calculate the Type I error α and the probability of discovery (or evidence) 1−α.
3) A simple statistical hypothesis H0 (new physics is present, i.e. λ = ns + nb) against a simple alternative hypothesis H1

(new physics is absent, i.e. λ = nb) [2].
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For fixed value of α and known values of ns, nb we can calculate β using formulae (12,13). In our numerical

calculations we take α = 0.5; 0.25; 0.1; 0.05. Consider now the limiting case nb � 1 when Poisson distribution

approaches Gaussian distribution. The equations (12,13) take the form

β ≈
∫ ∞

n0

PG(x; nb, nb)dx (14)

1 − α ≈
∫ ∞

n0

PG(x; ns + nb, ns + nb)dx (15)

Consider at first the most simple case when α = 0.5 (see Figs.1-2 for an illustration). For α = 0.5 parameter n0

in formula (15) is equal to n0 = ns + nb. The equation (14) takes the form

β ≈
∫ ∞

S1

PG(x; 0, 1)dx, (16)

where

S1 =
ns√
nb

(17)

The significance S1 is determined by the formula (17) and it is often used in experiment proposals [1, 4].

For 1 − α > 0.5 (see Fig.3 for an illustration) the parameter n0 in formula (14) is equal to

n0 = ns + nb − k(α)
√

ns + nb, (18)

where k(α): k(0.5) = 0; k(0.25) = 0.66; k(0.1) = 1.28; k(0.05) = 1.64 (as an example, Tab.28.1 [3]). The

effective significance s in the equation (8) (i.e. corrected significance S1, corresponding the discovery probability

1 − α) has the form

s =
ns√
nb

− k(α)

√

1 +
ns

nb

(19)

So, we see that the asymptotic formula (17) for the significance s is valid only for 1 − α = 0.5.

As it has been shown in refs. [9, 10] the more proper of the significance in planned experiments is 2 · S12. The

generalization of this significance to the case of 1 − α > 0.5 looks very attractive for approximate estimation of

discovery potential

s = 2 · (
√

ns + nb −
√

nb) − k(α). (20)

The comparison of formulae (19,20) is shown in Fig.4.

It should be stressed that very often in the conditions of planned experiment the average numbers of background

and real events are not very big and we have to solve the equations (12, 13) directly to construct 5σ discovery, 3σ

strong evidence and 2σ weak evidence curves. Our numerical results are presented in Figs. (5 - 10).
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Figure 1: The case nb � 1. Poisson distributions with parameters λ = 1000 (left) and λ = 1064 (right). Here

1 − α = 0.5 and β = 0.02275 (i.e. S1 = 2).
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Figure 2: The case nb � 1. Dependences ns versus nb for S1 = 5, S1 = 3 and S1 = 2 coincide with 5σ discovery,

3σ strong evidence, and 2σ weak evidence curves, correspondingly. The probability of discovery 1 − α = 0.5.
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Figure 3: The case nb � 1 and S1 = 2.72. Poisson distributions with parameters λ = 1000 (left) and λ = 1086

(right). Here 1 − α = 0.75 and β = 0.02275 (i.e. effective s = 2).
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Figure 4: The estimation of effective significance s for given β and 1 − α.
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Figure 5: The 5σ discovery curve and dependences ns versus nb for S1 = 5, S2 = 5, 2·S12 = 5. Here 1−α = 0.5

and β = 2.85 · 10−7.
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Figure 6: The 3σ strong evidence curve and dependences ns versus nb for S1 = 3, S2 = 3, 2 · S12 = 3. Here

1 − α = 0.5 and β = 0.00135.
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Figure 7: Dependences ns versus nb for 1 − α = 0.5 and for different values of β.
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Figure 8: Dependences ns versus nb for 1 − α = 0.75 and for different values of β.
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Figure 9: Dependences ns versus nb for 1 − α = 0.9 and for different values of β.
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Figure 10: Dependences ns versus nb for 1 − α = 0.95 and for different values of β.
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As an example consider the search for standard Higgs boson with a mass mh = 110 GeV using the h → γγ

decay mode at the CMS detector. For total luminosity L = 3 · 104pb−1(2 · 104pb−1) one can find [1] that

nb = 2893(1929), ns = 357(238), S1 =
ns√
nb

= 6.6(5.4). Using the formula (19) and Table of the standard

normal probability density function [2] we find that 1 − α(∆dis) = 0.93(0.60). It means that for total luminosity

L = 3 · 104pb−1(2 · 104pb−1) the CMS experiment will discover at ≥ 5σ level standard Higgs boson with a mass

mh = 110 GeV with a probability 93(60) percents 4).

For the case when we are interested in estimation of the lower bound on number ns of signal events (bound on new

physics) we can use the equations

1 − α(∆) =

∞
∑

n=n0(∆)+1

f(n; nb + ns) (21)

β(∆) =

∞
∑

n=n0(∆)+1

f(n; nb) ≥ ∆ (22)

4 Exclusion limits.

It is important to know the range in which the planned experiment can exclude the presence of signal at the given

confidence level (1− ε). It means that we will have uncertainty in future hypotheses testing about non observation

of signal equals to or less than ε. In refs.[11, 12] different methods to derive exclusion limits in prospective

studies have been suggested. As is seen from Fig.11 the essential differences in values of the exclusion limits

take place. Let us compare these methods by the use of the equal probability test [9]. In order to estimate the

various approaches of the exclusion limit determination we suppose that new physics exists, i.e. the value ns

equals to one of the exclusion limits from Fig.11 and the value nb equals to the corresponding value of expected

background. Then we apply the equal probability test (f(n0; ns + nb) = f(n0; nb)) to find critical value n0 for

hypotheses testing in planned measurements (Fig.12). Here a zero hypothesis H0 is the statement that new physics

exists and an alternative hypothesis H1 is the statement that new physics is absent. After the calculation of the

Type I error α (the probability that the number of the observed events will be equal or less than the critical value

n0) and the Type II error β (the probability that the number of the observed events will bigger than the critical

value n0 in the case of the absence of new physics) we can compare the methods. For this purpose the relative

uncertainty [9] κ̃ =
α + β

2 − (α + β)
which will take place under hypotheses testing H0 versus H1 is calculated. This

relative uncertainty κ̃ in case of applying the equal-probability test is a minimal relative value of the number of

wrong decisions in the future hypotheses testing for Poisson distributions. It is the uncertainty in the observability

4) In other words let us suppose that we have constructed 100 identical CMS detectors. At ≥ 5σ level the Higgs boson will be

discovered at 93(60) CMS detectors
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of the new phenomenon. Note the 1 − κ̃ (the relative number of correct decisions) is a distance between two

distributions (the measure of distinguishability of two Poisson processes) in frequentist sense.

In Table 1 the result of the comparison is shown. As is seen from this Table the ”Typical experiment” approach [12]

gives too small values of the exclusion limit. The difference in the 90% CL definition is the main reason of the

difference between our results and the results from ref. [11]. We require that κ̃ equals to ε, i.e. we use only one

parameter (ε) as measure of uncertainty in the hypotheses testing. In ref [11] the criterion β < ∆ and
α

1 − β
< ε

for determination of the exclusion limits has been applied. It means the experiment will observe with probability

at least 1 − ∆ at most a number of events such that the limit obtained at the 1 − ε confidence level excludes the

corresponding signal. In this case two parameters (ε, ∆) are required to construct exclusion limits. Nevertheless,

we have got results close to [11] 5).

5 An account of systematic uncertainties related to nonexact knowledge

of background and signal cross sections

In the previous sections we took into account only statistical fluctuation in the number of signal and background

events and did not take into account other uncertainties. There is considered the systematic uncertainty 6) in

planned experiments due to imperfect knowledge of the background and signal cross sections.

We investigate the influence of the systematic uncertainties related to nonexact knowledge of the background and

signal cross sections on the discovery potential in planned experiments. Denote the Born background and signal

cross sections as σ0
b and σ0

s . An account of one loop corrections leads to σ0
b → σ0

b (1+ δ1b) and σ0
s → σ0

s (1+ δ1s),

where typically δ1b and δ1s are O(0.5) for the LHC. Two loop corrections for most reactions at present are not

known. So, we can assume that the uncertainty related with nonexact knowledge of cross sections is around δ1s

and δ1b correspondingly. In other words we assume that exact cross sections lie in the intervals (σb, σb(1+δb)) and

(σs, σs(1 + δs)), where σb and σs are calculated at Born or one loop level of the accuracy. The average number of

background and signal events lie in the intervals (nb, nb(1+δb)), (ns, ns(1+δs)), where nb = σb ·L, ns = σs ·L.

To determine the new physics discovery potential we again have to compare two Poisson distributions with and

without new physics. Contrary to the Section 3 we have to compare the Poisson distributions in which the average

numbers lie in some intervals. It means that we have to find the critical value n0 and to estimate the influence of

5) The using κ = α + β as measure of uncertainty [9] gives a somewhat different results.

6) In ref. [13] the systematic uncertainty is the uncertainty in the sensitivity factor. This uncertainty has statistical properties

which can be measured or estimated. The systematic effects in ref. [14] as supposed has stochastic behaviour too. The

account for statistical uncertainties due to statistical errors in determination of values nb and ns [10] implies the existence

of conditional probability for parameter of Poisson distribution. We consider here forthcoming experiments to search for

new physics. In this case the systematic uncertainties has theoretical origin without any statistical properties.
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Figure 11: Estimations of the 90% CL exclusion limit on the signal in a future experiment as a function of the

expected background. The method proposed in ref. [12] gives the values of exclusion limit close to ”Typical

experiment” approach.

Figure 12: Equal probability test for the case nb = 11 and ns = 10.61 gives the critical value n0 = 16 and,

correspondingly, the relative uncertainty κ̃ = 0.1. It means if we observed nobs ≤ n0 events in planned experiment

we exclude the signal with average ns = 10.61 and above at 90%CL.
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systematic uncertainty on the discovery probability. A priori the only thing we know is that the average number of

background and signal events lie in some intervals but we do not know the exact values of the average background

and signal events. Moreover we can not say anything about probability distributions of possible values nb and ns

in this interval. Such distribution is absent.

An account of uncertainties related to nonexact knowledge of background and signal cross sections is straight-

forward and it is based on the results of Section 3. Suppose uncertainty in the calculation of exact background

cross section is determined by parameter δ, i.e. the exact cross section lies in the interval (σb, σb(1 + δ)) and the

exact value of average number of background events lies in the interval (nb, nb(1 + δ)). Let us suppose nb � ns.

In this instance the discovery potential most sensitive to the systematic uncertainties. Because we know nothing

about possible values of average number of background events, we consider the worst case. Taking into account

formulae (12) and (13) we have the formulae 7)

β(∆) =

∞
∑

n=n0(∆)+1

f(n; nb(1 + δ)) ≤ ∆ (23)

1 − α(∆) =

∞
∑

n=n0(∆)+1

f(n; nb + ns) (24)

This approach allows estimate the scale of influence of background uncertainty to observability of signal. As an

application of formulae (23,24) consider the case nb = ns = 100 (typical case for the search for supersymmetry

at LHC). For such values of ns and nb and for δ= 0., 0.1, 0.25, 0.5 we find that 1 − α(∆dis) = 0.9996, 0.9924,

0.8476, 0.137, correspondingly. So, we see that the uncertainty in the calculations of background cross section is

extremely essential for the determination of the LHC discovery potential. Some other examples are presented in

Tables 2-7 and in Figs.13-14.

6 Conclusions

In this paper we have described a method to estimate the discovery potential and exclusion limits on new physics

in planned experiments where only the average number of background nb and signal events ns is known. We have

found that in this case the more proper definition of the significance (for α = 0.5) is 2 · S12 = 2(
√

ns + nb −
√

nb) in comparison with often used expressions for the significances S1 =
ns√
nb

and S2 =
ns√

ns + nb

. For

1 − α > 0.5 we have additional additive contribution to the significance (see approximate formulae 19-20 of

estimation of discovery potential for given discovery probability). As a result, the effective significance s of

signal for given probability of observation is proposed. The results of direct calculations of dependences ns

7) Formulae (23,24) realize the worst case when the background cross section σb(1 + δ) is the maximal one, but we think that

both the signal and the background cross sections are minimal
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Figure 13: Discovery probability versus ns for different values of systematic uncertainty δ for the case S1 = 5.
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Figure 14: Discovery probability versus ns for different values of systematic uncertainty δ for the case ns = nb.
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versus nb for different discovery probabilities and significances are presented. We also estimate the influence of

systematic uncertainty related to nonexact knowledge of signal and background cross sections on the probability

to discover new physics in planned experiments. An account of such kind of systematics is very essential in the

search for supersymmetry and leads to an essential decrease in the probability to discover new physics in future

experiments. The texts of programs and scripts for testing jobs can be found in http://home.cern.ch/bityukov or

file:/afs/cern.ch/user/b/bityukov/public/durham/ .
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Table 1: The comparison of the different approaches to determination of the exclusion limits. The α and the β are

the Type I and the Type II errors under the equal probability test. The κ̃ equals to
α + β

2 − (α + β)
.

this paper ref. [11] ref. [12]

nb ns α β κ̃ ns α β κ̃ ns α β κ̃

1 4.31 0.10 0.08 0.10 4.45 0.09 0.08 0.09 3.30 0.20 0.08 0.16

2 5.54 0.13 0.05 0.10 5.50 0.13 0.05 0.10 3.90 0.16 0.14 0.18

3 6.32 0.10 0.08 0.10 6.40 0.09 0.08 0.10 4.40 0.14 0.18 0.19

4 7.19 0.13 0.05 0.10 7.25 0.13 0.05 0.10 4.80 0.23 0.11 0.20

5 7.71 0.11 0.07 0.10 7.90 0.10 0.07 0.09 5.20 0.20 0.13 0.20

6 8.26 0.10 0.08 0.10 8.41 0.09 0.08 0.10 5.50 0.19 0.15 0.20

7 8.83 0.08 0.10 0.10 9.00 0.08 0.10 0.10 5.90 0.17 0.17 0.20

8 9.36 0.12 0.06 0.10 9.70 0.10 0.06 0.09 6.10 0.17 0.18 0.21

9 9.76 0.11 0.07 0.10 10.16 0.09 0.07 0.09 6.40 0.16 0.20 0.22

10 10.17 0.10 0.08 0.10 10.50 0.09 0.08 0.09 6.70 0.22 0.14 0.22

11 10.61 0.08 0.11 0.10 10.80 0.08 0.09 0.10 6.90 0.21 0.15 0.22
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Table 2: The dependence of 1 − α(∆dis) on ns and nb for S1 = 5 and different values of δ. ∆dis = 2.85 · 10−7.

ns nb δ = 0.0 δ = 0.1 δ = 0.25 δ = 0.5

5 1 0.1528 0.1528 0.0839 0.0426

10 4 0.2441 0.1728 0.0765 0.0288

15 9 0.2323 0.1775 0.0678 0.0206

20 16 0.2737 0.1783 0.0609 0.0071

25 25 0.3041 0.1779 0.0424 0.0020

30 36 0.3273 0.1480 0.0315 0.0005

35 49 0.3456 0.1502 0.0192 0.0001

40 64 0.3603 0.1305 0.0098

45 81 0.3725 0.1157 0.0068

50 100 0.3828 0.1042 0.0032

55 121 0.3915 0.0833 0.0015

60 144 0.3990 0.0773 0.0008

65 169 0.4055 0.0640 0.0004

70 196 0.4113 0.0538 0.0002

75 225 0.4163 0.0459 0.0001

80 256 0.4209 0.0397

85 289 0.4249 0.0310

90 324 0.4286 0.0246

95 361 0.4319 0.0197

100 400 0.4350 0.0161

150 900 0.4550 0.0011
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Table 3: The dependence of 1 − α(∆dis) on ns and nb for S2 ≈ 5 and different values of δ.

ns nb δ = 0. δ = 0.1 δ = 0.25 δ = 0.5

26 1 1.0000 1.0000 0.9999 0.9998

29 4 0.9992 0.9983 0.9940 0.9825

33 9 0.9909 0.9856 0.9524 0.8786

37 16 0.9725 0.9473 0.8491 0.5730

41 25 0.9418 0.8806 0.6606 0.2457

45 36 0.9016 0.7622 0.4705 0.0696

50 49 0.8774 0.7058 0.3208 0.0222

55 64 0.8546 0.6206 0.1909 0.0044

100 300 0.6803 0.1110 0.0001

150 750 0.6224 0.0084

Table 4: ns = 1
5 · nb. The dependence of 1 − α(∆dis) on ns and nb for different values of δ.

ns nb δ = 0. δ = 0.1

50 250 0.0319 0.0003

100 500 0.2621 0.0023

150 750 0.6224 0.0084

200 1000 0.8671 0.0232

250 1250 0.9644 0.0513

300 1500 0.9926 0.0920

350 1750 0.9988 0.1500

400 2000 0.9998 0.2156
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Table 5: ns = 1
10 · nb. The dependence of 1 − α(∆dis) on ns and nb.

ns nb δ = 0.

50 500 0.0030

100 1000 0.0327

150 1500 0.1214

200 2000 0.2781

250 2500 0.4721

300 3000 0.6514

350 3500 0.7919

400 4000 0.8878
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Table 6: ns = nb. The dependence of 1 − α(∆dis) on ns and nb for different values of δ.

ns nb δ = 0. δ = 0.1 δ = 0.25 δ = 0.5

2 2 0.0009 0.0003 0.0001 0.00002

4 4 0.0037 0.0016 0.0003 0.00003

6 6 0.0061 0.0030 0.0007 0.00006

8 8 0.0131 0.0075 0.0022 0.00013

10 10 0.0343 0.0135 0.0027 0.0002

12 12 0.0467 0.0206 0.0050 0.0003

14 14 0.0822 0.0283 0.0080 0.0004

16 16 0.0956 0.0512 0.0116 0.0007

18 18 0.1401 0.0609 0.0156 0.0007

20 20 0.1904 0.0925 0.0200 0.0012

24 24 0.3005 0.1402 0.0395 0.0017

28 28 0.4122 0.2280 0.0655 0.0031

32 32 0.5166 0.2821 0.0969 0.0050

36 36 0.6089 0.3773 0.1323 0.0054

40 40 0.7268 0.4703 0.1704 0.0076

50 50 0.8762 0.6688 0.2872 0.0181

60 60 0.9477 0.8309 0.4397 0.0332

70 70 0.9831 0.9067 0.5784 0.0520

80 80 0.9949 0.9575 0.6929 0.0737

100 100 0.9997 0.9938 0.8641 0.1527

150 150 1.0000 1.0000 0.9914 0.4163
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Table 7: ns = 0.5 · nb. The dependence of 1 − α(∆dis) on ns and nb for different values of δ.

ns nb δ = 0. δ = 0.1 δ = 0.25

2 4 0.0002 0.0001 0.0000

4 8 0.0003 0.0001 0.0000

6 12 0.0010 0.0002 0.0000

8 16 0.0017 0.0005 0.0000

10 20 0.0040 0.0009 0.0001

12 24 0.0071 0.0012 0.0001

14 28 0.0111 0.0023 0.0001

16 32 0.0156 0.0025 0.0002

18 36 0.0206 0.0039 0.0002

20 40 0.0341 0.0056 0.0003

24 48 0.0589 0.0099 0.0003

28 56 0.0885 0.0149 0.0005

32 64 0.1107 0.0259 0.0008

36 72 0.1796 0.0329 0.0013

40 80 0.2171 0.0482 0.0016

50 100 0.3828 0.1042 0.0032

60 120 0.5396 0.1753 0.0061

70 140 0.6947 0.2539 0.0099

80 160 0.8076 0.3578 0.0144

100 200 0.9311 0.5537 0.0319

150 300 0.9979 0.8861 0.1153
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