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A.C. Loss in a Stack of Flat Superconducting Cables
Alexander A. Akhmetov

Abstract—An equation has been derived which describes the
current distribution in a flat cable subjected to a time-dependent
magnetic field directed perpendicular to the cable wide face. So-
lutions of this equation obtained in the case when all parameters
are uniform along the cable allow us to obtain the time constant
spectrum, magnetic moment of the cable and A.C. loss. For a stack
of cables with height much larger than the cable width, the con-
tribution of the self-screening is calculated analytically. Numerical
examples are provided based on geometrical characteristics and
interstrand contact resistance of a typical LHC cable and the in-
ductance of the LHC dipole.

Index Terms—A.C. loss, coupling currents, superconducting ca-
bles.

I. INTRODUCTION

FOR THE last decade lumped circuit models [1]–[6] have
been developed to describe eddy currents in a flat super-

conducting -strand cable subjected to background magnetic
field variations. These models divide each strand of the cable
into 1 finite elements. The elements belonging to dif-
ferent strands are connected via lumped resistances. The mag-
netic field density in the vicinity of these elements is discretized
and represented in the calculations by the finite array of num-
bers of rank , where , . Due to its size, the
resulting set of Faraday equations often has to be written in
matrix form [2], [3].

As an alternative, the cable strands are considered as con-
tinuous entities. differential one-dimensional equations de-
scribe currents in the strands as functions of time and posi-
tion along the cable [7], [8] while inter-strand resistances are
smeared along the cable. These equations are also treated in ma-
trix form, sometimes in combination with FEM [8]. The present
paper attempts to show that the transition to a totally continuous
model is possible. It results in a single 2-D equation describing
the current distribution in a flat cable subjected to a time-de-
pendent magnetic field directed perpendicular to the cable wide
face.

II. BASIC EQUATION

Fig. 1 shows a schematic rendering of a flat cable. Solid lines
ascending from the left to the right represent the strands of
one (say, the front) layer. The other strands form the rear layer.
The filled circles represent physically present electrical contacts
with the resistance between layers. The other types of circles
show fictional contacts. The nonfilled circles placed at the cable
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Fig. 1. A schematic view of a flat two-layer cable. Contacts marked and

are fictional.

edges symbolize the contacts which are absent in the real cables.
Instead, strands go around the edge from one layer to the other
without any resistance. However, for the following it is conve-
nient to assume that there are contacts, which carry no current
[9].

Other fictional contacts marked have no connection to the
strands. They are placed in the center of elementary cells cre-
ated by two adjacent strands of the front layer placed over two
adjacent strands of the rear layer. Indexes and

, are used to identify the cell position
across and along the cable correspondingly. The same indexes
are used to refer to the contact resistances and the strand portions
located between two adjacent contacts. The cell marked
is bounded by strand fragments , ,
and and contact resistances , ,

and of the type or . The fictional contact
is placed in the center of the cell with the same indexes.
Let us apply the Faraday equation to the cell. We obtain

(1)

where is the contact resistance, is the current across the
contact resistance, is the inductance of the strand portion,

1051-8223/02$17.00 © 2002 IEEE



1596 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002

is the time, is the current in the strand portion,is the cable
twist pitch length, is the cable width and is the average
magnetic field in the cell. The current across the fictional
contact is both added and deducted twice and is, therefore,
cancelled.

Now, assuming 1, the scale of the spatial variations
across the cable is . Since the strand goes
from one edge of the cable to the other one over the length

, the scale of the spatial variations along the cable is
. In the limit 0, 0, (1) becomes

(2)

where the magnetic field is due to both an external source
and the strand currents , , the axis

and the axis are directed along and across the cable corre-
spondingly, and are the variations of the currents in the
front and rear layers with the ordinate increase by. Equa-
tion (2) should be complimented by the boundary conditions

0, 0, where the origin of
the coordinate is placed in the cable center, and is the
half of the sample length.

III. EDDY CURRENT OSCILLATIONS

Oscillations of eddy currents under stationary conditions are
already well described [3], [5], [6]. Let us show that (2) provides
a solution in a much simpler way. In stationary conditions it
becomes

(3)

Let us assume that constant, uniform across and
along the cable. Solution of (3) satisfying symmetric boundary
conditions 0, is

(4)

where is the constant. To find it, let us use the fact that in
linear systems the correct current distribution should provide a
minimum energy dissipation [3], [6]. As a result, we have

(5)

The coefficient of the eddy current oscillations is zero when
, where is an integer, and reaches local maximums

at . With increasing these maximums de-
crease.

IV. UNIFORM CURRENT DISTRIBUTION

If , the inter-strand currents become uniform along
the cable, so that except for the case of extremely
slow ramp rate, , and (2) takes the form [9]

(6)

Let us consider not a single cable but a high stack of electri-
cally insulated cables. In this case, a magnetic field created by
screening currents in the positionis

(7)

where is the magnetic permeability of vacuum andis the
distance between the cables in the vertical direction.

Combining (6) and (7), we have

(8)

Last, in the harmonic case when it is
possible to separate the variables. Let . Then

(9)

where

(10)

The relation between parametersand underline the physics
of the process. If then the influence of screening cur-
rents is prevailing over the inductance influence and vice versa.

Once the current distribution is found, the magnetic moment
of a cable per twist pitch is

(11)

and the loss per cycle per twist pitch is

(12)

where is the amplitude of the oscillating
current .

V. LOSSVERSUSFREQUENCYDEPENDENCE

Instead of solving (9) for arbitrary , let us consider two
limits; 0 and . In the first case an influence of both
strand inductances and screening currents can be neglected and
the strand currents are given by [4], [9]

(13)

providing a magnetic moment

(14)

At the high frequency limit except for the narrow region at
the cable edges [9], resistive terms in (9) can be neglected and
we have

(15)
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where . Its solution satisfying the boundary condi-
tions is

(16)

from which we get a magnetic moment at as

(17)
The values given by (14) and (17) can be fitted by the general

expression

(18)

where

(19)

Now, following arguments of [10], let us write loss versus fre-
quency dependence in the form

(20)

Equation (20) indicates that at low frequencies the loss increases
linearly with frequency, reaches the maximum at and
decreases afterwards.

VI. TIME CONSTANT SPECTRUM

It is known that in nonuniform conditions the time constants
of the flat cable can be very large [6]–[8], [11]. This is not the
case when both the cable and applied magnetic field are uniform
along the cable length. To find the time constants, let us analyze
the decay of currents induced in the cable up to the moment

if 0 at . The correspondingly reduced
(2) has the form

(21)

Let us separate variables by using

(22)

which leads to the following equation

(23)

with the evident solution

(24)

where is the coefficient depending on the current distribution
at and is the coefficient, which must satisfy boundary
conditions. Substituting this solution in (23) and using the above
boundary conditions we have

(25)

Fig. 2. Time constants� (—) versus numberm for the screening prevailing.
The� � � (�), the other� are much smaller. Correspondingly, the coupling
currents given by (24) decay fast and can be important at high frequencies only.

and, via , or ,
we define the discrete values allowed for as

(26)

where . Formally, in the continuous model there is
no upper limit for . However, (2) is correct only if the spatial
variations governed by (24) occur on a length much longer than

. Hence, only a limited number of time constants has to be
taken into account.

Let us consider the first time constant of the spectrumin
the limit of screening prevailing. Below, is shown in com-
parison with the time constant defining the maximum of
the loss curve. The last one is given in the same limit when

:

(27)

It is seen that these values are quite close.

VII. LHC I NNER CABLE TIME CONSTANT ESTIMATION

Let us estimate the time constant for the high stack composed
of the LHC dipole inner cables with 28, 15 mm,
11.5 mm and the mid-thickness equal to 1.9 mm. Allowing for
the inter-cable insulation let us take 2 mm. For the value
let us take first the lowest estimation based on the magnetic
energy associated with one strand [11]. If 18 mm is the
strand twist pitch, 1.07 mm is the strand diameter and
0.65 mm is the average diameter of the multi-filamentary area
in the Alstom-made strand [12] then

(28)

Putting the above values in (28) we have 2.1 10 H.
The average contact resistance in the inner windings of pre-se-
ries dipoles is 50 [13], which give us parameter
4800 m . Now, it is possible to estimate a time constant, which
is 0.3 s (see Fig. 2). The value 70 1 corresponds
to a case where the contribution from the screening to the time
constants is much higher than the inductance contribution. Cal-
culations using (28) can be thought of as an underestimation of

. However, even for being two orders of magnitude higher,
i.e., for 2 10 H, the time constant is still 0.4 s.
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Fig. 3. The upper right quarter of the dipole winding. Together with other
quarters it creates the irregular and bent stacks.

Let us now qualitatively consider a winding of the main LHC
dipole shown in Fig. 3. Certainly, there is significant difference
between its geometry and that of the high stack of cables. How-
ever, all blocks are stacks of cables by themselves and both inner
and outer windings create a kind of high but irregular and bent
stack. This means that (27) should provide a rough estimate of
the time constant for the inner and outer windings. In this con-
nection, it can be worthwhile to estimate another limit for the
strand inductance. One can assume that the total dipole induc-
tance 0.003 H per meter per aperture can be in equal parts as-
cribed to 5280 strands composing one aperture. Since the length
of the strand between two neighboring contacts for the inner
cable is 2.1 mm it results in 1.2 10 H. As it was shown
in the previous paragraph, this value is insufficient to change
substantially.

VIII. C ONCLUSIONS

An equation describing coupling currents in a flat supercon-
ducting cable subjected to the time-dependent background mag-

netic field has been developed. In the uniform case, solutions of
this equation allow us to find the magnetic moment of the cable
subjected to harmonic magnetic field variations, the a.c. loss and
the main characteristic time constant of the high stack of cables.
A related estimation of the time constant for the inner winding
of the main LHC dipole provides a value approximately equal
to 0.3 s for typical contact resistances around 50.
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