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A
Absj;ra\a%ne of the prototypes which has been made during

thé*ZQ\@e synchrotron project SOLEIL design is a passive II. CALCULATION AND DESIGN
septum magnet. Standard cross section has been chosen for the . . - s
three” eddy current septum magnets used for the booster A U”'C_Iue_ prototype de_5|gn may_be sufficient for satisfying
injection, the booster extraction and the storage ring injection of all the criteria described in the earlier chapter.

SQLEIL. A prototype for _SOLEIL project has been realized. _In Table 1: magnet main characteristics

this paper the comparison between 2d & 3d calculations
(OPERA-2d, ELEKTRA) and results of magnetic measurements Vertical gap: 15 mm
is presented, as well as results of thermal tests in vacuum and

influence of all of these on mechanical design for the final Horizontal aperture: 30 mm
magnet. Nominal field: 0.5025 T
Ampere-turns: 6000 AT
|. INTRODUCTION Turns: 1
Mechanical length: 250
Storage Ring 2.5G eV Magnetic length: 269
Current pulse: 60 ps ¥z si

Septum thicknesses: 15:3
Eddy Current Septum

Cond. cross section HxV: 4x14.4 mnﬁ2

Linac 100MeV

Self induction: 750
Booster 1215s Cooling: natural

The yoke is laminated with about 1200 steel pressed sheets.

Eody Corrent Syt Each sheet is grain oriented, 0.23 mm thick, Fe with Si 3%
T — composed, double coated with silicate of magnesium and a

m— phosphate deposit (UGINE M3X23). The mechanical design
gives two septum thickness testing possibilities: 1.5 and

3 mm.
Figure 1: SOLEIL survey The coil insulation is obtained from an alumina plasma

spray under pressure. This has been done to adhere to the

SOLEIL [1] is a Synchrotron Radiation Facility Electrons/acuum criteria as well as to maintain mechanical reliability.

are accelerated, via a 100 MeV linac and a 2.5 GeV-12Hz
synchrotron booster, then injected into the storage ring
(Figure 1). The booster extraction as well as the storage ring e
injection scheme are based on the one at ESRF [2]. ‘
A machine like SOLEIL needs eddy current septum S,
magnets to carry out its booster injection-extraction and its o
storage ring injection schemes (Figure 1). It is due to the =y
closeness between kicked and circulating (non kicked) beams = @1&- —\
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at this level of energy (2.5 GeV). In this case a thin copper # © 0o
sheet flowed by induced eddy currents is the only way to
shield the main pulsed magnetic field from the circulating ©
beam which needs a low stray field. L ]

A great constraint in such a design is the situation of the ~ —| 1]
device under vacuum (& T for the storage ring) which —
involves specific electro-mechanical solutions.

Moreover to increase reliability, thus minimizing the Figure 2: prototype magnet cross section

machine stopping, the magnet should be naturally cooled by Except for the global load resistance and self induction,

conduction. thus the total losses and voltage scale, a 250 mm reduced
yoke length is sufficient for both design and measurement
(Figures 3 & 4). It allows not using a too huge pulsed power

" poster showed at the “6International Conference on Magnet supply prototype.
Technology, September 26 — October 2, 1999, Ponte Vedra Beach, Florida,
USA
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Figure 4: prototype global rear view

A\B
The field homogeneity—— in the “beam stay clear”
Bnom

area has to be better than 0.5 % (Figures 5 & 6).

The OPERA-2d [3] code gives the standard cross sectid -
design (Figures 5 & 6); the 3d ELEKTRA [3] lets us optimize .
the edge fringe field shape, to determine the magnetic lengfréd 05" & &6° 65° &7 0 & &7 o
eddy current circulation and losses evaluation (Figure 8).

i UNITS
Length :mn
|| Pty :gauss
el strength : Am-1
| [Sg
smet

||| conctuctivy
[ Source dersity: Am-2

PROBLEM DATS,
leptun_satume_000z2.11
Linear slments

XY symmetry

=507

BO.O  BSO 700 75.0 80O 850

Component: BMOD
‘SSZD 0 333‘7 5
L

§0.0

§5.0

1000 1080 1100
% [mm]

3355 EI‘
1

Magnetic fields
[Transent solufion
[T = 3.0B-08

6 regions

SRS TR FaTh

\F OPERA-2d

Figure 5: main field and current density

Figure 5 shows both the magnetic field homogeneity an
the electrical skin depth (about 0.7 mm) in the coil conductog !

as well as in the septum.
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Figure 6: cross section field

The stray field integraIJ'B
5 Gm for the 2.5 GeV circulating beam.

stray

The design underlines a delay between the

field and the main field peak (Figure 7).

(&l should be less than

maximum fringe
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Figure 7: stray field at different times

Figure 8 shows the not negligible 3d shape of the stray

field at 60 us just after the pulse.
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Figure 8: 3d stray field shape at 60 ps (end of pulse)



The codes run on HP/9000 station under HP-UX and theOn Figure 11, we can observe a 5 % difference between the
solving time of such a 3d case (Figure 8) is about 24 howalculated and measured field. This attenuation is due to
with 64000 elements, t=0 to 120 ps and a 5 ps step. losses inside the laminated yoke which are not taken into

account by the simulating code.

I1l. MAGNETIC MEASUREMENTS

The measuring equipment consists of : Main field com parison (1=6000A)
» 2 types of narrow coils 5500
* ashort one for the main field level measurement om0
= along one for the magnetic length determination % o — .
« a high accuracy current transformer ¢ 2 L e
. i ) S 4000 = leasured field
 a digital integrator oscilloscope e 8
. 3500
« the pulsed power supply, based on ESRF design [4]
H H 3000
Figure 9 shows the_ three useful signals for the o o 0 4 w©
measurement understanding: o
< the current signal (sine wave)
 the coil signal (cosine wave) Figure 11: calculated and measured main field

e the field deduced from coil signal integration (upside

down sine wave) However there is an agreement between simulated and

measured fringe field (Figure 12).
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Figure 12: calculated and measured stray field

' 115V
: \ : : : IV. THERMAL TESTS UNDER VACUUM
' ' The magnet is installed for baking in a vacuum tank with
Figure 9: main field measurement signals its heating, pumping and measurement devices:

. . .+ a hybrid turbo-molecular pump
Figure 10 shows the delay between the maximum fringe a Ti sublimation pump

field and the main field peak, confirming the simulations. a Bayard-Alpert gauge

e aresidual gas analyzer
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Figure 13: vacuum level before and after several
Figure 10: stray field measurement signals bakings



The outgassing tests for an iron sheets samalan?) give
a ratea=1.3. 10" t.l/s.cm? after 1 hour and finally 1.4:3b
t.I/s.cm? after 100 hours of relaxation baking. These tests are
all relevant to the NF X 10-507 standard.

The results of the tests imply 4 main recommendations:
1) An UHV treatment for all materials.

2) A high temperature (800 °C) conditioning for the magnet
before the mounting in situ.

3) A high in situ baking temperature (400 °C), only for the
storage ring magnet.

4) A lower baking temperature (100 °C) for the two booster
magnets.

V. DESIGN DETAILS FORSOLEIL

As a result of the tests, these modifications have been
made to the final design:
» The connections have been revised to reduce the
global load self-inductance seen from the pulsed
power supply (Figure 15)
e« The electrical contact optimization between the ] ) ) )
septum edges and the extremity flanges of the This design has been very useful in helping to understand

Figure 15: view of the booster magnets

VI. CONCLUSION

magnet copper shielding box the mechanical and electrical difficulties encountered with

« The yoke centering inside the box for an edge strefi}jdy current septum magnets. It has also been a good bench
field minimization mark for the used 2d and 3d simulation codes.

e A better coil shielding near the beam path at the
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Figure 14: view of the storage ring magnet



