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1. Introduction

The geometry on a D-brane has recently attracted much attention, as it turned out to

involve non-commutative structures that depend on the gauge invariant combination F =

B + (2πα′)dA of the bulk B-field and the boundary A-field. A lot of work was done in

examining the effect of a constant B-field in a topological decoupling limit [1]–[5].

A generalization to non-constant fields was given through the deformation quantization

of Poisson manifolds. In that case, a non-commutative product can be constructed to all

orders of derivatives out of the Poisson structure Θ and it represents the most general form

being associative [6]. In open string theory this product appears in the decoupling limit

when the B-field (or equivalently F) is closed [7].

While the closure condition is necessary for associativity, it is not required by string

theory and one may ask how far one can relax it in order to obtain a reasonable product.

In [8] the non-commutative product was extracted from open string off-shell correlators

with insertions on the boundary of the disk. It turned out that one has to abandon the

decoupling limit in order to retain a consistent setup. The only physical condition on

the non-commutative parameter Θ in first derivative order of the background fields is the

on-shell condition for the open string gauge field A on the D-brane, i.e. the generalized

Maxwell equation; see also [9]–[12] for other attempts of treating a general background

field B.

Imposing this equation has the following consequences for the product in first deriva-

tive order [8]. Firstly, the non-commutative product of two functions equals the ordinary

product under the integral.1 Secondly, the product is associative up to a surface term. As

an immediate consequence, the product of an arbitrary number of functions is invariant

1In [8] it was only shown that
∫

f ◦ g =
∫

g ◦ f , but it is easily checked that, in fact,
∫

f ◦ g =
∫

fg.
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under cyclic permutations under the integral up to a possible change in the bracket struc-

ture). The integration measure plays an important role in this respect and is given by a

Born-Infeld measure,
√

det(g −F). Associativity cannot be maintained and must be re-

placed by an A∞-structure [9, 14]. Both properties are necessary to construct a reasonable

action and a variation principle in terms of the non-commutative product, the second one,

to adjust the position of the variation of the field and the first one, to remove all derivatives

from the variation.

So far only the non-commutative product arising in this generalized setting was con-

sidered. It can be extracted purely from off-shell correlation functions. However, since

string vacua correspond to 2-d conformal field theories, the correlators must finally take

shape of the usual simple on-shell form [15]. There is some interesting information which

one can gain from passing to on-shell correlators and it is the intention of this article to

work out this information.

For this purpose we will use several results from [8] and, therefore, inherit the general

setting of the model considered there. The open strings move in a background including a

general metric g and a nontrivial B-field in the bulk and a gauge field A on the boundary

of the world sheet. The world sheet is taken to be the upper half complex plane. All

information is extracted from correlation functions using a derivative expansion of the

background fields, where the expansion is restricted to first derivative order, but exact to

all orders in the constant part of F .

What can we learn from the on-shell correlators?

i. As the insertions at the boundary of the disk are taken to be ordinary functions of

the target space coordinates Xµ we expect that the on-shell condition is tachyonic.

Furthermore, the equation of motion is linear in the tachyonic field since the insertions

represent asymptotic states. We will deduce this linear equation from the requirement

that the on-shell correlators must have the CFT form and thus obtain the kinetic

term for the effective action of the tachyon.

ii. The explicit form of the on-shell three-point function then gives us the cubic interac-

tion of the open string tachyon potential. Higher n-point correlators are difficult to

manage. Nevertheless, in view of the cyclicity of the product under the integral, we

are able to discuss some implications for the structure of higher order interactions.

iii. Working in first derivative order of the background fields is already sufficient to

extract information about the differential structure from the tachyon equation of

motion. As an interesting and somewhat surprising result we anticipate that, using

the generalized Maxwell equation, the covariant derivative on the D-brane turns out

to be the same as that off the brane, i.e. it is the connection compatible with the

bulk metric and with torsion H = dB.

The organisation of the paper is as follows. We start in section 2 with the introduction

of some notation and review the properties of the non-commutative product. In section 3 we

calculate the full two- and three-point off-shell correlators using results from [8]. Thereafter,

in section 4, we show that conformal invariance requires a tachyonic on-shell condition for
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the insertions of the correlators and the use of the Maxwell equation for the background

fields. Eventually, we investigate the potential and the differential structure of the tachyonic

action in section 5 and close with a general discussion of our results in section 6.

2. The non-commutative product

On the D-brane we have in addition to the so called bulk metric gµν , which enters in the

sigma model action, the boundary metric Gµν . Two metrics arise because of the fact that

on the brane one has to consider the combination Mµν = gµν+Fµν rather than the separate

quantities g and F . Consequently, one can split the inverse of M into the symmetric and

antisymmetric part, i.e. Mµν := M−1µν = Gµν + Θµν , and obtains the second metric G

and the antisymmetric part Θ, which turns out to be the non-commutativity parameter.2

The product found in [8] is given to all orders in Θ and to first derivative order in the

background fields. It reads

f(x) ◦ g(x) = f ∗ g− 1

12
Θµρ∂ρΘ

νσ
(

∂µ∂νf ∗∂σg+∂σf ∗∂µ∂νg
)

+O((∂Θ)2, ∂2Θ) , (2.1)

where ’∗’ denotes the Moyal contribution to the product. The on-shell condition for the

gauge field A on the D-brane is

GρσDρFσµ −
1

2
ΘρσHρσ

λFλµ = 0 , (2.2)

where Dρ is the Christoffel connection of g, or equivalently,

∂µ

(

√

g −F Θµν
)

= 0 . (2.3)

Imposing this equation of motion one finds that the product of two functions equals the

ordinary product under the integral,
∫

dDx
√

det(g −F) f ◦ g =

∫

dDx
√

det(g −F) f · g , (2.4)

and that it is associative up to a surface term,
∫

dDx
√

det(g −F) (f ◦ g) ◦ h =

∫

dDx
√

det(g −F) f ◦ (g ◦ h) . (2.5)

The trace property
∫

dDx
√

det(g −F)
(

(. . . (f1 ◦ . . .)) ◦ fn−1
)

◦ fn =
∫

dDx
√

det(g −F)
(

fn ◦ (. . . (f1 ◦ . . .))
)

◦ fn−1 . (2.6)

follows immediately. Although the integration measure plays an important role in order to

derive these properties we will subsequently use the abbreviation
∫

x
=

∫

dDx
√

det(g −F)

for the integral. These results will extensively be used in sections 4 and 5.

2We use the convention M−1µνMνρ = δµρ.
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3. Off-shell correlators

We are now going to use several results of the appendix of [8] to calculate the full off-shell

two- and three-point correlators of ordinary functions of target space coordinates X µ. The

insertions are ordered at the boundary of the upper half plane, so that τ1 < τ2 < τ3.

The two-point correlator was already given in [8] and we repeat the expression in a

more compact form. To this end we use the relation

2GνρGσλΓ̄ρλ
µ = Gµρ∂ρG

νσ −Gνρ∂ρG
σµ −Gσρ∂ρG

νµ , (3.1)

to introduce the Christoffel connection compatible with G. With the abbreviation (τij =

τi − τj)

f ∆ g :=

∞
∑

n=0

1

n!

( 1

2π

)n

lnn τ−221 Gµnνn D̄µnf ◦ D̄νng (3.2)

where the upper subindices of the indices mean a product of derivatives,

D̄µn := D̄(µ1
. . . D̄µn) = ∂µnf −

n(n− 1)

2
Γ̄(µ1µ2

ρ∂µ3
. . . ∂µn)∂ρf +O(∂2)

and a product of metrics Gµnνn = Gµ1ν1 . . . Gµnνn . The symmetrization of the derivatives

D̄µ in D̄µn is automatic in first order, because the partial derivatives contracted with G

symmetrize the Γ̄-term on the other side, i.e. GµνD̄µfD̄νg = Gµν∂µfD̄νg +GµνD̄µf∂νg +

O(∂2). We can then write the full two-point correlator as

〈 : f [X(τ1)] : : g[X(τ2)] : 〉 =
∫

x

f ∆ g +
i

4π
ln τ−121

∫

x

Θµρ∂ρG
νσ(∂ν∂σf ∆ ∂µg − ∂µf ∆ ∂ν∂σg) +

+
i

2π
ln τ−121

∫

x

Gνσ∂σΘ
ρµ(∂ν∂ρf ∆ ∂µg − ∂µf ∆ ∂ν∂ρg) +O(∂2) . (3.3)

The three-point correlator is much more complicated. It is a rather tedious but

straightforward work to collect all the relevant terms from the appendix in [8]. In order to

realize the structure more clearly we first consider the two cases, Θ = 0 and Θ → ∞ (or,

equivalently, G → 0). For Θ = 0, the covariant derivative D̄ again appears, now in the

combination

D̄µnD̄νmf = ∂µn∂νmf −

− n(n− 1)

2
Γ̄(µ1µ2

ρ∂µ3
. . . ∂µn)∂νm∂ρf −

− m(m− 1)

2
Γ̄(ν1ν2

ρ∂ν3 . . . ∂νm)∂µn∂ρf −

−mn Γ̄(µ1|(ν1
ρ∂ν2 . . . ∂νm)∂|µ2

. . . ∂µn)∂ρf +O(∂2) . (3.4)
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The correlator is given as

〈 : f [X(τ1)] : : g[X(τ2)] : : h[X(τ3)] : 〉|Θ=0 =
∫

x

∆(f, g, h) +O(∂2) =

∑

I,J,K

(

1

π

)I+J+K lnI τ−121 lnJ τ−131 lnK τ−132
I!J !K!

×

×
∫

x

GµIνIGµJνJGµKνK D̄µIµJ f D̄νIµKg D̄νJνKh+O(∂2) . (3.5)

The triangle functional ∆(f, g, h) in the first line is a generalization of (3.2) and was

introduced for later reference. In case of G → 0 the correlator can be expressed solely

through the non-commutative product (2.1) (cf. also [9])

〈 : f [X1] : : g[X2] : : h[X3] : 〉|G=0 =

∫

x

1

2

{

(f ◦ g) ◦ h+ f ◦ (g ◦ h) +

+ L(m) (f1 ◦ (f2 ◦ f3)− (f1 ◦ f2) ◦ f3)
}

+

+O(∂2) .

L(m) = 6
π2 (Li2(m)− Li2(1−m)) is an antisymmetric combination of dilogarithms Li2(m)

with the limits L(0) = −1 and L(1) = 1. The modulus m = τ21/τ31 can take the values

0 ≤ m ≤ 1.

Since we take into account only terms to first derivative order these two results can

easily be completed to the general case. In equations (3.5) and (3.6) we have included the

G∂G- and the Θ∂Θ-terms, respectively. In the full correlator these two results combine in

a natural way and add up with the remaining G∂Θ and Θ∂G parts, so that we find

〈 : f [X(τ1)] : : g[X(τ2)] : : h[X(τ3)] : 〉 = F [G∂G,Θ∂Θ] + F [G∂Θ,Θ∂G] +O(∂2) (3.6)

where

F [G∂G,Θ∂Θ] =
∑

I,J,K

lnI τ−121 lnJ τ−131 lnK τ−132
I!J !K!

× (3.7)

× 1

πI+J+K

∫

x

GµIνIGµJνJGµKνK 1

2

[

D̄µIµJ f ◦ (D̄νIµKg ◦ D̄νJνKh) +

+ (D̄µIµJf ◦ D̄νIµKg) ◦ D̄νJνKh+

+ L(m)

(

D̄µIµJf ◦ (D̄νIµK g ◦ D̄νJνKh)−

− (D̄µIµJf ◦ D̄νIµKg) ◦ D̄νJνKh)

)]

– 5 –
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and, with ∂µf = fµ,

F [G∂Θ,Θ∂G] =

+
i

2π
ln τ−121

∫

x

Θρσ∂σG
µν

[

−∆(fµ, gν , hρ)−
1

2
∆(fρ, gµν , h) +

1

2
∆(fµν , gρ, h)

]

+

+
i

2π
ln τ−131

∫

x

Θρσ∂σG
µν

[

−∆(fρ, gµ, hν) + ∆(fµ, gν , hρ)−

− 1

2
∆(fρ, g, hµν) +

1

2
∆(fµν , g, hρ)

]

+

+
i

2π
ln τ−132

∫

x

Θρσ∂σG
µν

[

+∆(fρ, gµ, hν)−
1

2
∆(f, gρ, hµν) +

1

2
∆(f, gµν , hρ)

]

+

+
i

2π
ln τ−121

∫

x

Gρσ∂σΘ
µν [+∆(fµ, gνρ, h)− ∆(fνρ, gµ, h)] +

+
i

2π
ln τ−131

∫

x

Gρσ∂σΘ
µν
[

+∆(fµ, gν , hρ) + ∆(fν , gρ, hµ)− ∆(fρ, gµ, hν) +

+ ∆(fµ, g, hνρ)− ∆(fνρ, g, hµ)
]

+

+
i

2π
ln τ−132

∫

x

Gρσ∂σΘ
µν [+∆(f, gµ, hνρ)− ∆(f, gνρ, hµ)] . (3.8)

The symbol ∆(f, g, h) is defined in equation (3.5).

4. On-shell correlators

In the previous section the insertions on the disk as well as the background fields are

completely general, they do not satisfy any on-shell conditions, which are determined by

the conformal invariance of the theory. The equations of motion for the background fields

are given by the β-functions of the world sheet theory whereas the equations of motion for

the insertions are determined by the conformal transformation properties of the correlation

functions.

The correlators of the CFT on the disk must be invariant under the global conformal

group SL(2,R). In particular, the 2-point correlator with insertions at the boundary is

〈f1[X(τ1)]f2[X(τ2)]〉 =
C12

(τ21)2h
, (4.1)

where h is the conformal weight of both f1 and f2. The correlator for operators with

different weights vanishes. The 3-point correlator is

〈f1[X(τ1)]f2[X(τ2)]f3[X(τ3)]〉 =
C123

τh1+h2−h3

21 τh3+h1−h2

31 τh2+h3−h1

32

(4.2)

The constants C12 and C123 are functionals of fi(x), independent of the positions τi and

invariant under cyclic permutation of indices. For physical fields which should carry h = 1

we have

〈f1[X1] f2[X2]〉 =
C12

(τ1 − τ2)2
, (4.3)

〈f1[X1] f2[X2] f3[X3]〉 =
C123

τ21τ31τ32
. (4.4)

– 6 –
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On the other hand, the off-shell correlators in the open string background, (3.3)

and (3.6), can be written in the following way,

〈f1[X1] f2[X2]〉 =
∞
∑

I=0

lnI τ−221
I!

FI [fi](τi) (4.5)

〈f1[X1] f2[X2] f3[X3]〉 =
∞
∑

I,J,K=0

lnI τ−121 lnJ τ−131 lnK τ−132
I!J !K!

FIJK [fi](τi)

where FI [fi](τi) and FIJK [fi](τi) are functionals of fi and functions of τi. The τi-depen-

dence arises from the dilogarithm in (3.7) as well as from the sign function ε(τij) which

accompanies every Θ (cf. [8]). In fact, we do not see the sign function because of our choice

of ordering, τ1 < τ2 < τ3.

Therefore, if

FI [fi](τi) = FI−1[fi](τi) (4.6)

FIJK [fi](τi) = F(I−1)JK [fi](τi) = FI(J−1)K [fi](τi) = FIJ(K−1)[fi](τi) (4.7)

is fulfilled, one can reduce all functionals in the sum to F0[fi](τi) and F000[fi](τi), respec-

tively. Furthermore, in order to reproduce the behaviour (4.3) and (4.4), F0[fi](τi) and

F000[fi](τi) must be constants and then determine C12 = F0[fi] and C123 = F000[fi]. How-

ever, this does not work off-shell and has to be accomplished by certain on-shell conditions

imposed on the insertions (and of course on the background fields). We proceed in two

steps and first show the following theorem:

Theorem 1 (Relations) (4.6) and (4.7) require that the insertions satisfy the tachyonic

equation of motion

¤fi − (−2π)fi =
1

√

det(g −F)
∂µ(

√

det(g −F)Gµν∂νfi)− (−2π)fi = 0 . (4.8)

Proof. We start with the 2-point correlator. In order to get a scalar equation of the

insertions one has to integrate by part. On the other hand, if we look at S-matrix cal-

culations [15] the momentum conservation (δD(Σk)) comes from the integration over zero

modes. Here we do not have a flat background and we cannot perform the integration in

that way. Now the integration by part is the analog of the momentum conservation in posi-

tion space. Furthermore, one can separate the functionals FI into two distinct parts, FI =

FI [ΘdΘ]+FI [GdG,GdΘ,ΘdG]. The former one comes from the first term on the right hand

side of (3.3), but without the Christoffel symbols, the latter arises from the rest of (3.3).

We take FI [ΘdΘ] and integrate by part in the following way

FI [ΘdΘ] =

(

1

2π

)I ∫

x

GµIνI∂µIf1 ◦ ∂νIf2

= −1

2

(

1

2π

)I ∫

x

GµI−1νI−1

∂µI−1¤f1 ◦ ∂νI−1f2 −

− 1

2

(

1

2π

)I ∫

x

GµI−1νI−1

∂µI−1f1 ◦ ∂νI−1¤f2 +

+ F ′
I [GdG,GdΘ,ΘdG] . (4.9)
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The last expression F ′
I [GdG,GdΘ,ΘdG] combines with FI [GdG,GdΘ,ΘdG]. Analogously,

using integration by part in F ′′
I = F ′

I [GdG,GdΘ,ΘdG] + FI [GdG,GdΘ,ΘdG], the differ-

ential operator as it appears in (4.9) arises now in zero derivative order of the background

fields, i.e. ¤fi = GµIνI∂µI∂νIfi, because F ′′
I contains only terms of first derivative order.

Now FI−1[ΘdΘ] is equal to the first two lines of (4.9) if equation (4.8) holds. Proceeding

along the same lines one can show that FI−1[GdG,GdΘ,ΘdG] = F ′′
I , again using (4.8).

In fact, the 2-point function does not fix the tachyonic equation uniquely. One can add

Aµ2n+1
∂µ2n+1fi, where n ∈ Z and A ∼ O(∂). By means of partial integration such terms

would mutually cancel in the second and third line of (4.9). However, we will see that this

ambiguity is fixed by the 3-point correlator.

The calculation for the 3-point correlator is similar. First we make the split FIJK =

FIJK [ΘdΘ]+FIJK[GdG,GdΘ,ΘdG]. Let us again look at the S-matrix calculation. There

one uses the relation k1k2 = 1
4 (k1 − k2 − k3)(k2 − k1 − k3) = 1

2(k
2
3 − k21 − k22). With the

analogous transformation in terms of partial integrations we obtain from (3.6) and (3.7)

FIJK [ΘdΘ] = (4.10)

=
1

πI+J+K

∫

x

GµIνIGµJνJGµKνK 1

2

[

∂µIµJ f1 ◦ (∂νIµKf2 ◦ ∂νJνKf3) +

+ (other bracket) +

+ L(m)
(

∂µIµJf1 ◦ (∂νIµKf2 ◦ ∂νJνKf3)−

− (other bracket)
)

]

=

=
1

πI+J+K

∫

x

GµI−1νI−1

GµJνJGµKνK 1

4

[

∂µI−1µJf1 ◦ (∂νI−1µKf2 ◦ ∂νJνK¤f3)−

− ∂µI−1µJ¤f1 ◦ (∂νI−1µKf2 ◦ ∂νJνKf3)−
− ∂µI−1µJf1 ◦ (∂νI−1µK¤f2 ◦ ∂νJνKf3) +

+ (other bracket) +

+ L(m)
(

∂µI−1µJ f1 ◦ (∂νI−1µKf2 ◦ ∂νJνK¤f3)−

− ∂µI−1µJ¤f1 ◦ (∂νI−1µKf2 ◦ ∂νJνKf3)−
− ∂µI−1µJ f1 ◦ (∂νI−1µK¤f2 ◦ ∂νJνKf3)−

− (other bracket)
)]

+

+ F ′
IJK [GdG,GdΘ,ΘdG] .

Since the dilogarithmic term is of first derivative order in background fields there are no

contributions thereof in F ′
IJK [GdG,GdΘ,ΘdG]. The same procedure as above shows that

in view of (4.8) the first part of (4.10) equals F(I−1)JK [ΘdΘ] and F ′
IJK [GdG,GdΘ,ΘdG]+

FIJK [GdG,GdΘ,ΘdG] = F(I−1)JK [GdG,GdΘ,ΘdG]. But now terms like Aµ2n+1
∂µ2n+1fi

would not cancel in (4.10), so that the tachyonic equation of motion (4.8) is unique. Rela-

tions FIJK = FI(J−1)K and FIJK = FIJ(K−1) can be shown analogously. ¤
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With this result we can write the correlators as

〈f1[X1] f2[X2]〉 =
F0[fi](τi)

τ212
(4.11)

〈f1[X1] f2[X2] f3[X3]〉 =
F000[fi](τi)

τ21τ31τ32

with

F0[fi](τi) =

∫

x

(f1 ◦ f2) , (4.12)

F000[fi](τi) =

∫

x

1

2

{

f1 ◦ (f2 ◦ f3) + (f1 ◦ f2) ◦ f3 + (4.13)

+ L(m)
(

f1 ◦ (f2 ◦ f3)− (f1 ◦ f2) ◦ f3)
)}

.

Indeed, (4.12) and (4.13) are not yet position independent and invariant under cyclic

exchange of the functions fi. Putting also the background fields on shell, i.e. using the

Maxwell equation (2.3), we can take advantage of the relations (2.4) and (2.5). So, we

reach the final result

〈f1[X1] f2[X2]〉 =
1

τ212

∫

x

f1 ◦ f2 =
1

τ212

∫

x

f1 · f2 , (4.14)

〈f1[X1] f2[X2] f3[X3]〉 =
1

τ21τ31τ32

∫

x

f1 ◦ f2 ◦ f3 .

We close this section with a remark on the ghost fields, which we have totally excluded

from our discussion so far. On the disc we have three conformal killing vectors (forming

the Möbius group SL(2,R)) and therefore three of the vertices in a correlator can be fixed

in position and must be accompanied by a ghost field c(τi), the others being integrated

over the world sheet. The 2-point correlator has too few insertions in order to give a non-

vanishing result in the ghost sector, i.e. 〈c(τ1)c(τ2)〉gh = 0. The 3-point ghost amplitude,

〈c(τ1)c(τ2)c(τ3)〉gh = cgh τ21τ31τ32, exactly cancels the position dependence of the correla-

tor (4.4). Moreover, the Möbius group preserves the cyclic order of the insertions and so

we must sum over inequivalent orderings in the 3-point amplitude, so that we obtain3

〈cf1[X1] cf2[X2] cf3[X3]〉+ (f2 ↔ f3) = c

∫

x

f1 ◦ (f2 ◦ f3 + f3 ◦ f2) . (4.15)

5. Tachyonic action

The results (4.8) and (4.15) enable us to reconstruct the kinetic term and the cubic po-

tential of the open string tachyon. The value for the coupling constant is recovered from

3Until now we have chosen the normalization of the correlators such that it reduces to an integral over

the ordinary product of functions for F = 0. We reintroduce a normalization constant c = cXcgh where

cX and cgh are the normalizations for the matter and the ghost contribution, respectively. c is fixed by

unitarity [15].
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consistency with S-matrix calculations, as discussed e.g. in [15], by taking the limit Θ→ 0

and gµν = ηµν .

S = − 1

2g2o

∫

dDx
√

g −F
{

Gµν · ∂µT · ∂νT −
1

α′
T · T −

√

8

9α′
T · (T ◦ T )

}

. (5.1)

It would be more natural if we write the action totally in terms of the non-commutative

product (2.1), i.e.

S = − 1

2g2o

∫

dDx
√

g −F
{

Gµν ◦ ∂µT ◦ ∂νT −
1

α′
T ◦ T −

√

8

9α′
T ◦ T ◦ T

}

. (5.2)

The kinetic term of this action generates the equation of motion

1

2

1√
g −F ∂µ

(

√

g −F (Gµν ◦ ∂νT + ∂νT ◦Gµν)
)

+
1

α′
T = 0 , (5.3)

which reduces to equation (4.8) because 1
2(G

µν ◦ ∂νT + ∂νT ◦ Gµν) = Gµν∂νT +O(∂2G).

This means that the question whether one has to put the non-commutative product into

the kinetic term or not cannot be decided at first derivative order.

If we impose the background field on-shell condition (2.3), the kinetic term of (4.8)

reveals a remarkable feature of the geometry on the D-brane. Equation (2.3) implies also

∂µ(
√
g −FGµν) =

√
g −FMρσ(−Γρσν − 1

2Hρσ
ν), and we are able to rewrite (4.8) as

Mµν∇µ∇νT − (−2π)T = 0 , (5.4)

where we have introduced the connection ∇ that is compatible with the bulk metric and

has torsion H

∇µξν = ∂µξν − Γµν
ρξρ −

1

2
Hµν

ρξρ . (5.5)

This is exactly the connection that appears in closed string theory and it is independent

of the gauge field A.

Finally, we make a remark on higher order interactions in the tachyonic potential.

Since each term in the potential is a power of the field T , it is a very symmetric expression

and one may ask if more brackets than the outermost can be omitted and, if so, how

many. For “T ◦n” with n = 4, 5 it is easy to show that all brackets can be left out, i.e.
∫

x
T ◦4 =

∫

x
T ◦ T ◦ T ◦ T and

∫

x
T ◦5 =

∫

x
T ◦ T ◦ T ◦ T ◦ T . What happens if we vary

these expressions? To this end one has to select an arbitrary choice for the brackets in

T ◦4 and T ◦5. Independently of that choice the variation gives the sum over all bracket

arrangements for three and four functions,

δ

∫

x

T ◦4 =

∫

x

δT ·
(

T ◦ (T ◦ T )) + ((T ◦ T ) ◦ T )
)

(5.6)

δ

∫

x

T ◦5 =

∫

x

δT ·
(

T ◦ (T ◦ (T ◦ T )) + T ◦ ((T ◦ T ) ◦ T ) + (T ◦ T ) ◦ (T ◦ T ) +

+ (T ◦ (T ◦ T )) ◦ T + ((T ◦ T ) ◦ T ) ◦ T
)

. (5.7)
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For higher powers the behaviour is different. For instance, in case of n = 6 the following

four expressions have different variations:

∫

x

(T ◦ (T ◦ T )) ◦ ((T ◦ T ) ◦ T ), (5.8)

∫

x

(T ◦ (T ◦ T )) ◦ (T ◦ (T ◦ T )),
∫

x

((T ◦ T ) ◦ T ) ◦ ((T ◦ T ) ◦ T ),
∫

x

((T ◦ T ) ◦ (T ◦ T )) ◦ (T ◦ T ).

Any other bracket arrangements can be converted to one of these possibilities by means

of equations (2.4) and (2.5). The variations of (5.8) give a sum of 6, 3, 3, and 2 different

terms, respectively.4 Therefore, for higher powers than five we have distinct expressions,

where either one could arise in the tachyon potential, possibly with different weights.

6. Discussion

In view of the quantity Mµν and its inverse, the two metrics, g and G, seem to be on equal

footing on the D-brane. For instance, the integration measure can be written as 4
√
g 4
√
G.

However, in the effective field theory on the brane they play different roles. G appears in

the kinetic term of the action and, therefore, one expects that it is the preferred metric

on the brane. However, as we have seen in section 5, the natural connection on the D-

brane is compatible with g and has torsion H = dB. This has an interesting consequence.

The connection and the parallel transport is independent of the open string gauge field A

and depends only on bulk quantities. So we have gained some insight into the differential

structure on a D-brane and it would be even more interesting to see how this extends to

second derivative order. The correlation functions of open string photon vertices instead of

tachyon vertices would be another source of information. They should give rise to a gauge

theory in a general non-commutative background.

We have seen that the form of the terms in the tachyonic potential is determined

for powers lower than six. For higher powers of the tachyon field one has to calculate

the corresponding correlators in order to decide with which relative weight the distinct

subsets (e.g. (5.8)) appear. Of course, a sum over all bracket arrangements would be a

natural choice. But in fact, to find out whether this guess is correct, one needs a better

understanding of the underlying A∞-structure (cf. [14, 9]).

Since our results are consequences of restricting off-shell correlators to the known

structure of conformal field theory it would be interesting to compare our results with

other off-shell approaches, e.g. background independent open string field theory [16]–[19].5

4The total number of terms is always 14, which is the number of bracket arrangements for five functions.
5BSFT requires a fixed conformal background in the bulk, but allows for arbitrary boundary interactions.

Our approach does not make reference to such a background and is closer to the spirit of the sigma model

approach to string theory [22].
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Clearly we expect that the tachyonic on-shell condition obtained in this paper is equivalent

to the consistency condition for a string propagating in nontrivial background fields, i.e. the

Weyl invariance condition of the underlying 2-d non-linear sigma model. Furthermore, the

relation to previous work on the appearance of a non-commutative tachyon action, mostly

considered in the limit of a strong magnetic field [20, 21], needs clarification. The exact non-

commutative tachyon potential should be given by the well known expression obtained from

BSFT but with ordinary products replaced with the generalized non-commutative product

found in [8].
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