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Abstract

We give a brief summary of present bounds on the size of possible extra-dimensions
as well as the string scale from collider experiments.
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1 Introduction

Although the standard model has been experimentally verified to an impressive precision
level, it remains unsatisfactory in some of its theoretical aspects. The major one concerns
dealing with the quantum effects of gravity. The renormalization procedure which allows
to extract finite predictions for processes involving the three other fundamental forces
fails when gravitational interactions are taken into account. String theory stands here as
only known consistent framework to incorporate these effects. There, known fundamental
particles are “point-like”only because the experimental energies are too small to excite
the string oscillation modes so only the center of mass motion is perceived. In addition
to these heavy oscillation modes, strings have new degrees of freedom that often take
the classical geometry description of propagation in extra dimensions and thus provide a
compelling reason for the latter. This raises important questions: Is it possible that our
world has more dimensions than the one that we are aware of? If so, why don’t we see
the other dimensions? Is there a way to detect them?. Answering these questions has
attracted a lot of efforts lately as it has became clear that not only these extra-dimensions
might be there, but also they could be just at the border of the energy domain at reach
to near future experiments. This is because, within our present knowledge, the only
requirements for the sizes of compactification and string scales are to allow the correct
magnitude for the strength of the gauge and gravitational couplings without falling in the

already experimentally excluded regions and recent investigations 1) indicate that there
are many string vacua that allow the new physics to be at reach of LHC.

2 Compactification of extra dimensions

Suppose that space-time has D extra dimensions compactified on a D-dimensional torus
of volume (2π)DR1R2 · · ·RD. The states propagating in this (4 + D)-dimensional space
are seen from the four-dimensional point of view as a having a (squared) mass (assuming
periodicity of the wave functions along each compact direction):
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withm0 the four-dimensional mass and ni non-negative integers. The states with
∑

i ni 6= 0
are called Kaluza-Klein (KK) states. An important remark is that not all states can prop-
agate in the whole space. Some might be confined in subspaces with no KK excitations in
the transverse directions. The simplest example of such a situation appears in compacti-
fication on S1/Z2 orbifolds obtained by gauging the Z2 parity: y → −ymod 2πR. where
y ∈ [−πR, πR] span the fifth coordinate. The spectrum of states has some intersting
properties: (i) only states invariant under this Z2 (which acts also on the gauge quantum
numbers) are kept while the others are projected out; (ii) new (“twisted”) states, localized
at the end points have to be included. They have quantum numbers and interactions that
were not present in the unorbifolded original 5-dimensional model. As they can not prop-
agate in the extra-dimension, they have no KK excitations; (iii) The even states can have
non-derivative renormalizable couplings to localized states. For instance, the couplings of



massive KK excitations of even gauge bosons to localized fermions are given by:

g~n =
√

2
∑

~n

e
− ln δ

∑
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i
l2s

2R2

i g0 (2)

where ls ≡ M−1
s is the string length and δ = 16 in this case of Z2 orbifolding. The

√
2

comes from the relative normalization of cos(niyi

Ri
) wave function with respect to the zero

mode while the exponential damping is a result of tree-level string computations 2).
Another example is obtained with intersecting branes (see Figure 1 and 2).

When the angle between the intersecting branes is π/2 the localized strings behave exactly
as the Z2 twisted states described above. The exponential form factor of the coupling of
KK excitations can be viewed as the fact that the branes intersection has a finite thickness.
In fact the interaction of the KK excitations of the gauge fields ( on the big branes)
Aµ(x, ~y) =

∑

~n A
µ
~n exp iniyi

Ri
with the charge density jµ(x) associated to massless localized

fermions is described by the effective Lagrangian 3):

∫

d4x
∑

~n

e
− ln δ

∑

i

n2

i
l2s

2R2

i jµ(x)Aµ
~n(x) , (3)

which can be written after Fourier transform as

∫

d4y

∫

d4x (
1

l2s2π ln δ
)2e

− ~y2

2l2s ln δ jµ(x)Aµ(x, ~y) . (4)

from which we read that the localized fermions are felt as forming a Gaussian distribution

of charge e−
~y2

2σ2 jµ(x) with a width σ =
√

ln δ ls ∼ 1.66 ls.

3 Scattering of four localized fermions

The total amplitudes for the scattering of four fermions depend on the string coupling
gs = g2

Y M , the string scale Ms ≡ 1/ls, the compactification radii Ri and on kinematical
invariants that can be expressed in terms of the Mandelstam variables s = −(k1+k2)

2 , t =
−(k2 + k3)

2 and u = −(k1 + k3)
2. The result can be decomposed as:

A = A(0) + A(KK) + Acont
w + Acont

osc , (5)

where A(0) is the contribution of the lightest states (for example from standard model
fields), A(KK) the one from KK states of the form:

−
[

ψ̄(1)γMψ
(2)ψ̄(4)γMψ(3)
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i

,

(6)

where δ = δ(θ) takes varies between δ = 16 for θ = π/2 to δ → ∞ when θ → 0. Note
that the latter limit corresponds to the conservation of KK momenta in the absence of
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Figure 1: Zero modes of open strings streched between two branes give rise to matter

localized at their intersection. One of the branes is shown “losing” one if its longi-

tudinal dimensions as the size of the latter shrinks. The final result is a small brane

inside a bigger one

localization as seen in Figure 2. The terms Acont
w and Acont

osc contain the contribution of long
string streched between the intersections while winding around the compact dimension and
the ones from heavy string oscillation modes, respectively. In the large compactification
radius limit Acont

w is exponentially suppressed and we are left with1:

Acont
osc = −

[

ψ̄(1)γMψ
(2)ψ̄(4)γMψ(3)

]

(
gs

Ms
)2

∫ 1

0

dx

x
(

1

[Fθ(x)]2
− 1)

where θ is the angle between the branes. For θ → π
2 we have

∫ 1
0

dx
x

( 1
[Fθ(x)]2 − 1) → 0.59.

For θ → 0, Fθ(x) → 1 and this contact term vanishes. There is no tree level dimension
six effective operator in the case of open strings ending on parallel branes but the final
amplitude can be written as:

A(s, t) = Apoint(s, t) ·
Γ(1 − l2ss)Γ(1 − l2st)

Γ(1 − l2ss− l2st)
= Apoint(s, t) ·

[

1 − π2

6

st

M4
S

+ · · ·
]

(7)

where Apoint is the result usually derived from the (up-to-two-derivatives) low energy
effective Lagrangian, while the dimension-eight operator here proportional to st

M4

S

repre-

sents the tree-level lowest order correction and originates from the form factor due to the
string-like structure.

1The generic cases with finite radii can be found in 3)
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Figure 2: Rotating two branes from orthogonal position θ = π/2 to parallel one

θ = 0.

4 Experimental constraints on extra dimensions

4.1 The scenario:

In order to pursue further, we need to provide the quantum numbers and couplings of the
relevant light states. We consider (see figure 3):

• Closed strings correpond to gravitons which describe fluctuations of the metric prop-
agate in the whole space.

• The gauge bosons propagate on a (3 + d)-branes. They corresond on figure 3 to the
open strings with both ends on the big brane.

• The matter fermions, quarks and leptons, are localized on 3-branes (the small branes
inside bigger one on figure 3) and have no KK excitations. Our results strongly
depend on this assumption. Instead, the possible localization of the Higgs scalar,
as well as the possible existence of supersymmetric partners do not lead to major
modifications for most of the obtained bounds.

4.2 Extra-dimensions along the world brane: KK excitations of gauge bosons

The experimental signatures of extra-dimensions are of two types:

• Observation of resonances due to KK excitations. This needs a collider energy√
s >∼ 1/R‖ at LHC. The discovery limits in the case of one extra-dimension are

given in table 1.
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Figure 3: The geometrical set-up of our scenario for experimental bounds.

• Virtual exchange of the KK excitations which lead to measurable deviations in cross-
sections compared to the standard model prediction. The exchange of KK states
gives rise to an effective operator discussed above in section 3. For d > 1 the result
depends then on both parameters R‖ and Ms. Example of analysis for d = 2 can

be found in Ref. 4). The simpler case of d = 1 has been studied in detail. Possible

reaches of colliders experiments 5, 4) are summarized in table 1.

Provided with good statistics, there are some ways to help distinguish the corre-
sponding signals from other possible origin of new physics, such as models with new gauge
bosons: (i) the observation of resonances located practically at the same mass value; (ii)
the heights and widths of the resonances are directly related to those of standard model
gauge bosons in the corresponding channels; (iii) the size of virtual effects do not repro-
duce a tail of Bright-Wigner resonance and a deep is expected just before the resonance
of the photon+Z, due to the interference between the two.

4.3 Extra-dimensions transverse to the brane world: KK excitations of gravitons

During a collision of center of mass energy
√
s, there are (

√
sR⊥)d⊥ KK excitations of

gravitons with mass mKK⊥ <
√
s < Ms, which can be emitted to the bulk. Each of these

states looks from the four-dimensional point of view as a massive, quasi-stable, extremely
weakly coupled (s/M2

pl suppressed) particle that escapes from the detector. The total

effect is a missing-energy cross section roughly of order (
√

sR⊥)n

M2

pl

∼ 1
s
(
√

s
Ms

)n+2. Explicit

computation of these effects leads to the bounds given in table 2 6) while astrophysi-



Table 1: Limits on R−1
‖ in TeV at present and future colliders. The luminosity is

given in fb−1.

Collider Luminosity Gluons W± γ + Z

Discovery of Resonances

LHC 100 5 6 6

Observation of Deviation

LEP 200 4 × 0.2 - - 1.9

TevatronI 0.11 - - 0.9

TevatronII 2 - - 1.2

TevatronII 20 4 - 1.3

LHC 10 15 8.2 6.7

LHC 100 20 14 12

NLC500 75 - - 8

NLC1000 200 - - 13

cal bounds 7, 8) arise from the requirement that the radiation of gravitons should not
carry on too much of the gravitational binding energy released during core collapse of

supernovae. The best cosmological bound 9) is obtained from requiring that decay of
bulk gravitons to photons do not generate a spike in the energy spectrum of the photon
background measured by the COMPTEL instrument. The bulk gravitons are themselves
expected to be produced just before nucleosynthesis due to thermal radiation from the
brane. The limits assume that the temperature was at most 1 MeV as nucleosynthesis
begins, and become stronger if this temperature is increased. While the obtained bounds
for R−1

⊥ are smaller than those that could be checked in table-top experiments probing
macroscopic gravity at small distances, one should keep in mind that larger radii are al-
lowed if one relaxes the assumption of isotropy, by taking for instance two large dimensions
with different radii.

5 Dimension-Six Effective Operators:

The dimension-six effective operators are generically parametrized as 10):

Λeff =
4π

(1 + ε)Λ2

∑

a,b=L,R

ηabψ̄aγ
µψaψ̄′

bγµψ
′
b (8)

with ε = 1 (0) for ψ = ψ′ (ψ 6= ψ′), where ψa and ψ′
b are left (L) or right (R) handed

spinors. Λ is the scale of contact interactions and ηab parametrize the relative strengths
of various helicity combinations. The generic analysis of these operators can be found in
3). We summarize here some of the results.



Table 2: Limits on R⊥ in mm from missing-energy processes.

Experiment R⊥(n = 2) R⊥(n = 4) R⊥(n = 6)

Collider bounds

LEP 2 4.8 × 10−1 1.9 × 10−8 6.8 × 10−11

Tevatron 5.5 × 10−1 1.4 × 10−8 4.1 × 10−11

LHC 4.5 × 10−3 5.6 × 10−10 2.7 × 10−12

NLC 1.2 × 10−2 1.2 × 10−9 6.5 × 10−12

Present non-collider bounds

SN1987A 3 × 10−4 1 × 10−8 6 × 10−10

COMPTEL 5 × 10−5 - -

For ψ 6= ψ′ the contributions only from the exchange of the massive open string
states on the small brane lead to parameters in eq. (8) as:

ηLL = ηRR = ηLR = ηRL = 1 , Λ ≃
√

4π

0.59gs
Ms (9)

The signs and relative ratios of the different terms in (8) correspond to what is usually

refered to as Λ+
V V . The present bounds from LEP 11) are of the order of Λ+

V V
>∼ 16

TeV which for gs = g2
Y M ∼ 1/2, with gY M the gauge coupling, leads to Ms >∼ 2.5 TeV. A

stronger bound can be obtained from the analysis of high precision low energy data in the
presence of effective four-fermion operators that modify the µ-decay amplitude. Using the

results of ref. 12), we obtain Ms >∼ 3.1 TeV.
In the case ψ = ψ′ as for Bhabha scattering in e+e− there is an additional

contribution to the effective operator coming from the operators that are associated with
the exchange of other massives oscillation modes leading instead to 0.75 ηLL = 0.75 ηRR ≃
ηLR = ηRL = 1.

On the other hand, the contact interactions due to exchange of KK excitations

give rise (for d‖ = 1 to 2):

ΛKK
eff ≃ − π2

3(1 + ε)
R2gs

∑

a,b=L,R

ηabψ̄aγ
µψaψ̄′

bγµψ
′
b (10)

Experimental constraints on such operators translate into lower bounds on the scale of
compactification. For instance exchanges of KK excitations of photon corresponds to ηab =
1 and gs/4π = 1/128 from which we obtain a bound R−1 >∼ 2.2 TeV, using LEP bounds
11) Λ−

V V
>∼ 14 TeV. Low energy precision electroweak data lead instead to R−1 >∼ 3.5 TeV

13).
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the exchange of an open stringthe exchange of a closed string
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Figure 4: The exchange of virtual gravitons.

5.1 Dimension-Eight Effective Operators:

We consider two generic sources for dimension-eight operators: (i) Form factors due to
the extended nature of strings eq. (7)(ii) exchange of virtual KK excitations of bulk fields
(gravitons,...).

The limit obtained from dimension-eight operators (i) is of order Ms >∼ 0.63 TeV
14, 15). Instead (ii) can not provide reliable model dependent results. The exchange of
virtual KK excitations of bulk gravitons is described in the effective field theory by an
amplitude involving the sum 1

M2
p

∑

n
1

s− ~n2

R2

⊥

. For n > 1, this sum diverges. This means it

is sensitive to the UV cut-off physics thus cannot be compute reliably in field theory. In
string models it reflects the ultraviolet behavior of open string one-loop diagrams which
are compactification dependent.

In order to understand better this issue, it is important to remember that gravi-
tons and other bulk particles correspond to excitations of closed strings. Their tree-level
exchange of order g2

s is described by a cylinder which can also be seen as an annulus
corresponding to an open string describing a loop (see figure 4). First, the result of such
one-loop diagrams are compactification dependent. Second, they correspond to box di-
agrams in a gauge theory which are of order g4

Y M thus samller by a factor gs = g2
Y M

compare to the ones in (i).
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