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A bstract

W e analyse open string correlators in non-constant background elds, ncluding the
m etric g, the antisymm etric B — eld, and the gauge eld A . W orking with a derivative
expansion for thebackground elds,butexact in their constant parts,we obtain a tachyonic
on-shell condition for the inserted functions and extract the kinetic term for the tachyon
action. T he 3-point correlator yields a non-com m utative tachyon potential. W e also nd
a ram arkable feature of the di erential structure on the D Jrane: A lthough the boundary
m etric G plays an essential role In the action, the natural connection on the D -brane is
the sam e as In closed string theory, ie. it is com patible with the buk m etric and has
torsion H = dB . Thismeans, In particular, that the parallel transport on the brane is
Independent of the gauge eld A .
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1 Introduction

T he geom etry on a D brane has recently attracted m uch attention, as it tumed out to involre non-
com m utative structures that depend on the gauge invariant combiation F = B + (2 %dA of the
buk B - eld and the boundary A-eld. A ot of work was done In exam ining the e ect of a constant
B - eld In a topological decoupling lim it [ﬂ{E].

A generalization to non-constant eldswasgiven through the deform ation quantization of P oisson
m anifolds. In that case, a non-com m utative product can be constructed to all orders of derivatives out
of the Poisson structure and it represents them ost general form being associative [eﬂ], In open string
theory this product appears in the decoupling lim it when the B — eld (or equivalently F ) is closed [ﬂ].

W hile the closure condition isnecessary for associativity, it is not required by string theory and one
m ay ask how far one can relax it in order to obtain a reasonable product. In [E] the non-com m utative
product was extracted from open string o —shell correlators w ith insertions on the boundary of the
disk. It tumed out that one has to abandon the decoupling lin it In order to retain a consistent
setup. The only physical condition on the non-com m utative param eter in rst derivative order of
the background eWds is the on-shell condition for the open string gauge eld A on the D -brane, ie.
the generalized M axw ell equation ; see also [E {] for other attam pts of treating a general background

edB.

Im posing this equation has the follow Ing consequences for the product In  rst derivative order ].
F irstly, the non-com m utative product of tw o filnctions equals the ordinary product under the jntegralﬂ
Secondly, the product is associative up to a surface termm . A s an Inm ediate consequence, the product
of an arbitrary num ber of functions is invariant under cyclic pemm utations under the integral up to
a possible change in the bracket structure). T he integration m easure plays an In portant role in this
regpect and is given by a Bom-Infeld m easure, m . A ssociativity cannot bem aintained and
must be replaced by an A1 -structure E,@] Both properties are necessary to construct a reasonable
action and a variation principle in tem s of the non-com m utative product, the second one, to adjust
the position of the variation of the eld and the rstone, to ram ove allderivatives from the variation.

So far only the non-com m utative product arising in this generalized setting was considered. Tt can
be extracted purely from o —shell correlation fiinctions. H ow ever, since string vacua correspond to 2-d
conform al eld theories, the correlators m ust nally take shape of the usual sin ple on-shell form [L5]].
T here is som e Interesting inform ation which one can gain from passing to on-shell correlators and it
is the intention of this article to work out this inform ation.

For this purpose we w ill use several results from [E] and, therefore, Inherit the general setting of
the m odel considered there. The open strings m ove in a background including a general m etric g
and a nontrivial B — eld in the buk and a gauge eld A on the boundary of the world sheet. The
world sheet is taken to be the upper half com plex plane. A 1l inform ation is extracted from correlation
functions using a dervative expansion of the background elds, where the expansion is restricted to

rst derivative order, but exact to all orders in the constant part of F' .
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1In[E]J'i:wasonbshownthat f g= g f,butitiseasily checked that,in fact, £ g= £fg.



W hat can we leam from the on-shell correlators?

(1) A s the Insertions at the boundary of the disk are taken to be ordinary functions of the target
space coordinates X we expect that the on-shell condition is tachyonic. Furthem ore, the equation of
m otion is linear In the tachyonic eld since the Insertions represent asym ptotic states. W e w illdeduce
this Iinear equation from the requirem ent that the on-shell correlators m ust have the CFT formm and
thus obtain the kinetic term for the e ective action of the tachyon.

(i) The explicit form of the on-shell threepoint function then gives us the cubic interaction of
the open string tachyon potential. H igher n-point correlators are di cult to m anage. N evertheless,
in view of the cyclicity of the product under the integral, we are able to discuss som e In plications for
the structure of higher order interactions.

(iil) W orking In rst derivative order of the background elds is already su cient to extract
inform ation about thedi erential structure from the tachyon equation ofm otion. A san interesting and
som ew hat surprising result we anticipate that, using the generalized M axw ell equation, the covariant
derivative on the D orane tums out to be the sam e as that o the brane, ie. it is the connection
com patible w ith the buk m etric and w ith torsion H = dB .

T he organisation of the paper is as follow s. W e start in section Iz w ith the introduction of som e
notation and review the properties of the non-com m utative product. In section E we calculate the full
tw o—and threepoint o —shell correlators using results from [E]. T hereafter, in section E|, we show that
confom al Invariance requires a tachyonic on-shell condition for the insertions of the correlators and
the use of the M axwell equation for the background elds. Eventually, we investigate the potential
and the di erential structure of the tachyonic action in section E and close w ith a general discussion
of our results in section f.

2 The non—com m utative product

On the D brane we have in addition to the so called buk metric g , which enters in the sigm a
m odel action, the boundary metric G . Two m etrics arise because of the fact that on the brane
one has to consider the com bination M = g + F  rather than the sgparate quantities g and
F . Consequently, one can split the inverse of M into the symm etric and antisym m etric part, ie.
M =M ! =G + ,and obtains the second m etric G and the antisym m etric part ,which
tums out to be the non-com m utativity param eter

T he product found in ] isgiven to allordersin and to rstderivative order in the background
elds. It reads

f(x) gx)=f g— @ @@f @g+ @ f @@ g +

+ 0 (@ )%e* ; 1)

where / ’denotes the M oyal contribution to the product. T he on-shell condition for the gauge eld A

W euse the convention M * M =



on the D brane is
1
G D F 5 H F = 0; (2)
whereD is the Christo el connection of g, or equivalently,

p
@ g F
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o

(3)

In posing this equation of m otion one nds that the product of two functions equals the ordinary
product under the integral,
Z Z
D p D P
dx det@F)f g = dx detgF)Ef g; (4)

and that it is associative up to a surface temm ,
Z Z
p P p P
dx det@F)((E g) h = d" x det(g F)f (g h): (5)
T he trace property
Z Z
p P p P
d” x det(g F) (::(fy 22)) 41 £ = d" x det(g F) £, (:::(f :22)) 1 (6)

follow s Inm ediately. A though the Integration m easure p]alxq/s anij portant role In order to derive
these properties we w ill subsequently use the abbreviation = dPx det(g F) for the integral.

X

T hese results w ill extensively be used in sections @) and (E).

3 O —=shell correlators

W e are now going to use several results of the appendix of ] to calculate the full o shell two—
and threepoint correlators of ordinary fiinctions of target space coordinates X . T he insertions are
ordered at the boundary of the upper halfplane, so that 1 < < 3.

The tw opoint correlatorwas already given in ]and w e repeat the expression in a m ore com pact
form . To this end we use the relation
2G G =G @G G @G G @G ; (7)

to ntroduce the Christo el connection com patible with G . W ith the abbreviation ( ;= )

®

£ 1 1 n]n“ 5 n n ‘ 8
g = n—! 2— 21 G D n D ng ( )
n=0
where the upper subindices of the indices m ean a product of derivatives, D » = D, :::D | =
@nf n(nzl) (,, @ i@ @ £+ O(@z)andapmductofmetrjcsG "T=2G 11:::G »".The

sym m etrization of thederivativesD In D » isautom atic In rstorder, because the partialderivatives



contracted with G symm etrize the —temn on the other side, ie. G D fD g= G @ fD g+
G D fa@ g+O(@2).Wecan then w rite the fll tw opoint correlator as

Z
haf X (1)]gX (2)]:1 = f g
. z "
1
+4—Jn211 €G @ef @ g @f @ @g
. ZX
+2—lJn211 G @ @ef @ g @f @ @g +0(@): 9)

T he threepoint correlator ismuch m ore com plicated. It is a rather tedious but straightforw ard
work to collect all the relevant termm s from the appendix in [E]. In order to realize the structure m ore
clearly we rst consider the two cases, = Oand ! 1 (or,equivalently,G ! 0). For = 0,the

covariant derivative D again appears, now in the com bination

DaDaof = @a@naf
nn 1)
T (12@3---@n)@m@f+
m (m 1)
> (,, @ ::@ ,@n@ £+
mn (4, @,:::@, 8, @ @ £+ 0 (@%): (10)
T he correlator is given as
Z
hef X (1)1::gK (2)]:thX (3)1:d _ = (f9sh)+ 0 (@ %)=
X
X 1 154k nt Ll m? o mE ]
IUK !
I;Jé(
I I J J K K 2
G G G D:sfED 1xgD 5 xh+ O (@): (11)

X
T he triangle functional (f;g;h) in the st line is a generalization of (5{1 and was Introduced for
later reference. In case of G ! 0 the correlator can be expressed solely through the non-com m utative
product @) (cf. also [E])

(f g) h+f (g h) (12)
o
+ Lm) £1 & B) (& £) 5)

h:fD(l]IigMZJZ:hD(ﬂ:iG:o

+ 0 (@%):
L(m)=%(Lj2(m) L1l m)) isan antisymm etric com bination of dilogarithm s Li (m ) w ith the
IimitsL(0)= landL(l)= 1.Themodulusm = ;1= 3 can take thevalues(0 m 1.

Since we take Into account only termm s to rst derivative order these two results can easily be
com pleted to the general case. In equations ) and (@) we have included the G @G —and the @ -
term s, respectively. In the full correlator these two results com bine In a naturalway and add up w ith
the ramaining G@ and @G parts, so thatwe nd

hifX (1)]::gX (2)]::hX (3)]:i= FGEG; @ [+ F[GQ ; @G ]+ O (@ %) (13)



X 3l 1pd pf L
FGRG; @ ]= i -l 2 (14)
IUK !
ITXK
z h
l I I J J KKl f h f h
TR G G G 2DIJ D:xg Dosxh)+ D 14 DIKg)DJK.

1
+L(m)D1Jf DIKgDJKh) (DIJf DIKg)DJKh)

FIGR ; GG ] =
i 1 1 1
+ —In , ec [ & j9h) - (& ;g jh)+ - (£ g 7h)]
2 N 2 2
_ Z
i 1 1 1
oy ec [ & ggh)+ (& jgih) - (& sgih )+ - (£ igih )]
ZX
i 1 1 1
+ Z—Jn » @G [ (£ ;9h) > (£;g h )+ 5 (fig )]
. ZX
1
+ - ,, G @ + (€ 59 sh) (£ ;g ;h)]
. z*
1
+ 2—]11311 G @ b (£ sgh )+ (£ ;97h) (£ 59 h)
7 + (£ jgsh ) (& gih )]
i
+ » G @ [+ (59 ;h ) (f;9 ;h )k (15)

The symbol (£;g9;h) isde ned ;n equation (I1].

4 O n-shell correlators

In the previous section the insertions on the disk as well as the background elds are com pletely

general, they do not satisfy any on-shell conditions, w hich are determ ined by the conform al invariance
of the theory. T he equations of m otion for the background elds are given by the -functions of the

world sheet theory w hereas the equations ofm otion for the insertions are determ ined by the conform al
transform ation properties of the correlation functions.

The correlators of the CFT on the disk must be nvariant under the global conform al group
SL (2;R). In particular, the 2-point correlator w ith insertions at the boundary is
Ci2

<EM(DEBK ()] 5 (16)

where h is the conform alweight of both f; and f,. T he correlator for operators w ith di erent weights

vanishes. T he 3-point correlator is

C
<HK (DBK (DBK ()= e )
31 32

21




The constants C1, and C 13 are functionals of f;(x), Independent of the positions ; and invariant
under cyclic perm utation of indices. For physical eldswhich should carry h = 1 we have

<HXKIRK2]> = R (18)

Ci23
<OHEIDLEK2IHK3]> = ———— (19)
21 31 32

On the other hand, the o —shell correlators in the open string background, (E) and (B), can be
w ritten in the follow ing way,

b nl 2
< HiK116K2]> = TﬂFl[fik 1) (20)
I=0
b I 1+.J 1.K 1
<HKIHK]IHKs]> = i ]?U;g,h 2 Frox i)
IJ0K =0 :

where F1[£:]( 1) and Fryx [£1]1( ;) are functionals of f; and functions of ;. The ;-<dependence arises
from thedilogarithm in ) aswellas from the sign function ( j3) which accom paniesevery (cf. [E[I]).

In fact, we do not see the sign function because of our choice of ordering, 1 < < 3.

T herefore, if

Frlfil( 1) = Frao £l (21)
Fror E11( 1) = Fiogr Bl )=Frg1x El )= Frgx 1) L 1) (22)

isfiil 1led, one can reduce all functionals in the sum to Fo[f;]( ;) and Fopo [£1)( 1), respectively. Further—
m ore, In order to reproduce the behaviour (@) and ), Folfi1( 1) and Fooo [£1]( 1) must be constants
and then determ ine C1, = Fglfi]and Cq23 = Fooolfi]. However, this does not work o —shell and has
to be accom plished by certain on-shell conditions im posed on the insertions (and of course on the
background elds). W e proceed in two steps and rst show the follow ing theorem :

R elations (21) and (@) require that the insertions satisfy the tachyonic equation of m otion

1 p—
det(g F)

Proof: W e start w ith the 2-point correlator. In order to get a scalar equation of the insertions one

has to integrate by part. O n the other hand, if we look at S-m atrix calculations ] the m om entum

conservation (P ( k)) comes from the integration over zero m odes. Here we do not have a at

background and we cannot perform the integration In that way. Now the integration by part is the

analog of them om entum conservation in position space. Furtherm ore, one can separate the functionals

F: Into two distinct parts, Fr = F;[d ]+ F 1[GdG;Gd ; dG ]. The form er term com es from the
rst line of (E), but w ithout the C hristo el sym bols, the latter arises from the rest of () .



W e take F;[ d ]and integrate by part in the follow Ing way

Z
1 I 11
Fi[d ] = 2— G Q@ :fq @:f, (24)

7

1 1 1 T1I1

= - — G @Q:.: f; @: 1 £,

2 2 7%

1 1 1 G 111 1@ £ @ £

- — 115 11 Iy

2 2 %

+ FJGdG;Gd ; dG I

T he last expression FIO[G dG;Gd ; dG Jcombineswith F 1[GdG ;Gd ; dG ]. Analogously, using in-
tegration by part n FP= F2GdG ;Gd ; dG ]+ F 1[GdG ;Gd ; dG ], the di erential operator as it
appears in @) arises now in zero derivative order of the background elds,ie. £;=G @ @  fj,
becauseFI(Dcontajnsonlytenn sof rstderivativeorder.Now Ft 1 [ d ]isequalto the rsttwo linesof
@) ifequation @)holds. P roceading along the sam e linesone can show thatF: 1 [GdG ;Gd ; dG 1=
FI(D, again using ). In fact, the 2point function does not x the tachyonic equation uniquely. O ne
can add & e m+1fj, wheren 2 72 and A O (@). By means of partial integration such term s
would mutually cancel in the second and third line of @). However, we w ill see that this am biguity

is xed by the 3-point correlator.

T he calculation for the 3-point correlator is sim ilar. First wem ake the split Frgx = Frgx [ d ]+
Figx [GAG ;Gd ; dG ]. Let us again look at the S-m atrix calculation. T here one uses the relation
kiky= 2(k1 ko k3 ki k)= 3(k35 kI k3).W ith the analogous transfom ation in tem s
of partial integrations we obtain from (13) and )

Fiok [d£= (25)
h
_ 1 T 1 J g K K 1
= v IR G G G E Q : Jf]_ (@1 K f2 Qs x f3)+ (otherbracket)

1
+ L (m ) Q: s f]_ (@I K f2 Qs x fg) (other brad<et) =
z h

l I 1 I 1 J J KKl

= m G G G Z@IlJfl (@IleZ @JK f3)

X

@:15 f1 (@1 xfy @5« £f3)
@r:10f (@:r:1x £f2 @5 x£f3)
+ (other bracket)
+Lm) @:r10f (@rq1xfy @5« £3)
@:15 £; (@1 xfr @5« f3)
@:r10f (@:r:1x £ @5« f3)
(o’cherbracket)l

+ F) L, [6dG;Gd ; dG &

Since the dilogarithm ic term is of rst derivative order in background elds there are no contribu-—

tions thereof in FIOJK [GJG ;Gd ; dG ]. The sam e procedure as above show s that In view of (2

the st part of (@) equalsF (1 1)5x [d Jand F IOJK GdG;Gd ; dG ]+ F 13x [GAG ;Gd ; dG ] =
2n+ 1

Fiq1yx 6GdG;Gd ; dG ]. Butnow term s lke A @ 2n+1f; would not cancel in (@), so that the



tachyonic equation of m otion ) isunigue. Relations Frgx = Frg 1)x and Frgx = Fryx 1) can
be shown analogously.

W ith this result we can w rite the correlators as

< HEKI82K2]> = 0[7]2() (26)
21
Fooo [£11( 1
< EKIIEK, K> = ool
21 31 32
w ith
Z
Folf:1( 1) = (f1 %) (27)
lel’l
Fooolfi1( 1) = > £f1 & B)+ (1 £) B+ (28)

Inded, ) and @) are not yet position independent and invariant under cyclic exchange of the
functions f;. Putting also the background elds on shell, ie. using the M axw ell equation (E), we can
take advantage of the relations (E) and (E). So,we reach the nalresult

Z Z
1 1
<HEKalBX2]> = — £ £ = — fH £ (29)
21 X 21 X
1 Z
<EHX116H K21 63K3]> = ——— £ & £
21 31 32 x

W e close this section w ith a ram ark on the ghost elds,which we have totally excluded from our
discussion so far. On the disc we have three conform al killing vectors (form Ing the M obius group
SL (2;R)) and therefore three of the vertices In a correlator can be xed In position and must be
accom panied by a ghost el c( ;), the others being integrated over the world sheet. The 2-point
correlator has too few insertions In order to give a non-vanishing result in the ghost sector, ie.
he( 1)e( 2)ign = 0. The 3-point ghost am plitude, he( 1)c( 2)c( 3)ign = Gy 21 31 32, €Xactly cancels
the position dependence of the correlator (@ ). M oreover, the M obius group preserves the cyclic order

of the insertions and so wem ust sum over inequivalent orderings in the 3point am plitude, so thatwe

obtainf]

Z
hefi K laf, KolefsKsHE+ (528 f3)=c £, (& £+ f3 £): (30)

5 Tachyonic action

T he results @) and ) enable us to reconstruct the kinetic term and the cubic potential of the
open string tachyon. T he value for the coupling constant is recovered from consistency w ith S-m atrix
calculations, as discussed eg. In ], by takihgthelmit ! Oandg =

Z n t o

R 1 ra
S = — d°'x g F G QT @ —T T — T (T T): (31)

292 0 9

3Until now we have chosen the nom alization of the correlators such that it reduces to an integral over the ordi-

nary product of functions for F = 0. W e reintroduce a nom alization constant ¢ = < cyjn where & and ¢y, are the
nom alizations for the m atter and the ghost contribution, respectively. c is xed by unitarity @].

o




Tt would bem ore natural if we w rite the action totally in term s of the non-com m utative product (EI ),

ie.
7 r____
S ! de FnG QT @T Lt o1 .. g (32)
202 ¢ 0 5 0
T he kinetic term of this action generates the equation ofm otion
1 1 p 1
—p——2= g F G BT +@T G ) + —T=0; (33)
2°"g F
w hich reduces to equation ) because%(G @RT+@T G )=G QT+ 0 (R°G). Thismeans

that the question whether one has to put the non-com m utative product into the kinetic term or not
cannot be decided at rst derivative order.

If we In pose the background eld on-shell condition (), the kinetic term of (@) reveals a re—
m arkable feature of the geom etry on the D brane. Equation (E) inplies also @ (p g FG )=
pg FM ( %H ), and we are able to rew rite )as

M rr T ( 2)T=0; (34)

w here we have Introduced the connection r that is com patdble w ith the bulk m etric and has torsion
H
J— l .
r = @ EH . (35)
T his is exactly the connection that appears in closed string theory and it is independent of the gauge
ed A .

Finally, wem ake a rem ark on higher order interactions in the tachyonic potential. Since each tem
in the potential is a power of the eld T, it is a very sym m etric expression and one m ay ask ifm ore
brackets than the outem ost can be om jttedf&{md, jfsoﬁ how m any. For \TR oo wjthn = 4;5 it is easy
to show thatallbrackets can be leftout,ie. ' T *= T T T Tand T°’= T T T T T.
W hat happens if we vary these expressions? To this end one has to select an arbitrary choice for the
brackets In T ¢ and T °. Idependently of that choice the variation gives the sum over all bracket

arrangem ents for three and four functions,
Z Z

T 4= T T (T TN+ (T T) T) (36)
7% 7%
T ° = T T (T (T TN+T (T T) T)H)+ (T T) (T T)+

X X

+ (T (T T)) T+ T T) T) :T (37)

For higher powers the behaviour is di erent. For instance, In case of n = 6 the follow Ing four expres-

sions have di erent variations:

Z
(T (T T)) (T T) T) (38)
ZX
(T (T T)) (T (T T))
ZX
(T T) T) (T T) T);
ZX
(T T) (T T)) (T T)



A ny other bracket arrangem ents can be converted to one of these possibilities by m eans of equations
@) and @). Thevar:iationsof) givea sum of6,3,3,and 2 di erent term s,respectivelyﬂ T herefore,
for higher powers than ve we have distinct expressions, w here either one could arise in the tachyon
potential, possibly w ith di erent weights.

6 D iscussion

In view of the quantity M and its Inverse, the two m etrics, g and G , seem to be on equal footing

E@ G . However, In the

on the D brane. For instance, the integration m easure can be w ritten as
e ective el theory on the brane they play di erent roles. G appears In the kinetic term of the action

and, therefore, one expects that it is the preferred m etric on the brane. However, as we have seen
in section (E), the natural connection on the D Jbrane is com patible w ith g and has torsion H = dB .
T hishas an interesting consequence. T he connection and the parallel transport is independent of the
open string gauge eld A and depends only on bulk quantities. So we have gained som e Insight into
the di erential structure on a D brane and it would be even m ore interesting to see how this extends
to second derivative order. T he correlation functions of open string photon vertices instead of tachyon
vertices would be another source of inform ation. T hey should give rise to a gauge theory in a general

non-com m utative background.

W e have seen that the form of the term s in the tachyonic potential is determ ined for pow ers low er
than six. For higher powers of the tachyon eld one has to calculate the corresponding correlators in
order to decide w ith which relative weight the distinct subsets (eg. @)) appear. O f course, a sum
over all bracket arrangem ents would be a natural choice. But in fact, to nd out whether this guess
is correct, one needs a better understanding of the underlying A 1 —structure (cf. E,@]) .

Since our results are consequences of restricting o —shell correlators to the know n structure of con—
form al eld theory it would be Interesting to com pare our results w ith other o —shell approaches, eg.
background independent open string eld theory [@{@]ﬂ C learly we expect that the tachyonic on—
shellcondition obtained in this paper isequivalent to the consistency condition for a string propagating
in nontrivial background elds, ie. the W eyl invariance condition of the underlying 2-d non-linear
sigm a m odel. Furthem ore, the relation to previous work on the appearance of a non-com m utative
tachyon action, m ostly considered in the 1m it of a strong m agnetic eld @,@], needs clari cation.
T he exact non-com m utative tachyon potential should be given by the well know n expression obtained
from BSFT butw ith ordinary products replaced w ith the generalized non-com m utative product found

n gl
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“T he total num ber of tem s is alv ays 14, which is the num ber of bracket arrangem ents for ve functions.

°BSFT requires a xed conform al background in the bulk, but allow s for arbitrary boundary interactions. Our
approach does notm ake reference to such a background and is closer to the spirit of the sigm a m odel approach to string
theory }.
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