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A bstract
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m etric g,the antisym m etric B -�eld,and the gauge �eld A. W orking with a derivative

expansion forthebackground �elds,butexactin theirconstantparts,weobtain atachyonic

on-shellcondition forthe inserted functionsand extractthe kinetic term forthe tachyon

action. The 3-pointcorrelator yieldsa non-com m utative tachyon potential. W e also �nd

a rem arkablefeature ofthedi�erentialstructureon the D-brane:Although theboundary

m etric G plays an essentialrole in the action,the naturalconnection on the D-brane is

the sam e as in closed string theory,i.e. it is com patible with the bulk m etric and has

torsion H = dB . This m eans,in particular,that the paralleltransport on the brane is

independentofthegauge �eld A.
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1 Introduction

The geom etry on a D-brane hasrecently attracted m uch attention,as itturned outto involve non-

com m utative structures that depend on the gauge invariant com bination F = B + (2�� 0)dA ofthe

bulk B -�eld and the boundary A-�eld.A lotofwork wasdone in exam ining the e�ectofa constant

B -�eld in a topologicaldecoupling lim it[1{5].

A generalization to non-constant�eldswasgiven through thedeform ation quantization ofPoisson

m anifolds.In thatcase,anon-com m utativeproductcan beconstructed to allordersofderivativesout

ofthePoisson structure�and itrepresentsthem ostgeneralform beingassociative[6].In open string

theory thisproductappearsin thedecoupling lim itwhen theB -�eld (orequivalently F )isclosed [7].

W hiletheclosurecondition isnecessary forassociativity,itisnotrequired by stringtheory and one

m ay ask how faronecan relax itin orderto obtain a reasonableproduct.In [8]thenon-com m utative

productwas extracted from open string o�-shellcorrelators with insertions on the boundary ofthe

disk. It turned out that one has to abandon the decoupling lim it in order to retain a consistent

setup. The only physicalcondition on the non-com m utative param eter� in �rstderivative orderof

the background �eldsisthe on-shellcondition forthe open string gauge �eld A on the D-brane,i.e.

thegeneralized M axwellequation;seealso [9{12]forotherattem ptsoftreating a generalbackground

�eld B .

Im posing thisequation hasthefollowing consequencesfortheproductin �rstderivativeorder[8].

Firstly,thenon-com m utativeproductoftwofunctionsequalstheordinaryproductundertheintegral.1

Secondly,theproductisassociative up to a surfaceterm .Asan im m ediate consequence,theproduct

ofan arbitrary num ber offunctions is invariant undercyclic perm utations underthe integralup to

a possible change in the bracketstructure). The integration m easure playsan im portantrole in this

respectand isgiven by a Born-Infeld m easure,
p
det(g� F ).Associativity cannotbem aintained and

m ustbereplaced by an A 1 -structure[9,14].Both propertiesarenecessary to constructa reasonable

action and a variation principle in term softhe non-com m utative product,the second one,to adjust

theposition ofthevariation ofthe�eld and the�rstone,to rem oveallderivativesfrom thevariation.

So faronly thenon-com m utativeproductarising in thisgeneralized setting wasconsidered.Itcan

beextracted purely from o�-shellcorrelation functions.However,sincestring vacua correspond to 2-d

conform al�eld theories,thecorrelatorsm ust�nally takeshapeoftheusualsim pleon-shellform [15].

There issom e interesting inform ation which one can gain from passing to on-shellcorrelatorsand it

isthe intention ofthisarticle to work outthisinform ation.

Forthispurpose we willuse severalresultsfrom [8]and,therefore,inheritthe generalsetting of

the m odelconsidered there. The open strings m ove in a background including a generalm etric g

and a nontrivialB -�eld in the bulk and a gauge �eld A on the boundary ofthe world sheet. The

world sheetistaken to betheupperhalfcom plex plane.Allinform ation isextracted from correlation

functionsusing a derivative expansion ofthe background �elds,where the expansion isrestricted to

�rstderivative order,butexactto allordersin the constantpartofF .

1
In [8]itwasonly shown that

R
f �g =

R
g�f,butitiseasily checked that,in fact,

R
f �g =

R
fg.
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W hatcan welearn from theon-shellcorrelators?

(i)Asthe insertionsatthe boundary ofthe disk are taken to be ordinary functionsofthe target

spacecoordinatesX � weexpectthattheon-shellcondition istachyonic.Furtherm ore,theequation of

m otion islinearin thetachyonic�eld sincetheinsertionsrepresentasym ptoticstates.W ewilldeduce

thislinearequation from the requirem entthatthe on-shellcorrelatorsm usthave the CFT form and

thusobtain thekinetic term forthe e�ective action ofthe tachyon.

(ii) The explicit form ofthe on-shellthree-point function then gives us the cubic interaction of

the open string tachyon potential. Higher n-pointcorrelators are di�cultto m anage. Nevertheless,

in view ofthecyclicity oftheproductundertheintegral,weareableto discusssom eim plicationsfor

thestructureofhigherorderinteractions.

(iii) W orking in �rst derivative order of the background �elds is already su�cient to extract

inform ation aboutthedi�erentialstructurefrom thetachyon equation ofm otion.Asan interestingand

som ewhatsurprising resultwe anticipate that,using thegeneralized M axwellequation,thecovariant

derivative on the D-brane turns out to be the sam e as that o� the brane,i.e. it is the connection

com patible with thebulk m etric and with torsion H = dB .

The organisation ofthe paperisasfollows. W e startin section 2 with the introduction ofsom e

notation and review thepropertiesofthenon-com m utativeproduct.In section 3 wecalculatethefull

two-and three-pointo�-shellcorrelatorsusing resultsfrom [8].Thereafter,in section 4,weshow that

conform alinvariance requiresa tachyonic on-shellcondition forthe insertionsofthe correlators and

the use ofthe M axwellequation for the background �elds. Eventually,we investigate the potential

and the di�erentialstructure ofthe tachyonic action in section 5 and close with a generaldiscussion

ofourresultsin section 6.

2 T he non-com m utative product

O n the D-brane we have in addition to the so called bulk m etric g��, which enters in the sigm a

m odelaction,the boundary m etric G ��. Two m etrics arise because ofthe fact that on the brane

one has to consider the com bination M �� = g�� + F�� rather than the separate quantities g and

F . Consequently,one can split the inverse ofM into the sym m etric and antisym m etric part,i.e.

M �� := M �1�� = G �� + � ��,and obtainsthesecond m etricG and theantisym m etric part�,which

turnsoutto bethe non-com m utativity param eter.2

Theproductfound in [8]isgiven to allordersin � and to �rstderivativeorderin thebackground

�elds.Itreads

f(x) � g(x) = f � g�
1

12
� ��

@��
��

�

@�@�f � @�g+ @�f � @�@�g

�

+

+ O
�
(@�)2;@2�

�
; (1)

where’� ’denotestheM oyalcontribution to theproduct.Theon-shellcondition forthegauge�eld A

2
W e use the convention M

� 1��
M �� = �

�
�.
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on the D-braneis

G
��
D �F�� �

1

2
� ��

H ��
�F�� = 0; (2)

whereD � isthe Christo�elconnection ofg,orequivalently,

@�

�p
g� F � ��

�

= 0: (3)

Im posing this equation ofm otion one �nds that the product oftwo functions equals the ordinary

productundertheintegral,

Z

dD x
p
det(g�F )f � g =

Z

dD x
p
det(g�F )f � g ; (4)

and thatitisassociative up to a surfaceterm ,

Z

dD x
p
det(g�F )(f � g)� h =

Z

dD x
p
det(g�F )f � (g� h): (5)

Thetrace property

Z

dD x
p
det(g�F )

�

(:::(f1 � :::))� fn�1

�

� fn =

Z

dD x
p
det(g�F )

�

fn � (:::(f1 � :::))

�

� fn�1 : (6)

follows im m ediately. Although the integration m easure plays an im portant role in order to derive

these properties we willsubsequently use the abbreviation
R

x
=
R
dD x

p
det(g�F ) for the integral.

Theseresultswillextensively beused in sections(4)and (5).

3 O �-shellcorrelators

W e are now going to use severalresults of the appendix of [8]to calculate the fullo�-shelltwo-

and three-pointcorrelatorsofordinary functionsoftargetspace coordinatesX �. The insertionsare

ordered attheboundary ofthe upperhalfplane,so that�1 < �2 < �3.

T he tw o-point correlatorwasalready given in [8]and werepeattheexpression in a m orecom pact

form .To thisend we usetherelation

2G ��
G
������

� = G
��
@�G

�� � G
��
@�G

�� � G
��
@�G

��
; (7)

to introducethe Christo�elconnection com patible with G .W ith theabbreviation (�ij = �i� �j)

f � g :=

1X

n= 0

1

n!

�
1

2�

�n
lnn ��2

21
G
�n �n �D �n f � �D �n g (8)

where the upper subindices ofthe indices m ean a product ofderivatives, �D �n := �D (�1 :::
�D �n ) =

@�n f �
n(n�1)

2
��(�1�2

�@�3 :::@�n )@�f + O (@2)and a productofm etricsG �n �n = G �1�1 :::G �n �n.The

sym m etrization ofthederivatives �D � in �D �n isautom aticin �rstorder,becausethepartialderivatives

3



contracted with G sym m etrize the ��-term on the other side, i.e. G �� �D �f
�D �g = G ��@�f

�D �g +

G �� �D �f@�g+ O (@2).W e can then writethe fulltwo-pointcorrelatoras

h:f[X (�1)]::g[X (�2)]:i =

Z

x

f � g

+
i

4�
ln��1

21

Z

x

� ��
@�G

��
�
@�@�f � @ �g� @�f � @ �@�g

�

+
i

2�
ln��1

21

Z

x

G
��
@��

��
�
@�@�f � @ �g� @�f � @ �@�g

�
+ O (@2): (9)

T he three-point correlator ism uch m ore com plicated. Itisa rathertediousbutstraightforward

work to collectalltherelevantterm sfrom theappendix in [8].In orderto realize the structurem ore

clearly we �rstconsiderthe two cases,� = 0 and � ! 1 (or,equivalently,G ! 0). For� = 0,the

covariantderivative �D again appears,now in the com bination

�D �n
�D �m f = @�n @�m f

�
n(n � 1)

2
��(�1�2

�
@�3 :::@�n )@�m @�f +

�
m (m � 1)

2
��(�1�2

�
@�3 :::@�m )@�n @�f +

� m n ��(�1j(�1
�
@�2 :::@�m )@j�2 :::@�n )@�f + O (@2): (10)

Thecorrelatorisgiven as

h:f[X (�1)]::g[X (�2)]::h[X (�3)]:i
�
�
� = 0

=

Z

x

�(f;g;h)+ O (@ 2)=

X

I;J;K

�1

�

�I+ J+ K ln
I�

�1
21

lnJ ��1
31

lnK �
�1
32

I!J!K !
�

�

Z

x

G
�I�I

G
�J �J

G
�K �K �D �I�J f

�D �I�K g
�D �J �K h + O (@2): (11)

The triangle functional�(f;g;h) in the �rst line is a generalization of(8) and was introduced for

laterreference.In caseofG ! 0 thecorrelatorcan beexpressed solely through thenon-com m utative

product(1)(cf.also [9])

h:f[X 1]::g[X 2]::h[X 3]:i
�
�
G = 0

=

Z

x

1

2

n

(f � g)� h + f � (g� h) (12)

+ L(m )

�

f1 � (f2 � f3)� (f1 � f2)� f3)

�o

+ O (@2):

L(m )= 6

�2
(Li2(m )� Li2(1� m )) is an antisym m etric com bination ofdilogarithm s Li2(m )with the

lim itsL(0)= � 1 and L(1)= 1.Them odulusm = �21=�31 can take thevalues0 � m � 1.

Since we take into account only term s to �rst derivative order these two results can easily be

com pleted to the generalcase.In equations(11)and (12)we have included the G @G -and the �@�-

term s,respectively.In thefullcorrelatorthesetwo resultscom binein a naturalway and add up with

therem aining G @� and �@G parts,so thatwe �nd

h:f[X (�1)]::g[X (�2)]::h[X (�3)]:i = F [G @G ;�@�]+ F [G @�;�@G ]+ O (@ 2) (13)
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where

F [G @G ;�@�] =
X

I;J;K

lnI�
�1
21

lnJ �
�1
31

lnK �
�1
32

I!J!K !
� (14)

�
1

�I+ J+ K

Z

x

G
�I�I

G
�J �J

G
�K �K 1

2

h
�D �I�J f � (�D �I�K g�

�D �J �K h)+ (�D �I�J f �
�D �I�K g)�

�D �J �K h

+ L(m )

�
�D �I�J f � (�D �I�K g�

�D �J �K h)� (�D �I�J f �
�D �I�K g)�

�D �J �K h)

�i

and,with @�f = f�,

F [G @�;�@G ] =

+
i

2�
ln��1

21

Z

x

� ��
@�G

��[� �(f �;g�;h�)�
1

2
�(f �;g��;h)+

1

2
�(f ��;g�;h)]

+
i

2�
ln��1

31

Z

x

� ��
@�G

��[� �(f �;g�;h�)+ �(f �;g�;h�)�
1

2
�(f �;g;h��)+

1

2
�(f ��;g;h�)]

+
i

2�
ln�

�1
32

Z

x

� ��
@�G

��[+ �(f �;g�;h�)�
1

2
�(f;g �;h��)+

1

2
�(f;g ��;h�)]

+
i

2�
ln��1

21

Z

x

G
��
@��

��[+ �(f �;g��;h)� �(f ��;g�;h)]

+
i

2�
ln��1

31

Z

x

G
��
@��

��[+ �(f �;g�;h�)+ �(f �;g�;h�)� �(f �;g�;h�)

+ �(f �;g;h��)� �(f ��;g;h�)]

+
i

2�
ln�

�1
32

Z

x

G
��
@��

��[+ �(f;g �;h��)� �(f;g ��;h�)]: (15)

Thesym bol�(f;g;h)isde�ned in equation (11).

4 O n-shellcorrelators

In the previous section the insertions on the disk as wellas the background �elds are com pletely

general,they do notsatisfy any on-shellconditions,which aredeterm ined by theconform alinvariance

ofthe theory. The equationsofm otion forthe background �eldsare given by the �-functionsofthe

world sheettheory whereastheequationsofm otion fortheinsertionsaredeterm ined by theconform al

transform ation propertiesofthecorrelation functions.

The correlators of the CFT on the disk m ust be invariant under the global conform algroup

SL(2;R).In particular,the 2-pointcorrelatorwith insertionsatthe boundary is

< f1[X (�1)]f2[X (�2)]> =
C12

(�21)
2h
; (16)

whereh istheconform alweightofboth f1 and f2.Thecorrelatorforoperatorswith di�erentweights

vanishes.The3-pointcorrelatoris

< f1[X (�1)]f2[X (�2)]f3[X (�3)]> =
C123

�
h1+ h2�h 3

21
�
h3+ h1�h 2

31
�
h2+ h3�h 1

32

(17)
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The constants C12 and C123 are functionals offi(x),independent ofthe positions �i and invariant

undercyclic perm utation ofindices.Forphysical�eldswhich should carry h = 1 we have

< f1[X 1]f2[X 2]> =
C12

(�1 � �2)
2
; (18)

< f1[X 1]f2[X 2]f3[X 3]> =
C123

�21�31�32
: (19)

O n the otherhand,the o�-shellcorrelators in the open string background,(9)and (13),can be

written in the following way,

< f1[X 1]f2[X 2]> =

1X

I= 0

lnI��2
21

I!
FI[fi](�i) (20)

< f1[X 1]f2[X 2]f3[X 3]> =

1X

I;J;K = 0

lnI�
�1
21

lnJ �
�1
31

lnK �
�1
32

I!J!K !
FIJK [fi](�i)

where FI[fi](�i)and FIJK [fi](�i)are functionals offi and functionsof�i. The �i-dependence arises

from thedilogarithm in (14)aswellasfrom thesign function �(�ij)which accom paniesevery �(cf.[8]).

In fact,we do notsee thesign function becauseofourchoice ofordering,�1 < �2 < �3.

Therefore,if

FI[fi](�i) = FI�1 [fi](�i) (21)

FIJK [fi](�i) = F(I�1)JK [fi](�i)= FI(J�1)K [fi](�i)= FIJ(K �1)[fi](�i) (22)

isful�lled,onecan reduceallfunctionalsin thesum toF0[fi](�i)and F000[fi](�i),respectively.Further-

m ore,in orderto reproducethebehaviour(18)and (19),F0[fi](�i)and F000[fi](�i)m ustbeconstants

and then determ ine C12 = F0[fi]and C123 = F000[fi]. However,thisdoesnotwork o�-shelland has

to be accom plished by certain on-shellconditions im posed on the insertions (and ofcourse on the

background �elds).W e proceed in two stepsand �rstshow the following theorem :

R elations (21)and (22)requirethatthe insertionssatisfy the tachyonic equation ofm otion

� fi� (� 2�)fi=
1

p
det(g� F )

@�
�p

det(g� F )G ��
@�fi

�
� (� 2�)fi= 0: (23)

Proof: W e start with the 2-point correlator. In order to get a scalar equation ofthe insertions one

hasto integrate by part. O n the otherhand,ifwe look atS-m atrix calculations[15]the m om entum

conservation (�D (�k)) com es from the integration over zero m odes. Here we do not have a at

background and we cannotperform the integration in thatway. Now the integration by partisthe

analogofthem om entum conservation in position space.Furtherm ore,onecan separatethefunctionals

FI into two distinct parts,FI = FI[�d�]+ F I[G dG ;G d�;�dG ]. The form er term com es from the

�rstlineof(9),butwithouttheChristo�elsym bols,the latterarisesfrom therestof(9).

6



W e take FI[�d�]and integrate by partin thefollowing way

FI[�d�] =

�
1

2�

�I
Z

x

G
�I�I

@�If1 � @�If2 (24)

= �
1

2

�
1

2�

�I
Z

x

G
�I� 1�I� 1

@�I� 1� f1 � @�I� 1f2

�
1

2

�
1

2�

�I
Z

x

G
�I� 1�I� 1

@�I� 1f1 � @�I� 1� f2

+ F
0
I[G dG ;G d�;�dG ]:

The last expression F 0
I
[G dG ;G d�;�dG ]com bines with F I[G dG ;G d�;�dG ]. Analogously,using in-

tegration by partin F 00
I
= F 0

I
[G dG ;G d�;�dG ]+ F I[G dG ;G d�;�dG ],the di�erentialoperatorasit

appearsin (24)arisesnow in zero derivative orderofthebackground �elds,i.e.� fi= G �I�I@�I@�Ifi,

becauseF 00
I
containsonlyterm sof�rstderivativeorder.Now FI�1 [�d�]isequaltothe�rsttwolinesof

(24)ifequation (23)holds.Proceedingalongthesam elinesonecan show thatFI�1 [G dG ;G d�;�dG ]=

F 00
I
,again using (23).In fact,the 2-pointfunction doesnot�x the tachyonic equation uniquely.O ne

can add A �2n+ 1

@�2n+ 1fi,where n 2 Z and A � O (@). By m eans ofpartialintegration such term s

would m utually cancelin the second and third line of(24).However,we willsee thatthisam biguity

is�xed by the 3-pointcorrelator.

Thecalculation forthe3-pointcorrelatorissim ilar.Firstwem akethesplitFIJK = FIJK [�d�]+

FIJK [G dG ;G d�;�dG ]. Let us again look at the S-m atrix calculation. There one uses the relation

k1k2 =
1

4
(k1 � k2 � k3)(k2 � k1 � k3)=

1

2
(k23 � k21 � k22).W ith the analogoustransform ation in term s

ofpartialintegrationswe obtain from (13)and (14)

FIJK [�d�]= (25)

=
1

�I+ J+ K

Z

x

G
�I�I

G
�J �J

G
�K �K 1

2

h

@�I�J f1 � (@�I�K f2 � @�J �K f3)+ (otherbracket)

+ L(m )

�

@�I�J f1 � (@�I�K f2 � @�J �K f3)� (otherbracket)

�i

=

=
1

�I+ J+ K

Z

x

G
�I� 1�I� 1

G
�J �J

G
�K �K 1

4

h

@�I� 1�J f1 � (@�I� 1�K f2 � @�J �K � f3)

� @�I� 1�J � f1 � (@�I� 1�K f2 � @�J �K f3)

� @�I� 1�J f1 � (@�I� 1�K � f2 � @�J �K f3)

+ (otherbracket)

+ L(m )

�

@�I� 1�J f1 � (@�I� 1�K f2 � @�J �K � f3)

� @�I� 1�J � f1 � (@�I� 1�K f2 � @�J �K f3)

� @�I� 1�J f1 � (@�I� 1�K � f2 � @�J �K f3)

� (otherbracket)

�i

+ F
0
IJK [G dG ;G d�;�dG ]:

Since the dilogarithm ic term is of�rst derivative order in background �elds there are no contribu-

tions thereofin F 0
IJK [G dG ;G d�;�dG ]. The sam e procedure as above shows that in view of(23)

the �rst part of(25) equals F(I�1)JK [�d�]and F 0
IJK [G dG ;G d�;�dG ]+ F IJK [G dG ;G d�;�dG ]=

F(I�1)JK [G dG ;G d�;�dG ]. Butnow term slike A �2n+ 1

@�2n+ 1fi would notcancelin (25),so thatthe

7



tachyonic equation ofm otion (23) isunique. Relations FIJK = FI(J�1)K and FIJK = FIJ(K �1) can

beshown analogously. �

W ith thisresultwe can write thecorrelatorsas

< f1[X 1]f2[X 2]> =
F0[fi](�i)

�21
2

(26)

< f1[X 1]f2[X 2]f3[X 3]> =
F000[fi](�i)

�21�31�32

with

F0[fi](�i) =

Z

x

(f1 � f2); (27)

F000[fi](�i) =

Z

x

1

2

n

f1 � (f2 � f3)+ (f1 � f2)� f3 + (28)

+ L(m )

�

f1 � (f2 � f3)� (f1 � f2)� f3)

�o

:

Indeed,(27)and (28)arenotyetposition independentand invariantundercyclic exchangeofthe

functionsfi.Putting also the background �eldson shell,i.e.using theM axwellequation (3),we can

take advantage oftherelations(4)and (5).So,we reach the �nalresult

< f1[X 1]f2[X 2]> =
1

�21
2

Z

x

f1 � f2 =
1

�21
2

Z

x

f1 � f2 ; (29)

< f1[X 1]f2[X 2]f3[X 3]> =
1

�21�31�32

Z

x

f1 � f2 � f3 :

W e close thissection with a rem ark on the ghost�elds,which we have totally excluded from our

discussion so far. O n the disc we have three conform alkilling vectors (form ing the M �obius group

SL(2;R)) and therefore three ofthe vertices in a correlator can be �xed in position and m ust be

accom panied by a ghost �eld c(�i),the others being integrated over the world sheet. The 2-point

correlator has too few insertions in order to give a non-vanishing result in the ghost sector, i.e.

hc(�1)c(�2)igh = 0. The 3-pointghost am plitude,hc(�1)c(�2)c(�3)igh = cgh �21�31�32,exactly cancels

theposition dependenceofthecorrelator(19).M oreover,theM �obiusgroup preservesthecyclicorder

oftheinsertionsand so wem ustsum overinequivalentorderingsin the3-pointam plitude,so thatwe

obtain3

hcf1[X 1]cf2[X 2]cf3[X 3]i+ (f2 $ f3)= c

Z

x

f1 � (f2 � f3 + f3 � f2): (30)

5 Tachyonic action

The results (23) and (30) enable us to reconstruct the kinetic term and the cubic potentialofthe

open string tachyon.Thevalueforthecoupling constantisrecovered from consistency with S-m atrix

calculations,asdiscussed e.g.in [15],by taking the lim it�! 0 and g �� = ���.

S = �
1

2g2o

Z

d
D
x
p
g� F

n

G
�� � @�T � @�T �

1

�0
T � T �

r
8

9�0
T � (T � T)

o

: (31)

3
Untilnow we have chosen the norm alization ofthe correlators such that it reduces to an integralover the ordi-

nary product offunctions for F = 0. W e reintroduce a norm alization constant c = cX cgh where cX and cgh are the

norm alizationsforthe m atterand the ghostcontribution,respectively.c is�xed by unitarity [15].

8



Itwould bem orenaturalifwe writetheaction totally in term softhenon-com m utative product(1),

i.e.

S = �
1

2g2o

Z

d
D
x
p
g� F

n

G
�� � @�T � @�T �

1

�0
T � T �

r
8

9�0
T � T � T

o

: (32)

Thekinetic term ofthisaction generatestheequation ofm otion

1

2

1
p
g� F

@�

�p
g� F (G �� � @�T + @�T � G

��)

�

+
1

�0
T = 0; (33)

which reducesto equation (23)because 1

2
(G �� � @�T + @�T � G��)= G ��@�T + O (@2G ).Thism eans

thatthe question whetherone hasto putthe non-com m utative productinto the kinetic term ornot

cannotbedecided at�rstderivative order.

Ifwe im pose the background �eld on-shellcondition (3),the kinetic term of(23) reveals a re-

m arkable feature of the geom etry on the D-brane. Equation (3) im plies also @�(
p
g� F G ��) =

p
g� F M ��(� ���

� � 1

2
H ��

�),and we areable to rewrite (23)as

M
��r �r �T � (� 2�)T = 0; (34)

where we have introduced the connection r thatiscom patible with the bulk m etric and hastorsion

H

r ��� = @��� � ���
�
�� �

1

2
H ��

�
��: (35)

Thisisexactly theconnection thatappearsin closed string theory and itisindependentofthegauge

�eld A.

Finally,wem akea rem ark on higherorderinteractionsin thetachyonicpotential.Sinceeach term

in the potentialisa powerofthe �eld T,itisa very sym m etric expression and one m ay ask ifm ore

bracketsthan the outerm ostcan be om itted and,ifso,how m any.For\T�n" with n = 4;5 itiseasy

to show thatallbracketscan beleftout,i.e.
R

x
T�4 =

R

x
T � T � T � T and

R

x
T�5 =

R

x
T � T � T � T � T.

W hathappensifwe vary these expressions? To thisend one hasto selectan arbitrary choice forthe

brackets in T�4 and T�5. Independently ofthat choice the variation gives the sum over allbracket

arrangem entsforthree and fourfunctions,

�

Z

x

T
�4 =

Z

x

�T �

�

T � (T � T))+ ((T � T)� T)

�

(36)

�

Z

x

T
�5 =

Z

x

�T �

�

T � (T � (T � T))+ T � ((T � T)� T)+ (T � T)� (T � T)+

+ (T � (T � T))� T + ((T � T)� T)� T

�

: (37)

Forhigherpowersthebehaviourisdi�erent.Forinstance,in case ofn = 6 the following fourexpres-

sionshave di�erentvariations:
Z

x

(T � (T � T))� ((T � T)� T); (38)

Z

x

(T � (T � T))� (T � (T � T));

Z

x

((T � T)� T)� ((T � T)� T);

Z

x

((T � T)� (T � T))� (T � T):
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Any otherbracketarrangem entscan beconverted to one ofthese possibilitiesby m eansofequations

(4)and (5).Thevariationsof(38)giveasum of6,3,3,and 2di�erentterm s,respectively.4 Therefore,

forhigherpowersthan �ve we have distinctexpressions,where eitherone could arise in the tachyon

potential,possibly with di�erentweights.

6 D iscussion

In view ofthe quantity M �� and itsinverse,the two m etrics,g and G ,seem to be on equalfooting

on the D-brane. For instance,the integration m easure can be written as 4
p
g

4
p
G . However,in the

e�ective�eld theory on thebranethey play di�erentroles.G appearsin thekineticterm oftheaction

and,therefore,one expects that it is the preferred m etric on the brane. However,as we have seen

in section (5),the naturalconnection on the D-brane iscom patible with g and hastorsion H = dB .

Thishasan interesting consequence.Theconnection and theparalleltransportisindependentofthe

open string gauge �eld A and dependsonly on bulk quantities. So we have gained som e insightinto

thedi�erentialstructureon a D-braneand itwould beeven m ore interesting to see how thisextends

to second derivativeorder.Thecorrelation functionsofopen string photon verticesinstead oftachyon

verticeswould beanothersourceofinform ation.They should give riseto a gauge theory in a general

non-com m utative background.

W ehaveseen thattheform oftheterm sin thetachyonic potentialisdeterm ined forpowerslower

than six.Forhigherpowersofthe tachyon �eld one hasto calculate the corresponding correlatorsin

orderto decide with which relative weightthe distinctsubsets(e.g. (38))appear. O fcourse,a sum

overallbracketarrangem entswould be a naturalchoice. Butin fact,to �nd outwhetherthisguess

iscorrect,one needsa betterunderstanding ofthe underlying A 1 -structure(cf.[9,14]).

Sinceourresultsareconsequencesofrestricting o�-shellcorrelatorsto theknown structureofcon-

form al�eld theory itwould beinteresting to com pareourresultswith othero�-shellapproaches,e.g.

background independentopen string �eld theory [16{19].5 Clearly we expectthatthe tachyonic on-

shellcondition obtained in thispaperisequivalenttotheconsistency condition forastringpropagating

in nontrivialbackground �elds,i.e. the W eylinvariance condition ofthe underlying 2-d non-linear

sigm a m odel. Furtherm ore,the relation to previous work on the appearance ofa non-com m utative

tachyon action,m ostly considered in the lim itofa strong m agnetic �eld [20,21],needsclari�cation.

Theexactnon-com m utativetachyon potentialshould begiven by thewellknown expression obtained

from BSFT butwith ordinary productsreplaced with thegeneralized non-com m utativeproductfound

in [8].
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4
The totalnum berofterm sisalways14,which isthe num berofbracketarrangem entsfor�ve functions.

5
BSFT requires a �xed conform al background in the bulk, but allows for arbitrary boundary interactions. O ur

approach doesnotm akereferenceto such a background and iscloserto thespiritofthesigm a m odelapproach to string

theory [22].

10



R eferences

[1] V. Schom erus, \D-branes and deform ation quantization," JHEP 9906 (1999) 030 [hep-

th/9903205].

[2] N.Seiberg and E.W itten,\String theory and noncom m utative geom etry," JHEP 9909 (1999)

032 [hep-th/9908142].

[3] F.Ardalan,H.Arfaeiand M .M .Sheikh-Jabbari,\Noncom m utative geom etry from stringsand

branes," JHEP 9902 (1999)016 [hep-th/9810072].

[4] F.Ardalan,H.Arfaeiand M .M .Sheikh-Jabbari,\Dirac quantization ofopen stringsand non-

com m utativity in branes," Nucl.Phys.B 576 (2000)578 [hep-th/9906161].

[5] C.Chu and P.Ho,\Noncom m utative open string and D-brane," Nucl.Phys.B 550 (1999)151

[hep-th/9812219].

[6] M .K ontsevich,\Deform ation quantization ofPoisson m anifolds,I," q-alg/9709040.

[7] A.S.Cattaneoand G .Felder,\A path integralapproach totheK ontsevich quantization form ula,"

Com m un.M ath.Phys.212 (2000)591 [m ath.qa/9902090].

[8] M .Herbst,A.K ling and M .K reuzer,\Starproductsfrom open stringsin curved backgrounds,"

JHEP 0109 (2001)014 [arXiv:hep-th/0106159].

[9] L.Cornalba and R.Schiappa,\Nonassociative starproductdeform ationsforD-brane worldvol-

um esin curved backgrounds," Com m un.M ath.Phys.225 (2002)33 [arXiv:hep-th/0101219].

[10] P.Ho and Y.Yeh,\Noncom m utativeD-branein non-constantNS-NS B �eld background," Phys.

Rev.Lett.85 (2000)5523 [hep-th/0005159].

[11] C.Chu and P.Ho,\Constrained quantization ofopen string in background B �eld and noncom -

m utative D-brane," Nucl.Phys.B 568 (2000)447 [hep-th/9906192].

[12] P.Ho,\M aking non-associative algebra associative," hep-th/0103024.

[13] P.Ho and S.M iao,\Noncom m utative di�erentialcalculus for D-brane in non-constant B �eld

background," hep-th/0105191.

[14] J.D.Stashe�,\O n the hom otopy associativity ofH-spaces,I.& II.," Trans.Am er.M ath.Soc.

108 (1963)275 & 293.

[15] J.Polchinski,\Stringtheory.Vol.1:An introduction tothebosonicstring,"Cam bridgeUniversity

Press(1998).

[16] E.W itten,\O n background independentopen string �eld theory," Phys.Rev.D 46 (1992)5467

[arXiv:hep-th/9208027].

[17] E.W itten,\Som e com putations in background independento�-shellstring theory," Phys.Rev.

D 47 (1993)3405 [arXiv:hep-th/9210065].

[18] S.L.Shatashvili,\Com m enton the background independentopen string theory," Phys.Lett.B

311 (1993)83 [arXiv:hep-th/9303143].

[19] S.L.Shatashvili,\O n theproblem swith background independencein string theory," arXiv:hep-

th/9311177.

[20] L.Cornalba,\Tachyon condensation in largem agnetic�eldswith background independentstring

�eld theory," Phys.Lett.B 504 (2001)55 [arXiv:hep-th/0010021].

[21] K .O kuyam a,\Noncom m utativetachyon from background independentopen string �eld theory,"

Phys.Lett.B 499 (2001)167 [arXiv:hep-th/0010028].

[22] A.A.Tseytlin,\Sigm a M odelApproach To String Theory," Int.J.M od.Phys.A 4 (1989)1257.

11

http://arxiv.org/abs/hep-th/9903205
http://arxiv.org/abs/hep-th/9903205
http://arxiv.org/abs/hep-th/9908142
http://arxiv.org/abs/hep-th/9810072
http://arxiv.org/abs/hep-th/9906161
http://arxiv.org/abs/hep-th/9812219
http://arxiv.org/abs/q-alg/9709040
http://arxiv.org/abs/math/9902090
http://arxiv.org/abs/hep-th/0106159
http://arxiv.org/abs/hep-th/0101219
http://arxiv.org/abs/hep-th/0005159
http://arxiv.org/abs/hep-th/9906192
http://arxiv.org/abs/hep-th/0103024
http://arxiv.org/abs/hep-th/0105191
http://arxiv.org/abs/hep-th/9208027
http://arxiv.org/abs/hep-th/9210065
http://arxiv.org/abs/hep-th/9303143
http://arxiv.org/abs/hep-th/9311177
http://arxiv.org/abs/hep-th/9311177
http://arxiv.org/abs/hep-th/0010021
http://arxiv.org/abs/hep-th/0010028

