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Abstract

Double-tag events in two-photon collisions are studied using the L3 detector at
LEP centre-of-mass energies from /s = 189 GeV to 209 GeV. The cross sections
of the ete”™ — ete hadrons and y*y* — hadrons processes are measured as a
function of the product of the photon virtualities, Q* = \/Q?Q%, of the two-photon
mass, W, and of the variable Y = In(W2 /Q?). The average photon virtuality is
(Q%) = (Q2%) = 16 GeV?. The results are in agreement with next-to-leading order
calculations for the process v*v* — qq in the interval 2 < Y < 5. An excess is
observed in the interval 5 < Y < 7, corresponding to W.,, greater than 40 GeV.
This may be interpreted as a contribution of resolved photon QCD processes or the
onset of BFKL phenomena.
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1 Introduction

This letter presents a measurement of cross sections of two-photon collisions: ete™ — ete~hadrons
obtained with the L3 detector [I] using double-tag events, where both scattered electrons [ are
detected in the small angle electromagnetic calorimeters. The virtualities of the two photons
are defined as Q? = 2E;Ey(1 — cos0;), where Ej, is the beam energy, E; and 6; are the mea-
sured energy and scattering angle of the detected electron (i = 1) or positron (¢ = 2). The
centre-of-mass energy of the two virtual photons, W, is related to the ete™ centre-of-mass
energy, \/s, by W2, = sy1ys, with y; = 1 — (E;/Ep) cos*(;/2). This is a good approximation
in the kinematic range covered by this study, where W2, is usually much larger than Q7. It is
convenient to define the dimensionless variable Y:

W2
Yot @ -/ae (1)

which depends mainly on the angles of the scattered electrons and allows the combination of
the data collected at different values of /s.

Taking advantage of the good energy resolution of the small angle electromagnetic calorime-
ters, W, is calculated as the missing mass of the two scattered electrons, We.. This avoids an
unfolding procedure to calculate W,, from the effective mass of the hadrons observed in the
detector, W,;,, which is the dominant source of systematic uncertainty on the measurement of
the eTe™ — ete hadrons cross sections for untagged [2LB3] and single-tag [4L5] events. However
the W, variable is more strongly affected by QED radiative corrections than W,,.

In perturbation theory, the cross section of the v*v* — hadrons process is described in terms
of a fixed order expansion in the strong coupling constant, complemented with the DGLAP [6]
evolution of the parton density of the photon. All two-to-two leading order (LO) processes, such
as vy — qq (QPM) or, for example, yg — qq or y7q — ¢gq (single resolved) and gg — qq (double
resolved), are taken into account in the Monte Carlo generators used to analyse the data. If
the virtualities of the two photons are large and comparable, LO processes are expected to be
suppressed relative to diagrams where multiple gluons are exchanged between the qq dipoles [7]
coupling to each virtual photon. Examples of possible diagrams are given in Figure [ In
leading logarithmic approximation, the resummed series of perturbative gluonic ladders can be
described by the BFKL equation [§], which predicts a rise in cross sections as a power of W., as
if a “hard Pomeron” [9] was exchanged. The cross section measurement of two virtual photons
is considered as a “golden” process to test BFKL dynamics [I0]. After our first publication
on the double-tag data at /s = 91 GeV and 183 GeV [I1], an effort was made to improve
the QPM calculation by including QCD corrections [I2]. The effects of varying the charm
mass and the strong coupling constant were studied as well as the contribution of longitudinal
photon polarization states [I3]. The relative importance of perturbative and non perturbative
QCD effects was also addressed by considering Reggeon and Pomeron contributions [T4}[15].
There are also many efforts to include next-to-leading order (NLO) corrections in the BFKL
model [16].

The data, discussed in this letter, were collected at /s = 189—209 GeV and correspond to an
integrated luminosity of 617 pb™!, for a luminosity weighted centre-of-mass energy 197.9 GeV.
The observed value of Q? is in the range 4 —44 GeV? with an average value of (Q?) = 16 GeV?.
The kinematic region E; o > 40 GeV, 30 mrad < 6, < 66 mrad and W, > 5 GeV is investi-
gated. A study of asymmetric double-tag events (Q? > Q3) at /s = 91 GeV was previously

DElectron stands for electron or positron throughout this paper.
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reported [17].

2 Event Generators

Two Monte Carlo generators, PHOJET [18] and TWOGAM [19], are used to simulate double-
tag two-photon events. Both use the GRV-LO [20] parton density in the photon and include
all two-to-two LO 7 diagrams. They describe well single-tag events [4].

PHOJET is an event generator for pp, vp and two-photon interactions, based on the Dual
Parton Model. The electron-photon vertex for transversely polarized photons [21] is simulated.
A transverse momentum cutoff of 2.5 GeV on the outgoing partons is applied to separate soft
from hard processes [22]. PHOJET gives also a good description of untagged vy — hadrons
events [2]. The electromagnetic coupling constant, ., in PHOJET is fixed to the value for
on-shell photons.

TWOGAM generates three different processes separately: QPM, QCD resolved photon pro-
cesses and non perturbative soft processes described by the Vector Dominance Model (VDM).
The normalization of the QPM process is determined by the quark masses (m, = my = 0.3 GeV,
ms = 0.5 GeV and m. = 1.6 GeV), that of the VDM process is fixed by our measurement of the
cross section of real photons [2], while the normalization of the QCD contribution is adjusted
to reproduce the observed number of data events. TWOGAM was recently upgraded to take
into account QED soft and hard radiation from initial (ISR) and final state (FSR) electrons.
The accuracy of the implementation of QED radiative corrections is checked with the program
RADCOR [23], using the channel ete™ — efe putpu™.

The data are mainly sensitive to initial state radiation which modifies the shape of the Y
spectrum. Since the various processes have different Y dependences, the radiative correction
affects them differently, as shown in Figure @a. Here the cross sections are calculated in the
generator level within the kinematic region defined above. The variables Q* and W, are
calculated from the kinematics of scattered electrons. The relative contributions of QPM,
VDM and QCD, as predicted by the TWOGAM program, including QED radiative effects, are
given in Figure @b and listed in Table [[l. The VDM contribution is small and almost constant
in our kinematical region. The resolved photon QCD contribution is negligible at low values of
Y and increases to about 50% at high values.

The dominant backgrounds are ete™ — ete 717~ events, simulated by JAMVG [24], and
single-tag two-photon hadronic events, where a hadron mimics a scattered electron. Other back-
ground processes are simulated by PYTHIA [25] (ete™ — hadrons), KORALZ [26] (ete” —
7777) and KORALW [27] (ete” — WTW™).

All Monte Carlo events are passed through a full detector simulation of the L3 detector
which uses the GEANT [28] and the GEISHA [29] packages and are reconstructed in the same
way as the data. Time dependent detector inefficiencies, as monitored during the data taking
period, are also simulated. The effect of the detector on the generated value of Y, Y, is
presented in Figure Pk, where the distribution of value reconstructed from the hadronic system,
Y,is, 18 shown in comparison with the quantity Y. obtained from scattered electrons. The
distortion and limited range of the Y,;; spectrum, due to the effect of undetected particles, is
evident.



3 Event Selection

Double-tag two-photon events are recorded by two independent triggers: the central track
trigger [30] and the single- and double-tag energy triggers [31] leading to a total trigger efficiency
greater than 99%.

Two-photon hadronic event candidates, ete™ — ete~hadrons, are selected using the fol-
lowing criteria:

e There must be two identified electrons, forward and backward, in the small angle elec-
tromagnetic calorimeters. Each electron is identified as the highest energy cluster in one
of the calorimeters, with energy greater than 40 GeV. The scattering angles of the two
tagged electrons have to be in the range 30 mrad < 6, < 66 mrad. The opening angle
between the momentum vectors of the scattered electrons must be smaller than 179.5°, to
reject Bhabha events. Figure Bl shows the distributions of E;/Ej,, Q?, 6; and log(Q?/Q3)
for scattered electrons. TWOGAM describes the shape of the distributions of 6; and @Q?
better than PHOJET.

e The number of particles, defined as tracks and isolated calorimeter clusters in the polar
angle region 20° < # < 160°, must be greater than 5. The tracks are selected by requiring
a transverse momentum greater than 100 MeV and a distance of closest approach, in the
transverse plane, to the interaction vertex smaller than 10 mm. Isolated energy clusters
are required to have energy greater than 100 MeV and no nearby charged track inside a
cone of 35 mrad half-opening angle.

e The visible hadronic mass W,;,, calculated from the four-vectors of all measured par-
ticles, must be greater than 2.5 GeV in order to exclude beam-gas and off-momentum
electron backgrounds. The distributions of W,;, and of the corresponding variable Y,;; =
In(W2,/1/Q?) are compared to Monte Carlo distributions in Figure B and b.

vls

After these requirements, 491 events are selected with an estimated background of 49
misidentified single-tag events and 32 events from the process ete™ — efe 7777. Other
background processes are estimated to contribute 6 events. The variable W,, and the corre-
sponding value of Y are calculated from the scattered electron variables, W, and Y., shown
in Figure @k and d. Good agreement is observed with both Monte Carlo generators.

4 Results

The differential cross sections of the ete™ — ete~hadrons process with respect to the variables
Q?, W,, and Y are measured in the kinematic region:

o [, >40 GeV and 30 mrad < 6, < 66 mrad
o W, >5 GeV

The ranges 10 GeV? < Q? < 32 GeV?, 5 GeV < W, < 100 GeV and 2 <Y < 7 are indepen-
dently investigated. The cross sections are derived in each interval as:
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where AN is the background subtracted number of events, £ is the total integrated luminosity
and ¢ is the selection efficiency. This is the ratio of the selected number of Monte Carlo events
after the full detector simulation to the generated number of Monte Carlo events, including QED
radiative corrections. An additional multiplicative factor &, discussed above and presented in
Figure Bh, corrects the effect of QED radiative corrections. The results with and without this
correction are given in Table [ for different bins together with the number of observed events
and the selection efficiencies. The size of QED radiative corrections is estimated by TWOGAM
using the relative proportions of the three components after adjusting the QCD component to
the data.

The systematic uncertainty on the cross sections due to the selection is 5%. It is dominated
by the effect of a variation of the multiplicity cut from 4 to 6 particles. The uncertainty
from the background estimation of single-tag events is 3.5% and that due to Monte Carlo
statistics amounts to 1%. The uncertainty due to Monte Carlo modelling is estimated as
6.4% by comparing PHOJET and TWOGAM without QED radiative corrections. To check
the implementation of QED radiative corrections, the TWOGAM predictions for the ete™ —
ete T~ process are compared to those of RADCOR. The difference is within 3% which is
included as a systematic uncertainty. The different systematic uncertainties are summarised in
Table B The different contribution from QPM, VDM and QCD as function of Y and W, gives
an additional systematic uncertainty. A 20% variation of the QCD component results into an
uncertainty of 0.3% at low values of Y and W.,, and of 5.7% at large values. This uncertainty
is about 0.5% over the full Q? region.

The ete™ — ete hadrons cross sections after the application of QED radiative corrections
are compared in Figure B to the PHOJET Monte Carlo and to LO and NLO calculations of
v*v* — qq [I2]. In these calculations the mass of quarks is set to zero and ., is fixed to the
value for on-shell photons. The predictions of these models are also listed in Table . These
calculations describe well the @Q* dependence of the data. For the W, and Y distributions, the
QPM calculations describe the data except in the last bin, where the experimental cross sec-
tion exceeds the predictions. Such an excess is expected if the resolved photon QCD processes
become important at large Y, as illustrated in Figure Pb. The predictions of PHOJET, which
includes the QPM and QCD processes in the framework of the DGLAP equation, also describe
the data. A similar behaviour may also be obtained by considering the “hard Pomeron” con-
tribution in the framework of BFKL [T5] theories, while LO BFKL calculations were found to
exceed the experimental values by a large factor [I1].

From the measurement of the ete™ — ete~hadrons cross section, .., we extract the two-
photon cross section, o,«,+, by using the transverse photon luminosity function, Lpy [,
32, 0o = Lypoyyx. 04+« represents an effective cross section containing contributions from
transverse (7') and longitudinal (L) photon polarisations:

1 e e
Oyxyx = Opr + €107 + €207 + €160 + 5@(2 /TTT cos 2¢pdp — 4nyms / Trscos pdg  (3)

with

2(1 —y;)

= w s when Y K 1 (4)

CiNUiNEi

where ¢ is the angle between the ete™ scattering planes in the two-photon centre-of-mass
system. Using the GALUGA Monte Carlo program [32], the contribution of the interference
terms 7pp and 7rg is found to be negligible for the QPM contribution, when Y > 3. In the
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kinematical region studied, the average value of ¢; is about 0.95. The experimental values of
oy« are presented in Table Bl and Figure @ in the same ranges considered above with and
without QED radiative corrections. The measurements as a function of Q? are fitted by the
form f = A/Q?, expected by perturbative QCD [T0L[T4]. The fit reproduces the data well with
A =81.846.4 nb/GeV? and x2/d.o.f = 1.2/3. The average value of 0.~ in the kinematical
region considered is 4.7 4 0.4 nb. The NLO calculations [I2] predict a decrease of 0+, as a
function of W, or Y, which is inconsistent with the measurements at large values of W, and
Y.
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Table 1: Fractional contributions of the three processes, QPM, VDM, and QCD in different
Q* W, and Y intervals as predicted by the TWOGAM Monte Carlo including QED radiative

corrections.

AQ%(GeVH) [ 10—14 | 14—18 | 18—24 | 24— 32
QPM 0.778 0.844 0.890 0.919
VDM 0.079 0.061 0.051 0.049
QCD 0.143 0.095 0.059 0.032

AW, (GeV) | 5—10 | 10—20 | 20—40 | 40 — 100
QPM 0.924 0.885 0.740 0.466
VDM 0.071 0.063 0.079 0.084
QCD 0.005 0.052 0.181 0.450

AY 20—25]25-35135-50]50—7.0
QPM 0.913 0.866 0.724 0.443
VDM 0.069 0.069 0.081 0.091
QCD 0.018 0.065 0.195 0.466
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AQ? Q%) Before Radiative corrections After Radiative corrections

(GeV?) | (GeV?) Events € doee/dQ? (pb/GeV?) doee/dQ? (pb/GeV?)

10 — 14 12.0 128.5+12.4 | 0.58 0.0898 £+ 0.0087 £ 0.0081 0.0718 £ 0.0070 £+ 0.0061 £ 0.0022

14 — 18 15.9 102.0£11.2 | 0.68 0.0612 £ 0.0067 £ 0.0055 0.0522 £ 0.0057 + 0.0044 £+ 0.0016

18 — 24 20.5 81.3+ 9.8 | 0.74 0.0298 £+ 0.0036 £ 0.0027 0.0273 £ 0.0033 £ 0.0023 £ 0.0008
24 — 32 27.0 248+ 5.5 | 0.77 0.0065 £ 0.0014 £ 0.0006 0.0066 + 0.0014 £ 0.0006 + 0.0002

AW, (Wyy) Before Radiative corrections After Radiative corrections

(GeV) (GeV) Events € doee/dW,, (pb/GeV) doee/dW,., (pb/GeV)

5— 10 7.2 67.3+ 8.7 0.37 0.0594 £+ 0.0076 £ 0.0053 0.0747 £ 0.0096 + 0.0063 + 0.0023
10— 20 13.9 135.44+12.6 | 0.66 0.0332 £+ 0.0031 £ 0.0030 0.0263 £ 0.0024 £+ 0.0022 £ 0.0008
20 — 40 279 102.1£11.1 | 0.72 0.0114 £+ 0.0012 £ 0.0010 0.0062 + 0.0007 £ 0.0005 £ 0.0003
40 —100 | 61.6 65.1+ 9.8 | 0.67 0.0026 £ 0.0004 + 0.0002 0.0014 +£ 0.0002 £ 0.0001 + 0.0001

AY (Y) Before Radiative corrections After Radiative corrections
Events € doee/dY (pb) doee/dY (pb)
20-25 2.2 51.6+ 7.9 | 0.52 0.322 £ 0.049 £ 0.029 0.315 £ 0.048 £ 0.027 £ 0.009
25-35 2.9 115.6+11.4 | 0.73 0.258 £ 0.025 £ 0.023 0.184 £ 0.018 £ 0.016 £ 0.006
3.5-5.0 4.2 109.4+11.6 | 0.74 0.160 £ 0.017 £ 0.014 0.085 £ 0.009 £ 0.007 £ 0.004
50-7.0 5.9 53.7+ 8.9 | 0.63 0.069 £ 0.011 £ 0.006 0.037 £ 0.006 £ 0.003 +£ 0.002

Table 2: Number of events, selection efficiencies, e, and differential cross sections do(ete™ —
ete~hadrons)/dQ?, do(ete™ — ete hadrons)/dW.,, and do(ete™ — ete hadrons)/dY. All
measurements are given before and after applying QED radiative corrections. The first uncer-
tainty is statistical and the second systematic. The third uncertainty represents the effect from
QED radiative corrections, including the 3% from Table 3.

Selection procedure 5.0%
Background estimation 3.5%
Monte Carlo statistics 1.0%
Monte Carlo modelling 6.4%
QED radiative correction | 3.0%

Table 3: Contributions to the total systematic uncertainties on the measured cross sections.
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AQ? LO ~v*v* — qq NLO v*~4* — qq PHOJET
(GeV?) | doee/dQ? (pb/GeV?) | doe/dQ? (pb/GeV?) | doe./dQ? (pb/GeV?)
10— 14 0.0596 0.0619 0.0623
14 — 18 0.0547 0.0545 0.0587
18 — 24 0.0285 0.0279 0.0320
24 — 32 0.0083 0.0079 0.0100
AW, LO v*v* — qq NLO v*~v* — qq PHOJET
(GeV) | doee/dW,, (pb/GeV) | doee/dW,, (pb/GeV) | doee/dW,, (pb/GeV)
5— 10 0.0831 0.0786 0.0509
10— 20 0.0263 0.0269 0.0359
20 — 40 0.0044 0.0052 0.0094
40 — 100 0.0003 0.0004 0.0010

AY LO ~v*4* — qq NLO v*~4* — qq PHOJET
doe./dY” (pb) doe./dY (pb) doe./dY (pb)
2.0-25 0.334 0.338 0.356
25-35 0.171 0.181 0.258
3.5—-5.0 0.052 0.063 0.115
5.0—-17.0 0.006 0.009 0.023

Table 4: Predictions of LO and NLO v*v* — qq calculations and the PHOJET Monte Carlo
generator as a function of Q?, W, and Y.

Before Radiative corrections | After Radiative corrections
AQ? (GeV?) | (Q%) (GeV?) 0y (D) 0y (uh)
10 — 14 12.0 8.11+0.79+0.73 6.49 £ 0.64 4= 0.55 4+ 0.20
14 — 18 15.9 5.68 +0.62 4+ 0.51 4.84 £0.53+0.41 £ 0.15
18 —24 20.5 4.94 £+ 0.60 4 0.45 4.54 +£0.55+0.39+0.14
24 — 32 27.0 3.36 £0.74 £0.30 3.38 £0.74 £0.29 £ 0.10
Before Radiative corrections | After Radiative corrections
AW,y (GeV) | (Wo,) (GeV) 0y (nb) 0y (nb)

5— 10 7.2 5.04 £0.65 £ 0.45 6.34 +£0.82 +0.54 £ 0.19
10— 20 13.9 6.65 £ 0.62 £ 0.60 5.274+0.49 +0.45 £ 0.16
20 — 40 27.9 6.84 £0.74 £ 0.62 3.71 £0.40 £ 0.32 £ 0.16
40 — 100 61.6 9.99 £+ 1.50 £0.90 5.24+0.79+0.45+0.34

Before Radiative corrections | After Radiative corrections
AY (Y) Oy (mb) Oy (mb)
2.0-25 2.2 5.78 £0.88 £ 0.52 5.65 £0.86 £0.48 £0.17
2.5—3.5 2.9 6.85 £+ 0.68 £ 0.62 490 £0.48 £0.42 +0.16
3.5—5.0 4.2 7.52£0.80£0.68 3.99 +£0.424+0.34 = 0.19
50—-7.0 5.9 10.9 +1.82 +0.98 5.824+0.97 £0.49 £ 0.37

Table 5: The two-photon cross section, o.«,«, before and after applying QED radiative cor-
rections, as a function of Q?, W, and Y. The first uncertainty is statistical and the second
systematic. The third uncertainty represents the effect from QED radiative corrections, includ-

ing the 3% from Table 3.
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Figure 1: Examples of diagrams contributing to the process v*v* — hadrons : a) QPM, b) and
¢) O(as) QCD corrections to the QPM diagram, d) photon-gluon fusion, e) one-gluon exchange
and f) multigluon ladder exchange.
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Figure 2: a) QED radiative corrections as a function of the variable Y, for QPM, VDM and
QCD processes separately; b) the relative contributions of QPM, VDM and QCD processes
in the TWOGAM Monte Carlo with QED radiative corrections included and c) Y determined
using W,;s or We compared to the generated value, Y.,. Lines in a) and b) are drawn to guide
the eye.
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Figure 3: Distributions of a) FE;/Ey, b) Q7 , ¢) 6; and d) log(Q?/Q3) for scattered electrons.
The data are compared to Monte Carlo predictions, normalised to the total number of events
in the data. The background is mainly due to e"e”™ — ete 777~ and misidentified single-tag

two-photon hadronic events.

16



10 3—:

;a) e 3 data
> ] —PHOJET
o 1 % --TWOGAM| 1n
(_')10 2| d
O ; EBack. Q
N 2]
10 4 L
11l

0 10 20 30

W, [GeV]

10)
> 75
O ]
o10 Q
— 1)
@ c 507
i
i1 257

10
0
0 25 50 75 100 0 2 4 6 8
Wee [GeV] Yee

Figure 4: Distributions of a) the effective mass of the detected particles, W, b) Yy, ¢) the
missing mass of the two scattered electrons, W, and d) the variable Y. The range of W,,;s and
Y,is is limited to low values due to particles which escape detection. The data are compared to
Monte Carlo predictions, normalised to the number of data events.
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Figure 5: The differential cross sections of the ete™ — ete™hadrons process, in the kinematical
region defined in the text, after applying QED radiative corrections, as a function of a) Q?, b)
W.., and ¢) Y. The LO and NLO predictions [I2] for the process v*v* — qq are displayed as
the dashed and solid lines respectively. The dotted line shows the prediction of the PHOJET
Monte Carlo.
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Figure 6: Cross sections of the v*y* — hadrons processes as a function of a) @Q?, b) W, and
¢) Y in the kinematical region defined in the text, after applying QED radiative corrections.
The dashed line represents the fit to the data described in the text. The NLO predictions of
Reference [12 for the process v*v* — qq are displayed as a solid line.
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