
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP-2001-058
31 July 2001

Measurement of the Branching Ratio
for the Process b → τ−ντX

The OPAL Collaboration

Abstract

The inclusive branching ratio for the process b → τ−ντX has been measured using hadronic Z
decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is:

BR(b → τ−ντX) = (2.78± 0.18± 0.51)%

This measurement is consistent with the Standard Model expectation and puts a constraint of

tanβ/M±
H < 0.53 GeV−1

at the 95% confidence level on Type II Two Higgs Doublet Models.
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1 Introduction

This paper describes a measurement of the inclusive branching ratio BR(b → τ−ντX ), using
data taken with the OPAL detector at LEP in the years 1992-2000 at e+e− centre-of-mass en-
ergies around the Z resonance. Similar measurements of BR(b → τ−ντX ) have been published
previously by the other LEP experiments [1-3]. The measurements can be directly compared to
the Standard Model expectation calculated in the framework of Heavy Quark Effective Theory
(HQET) [4], and so can be used to constrain basic parameters of HQET [5].

A measurement of BR(b → τ−ντX) is also a probe for the presence of a new charged boson
coupling to mass. This coupling would increase the branching ratio BR(b → τ−ντX) [6, 7].
Since a charged Higgs boson contributes at tree level, its contribution cannot be easily cancelled
by other new particles. This can be used to set a limit on a contribution of the charged Higgs
exchange. In the Minimal Supersymmetric Standard Model (MSSM), however, a region of the
parameter space is found where one-loop SUSY-QCD corrections could weaken the bound [8].

Many extensions of the Standard Model, like the MSSM, include Type II Two Higgs Dou-
blets, where one of two Higgs doublets couples only to down-type quarks and the other only
to up-type quarks. In these models, tan β is the ratio of the vacuum expectation values of
the two Higgs doublets and M±

H is the mass of the charged Higgs boson. The decay rate for
b → τ−ντX can be calculated as a function of r = tanβ/M±

H . A term proportional to r2 is
added to the Standard Model decay rate of BR(b → τ−ντX) = (2.36 ± 0.17)%. A value of
r = 0.5 GeV−1, for example, yields BR(b → τ−ντX) = (3.61± 0.36)% [7]. The errors are fully
correlated and include the experimental uncertainty on BR(b → e−νeX) = (10.86± 0.35)% [9]
and the theoretical uncertainties.

Since direct reconstruction of the τ lepton in a multihadronic event is not possible, other
properties of the signal decays have to be exploited. Each event is divided into two hemispheres.
Hemispheres containing b → τ−ντX decays are characterised by large missing energy, due to
the presence of at least two neutrinos in the final state. The reconstruction of the missing
energy uses the OPAL calorimeters and tracking detectors and it relies on the hermeticity of
the detector. To select a sample enriched in b decays, a b tagging algorithm is applied. The
b tagging is done in the hemisphere opposite to the signal to reduce the dependence on the
Monte Carlo simulation of the signal.

Semileptonic b decays like b → `−νX (` = e, µ) are an important background. They are
suppressed by rejecting hemispheres with an identified electron or muon. The same lepton veto
suppresses the leptonic decays of the τ lepton in signal events, thus selecting mostly hadronic
τ decays.

2 Detector, data set and Monte Carlo samples

The details of the construction and performance of the OPAL detector are described else-
where [10]. Here only the main components relevant for this analysis are described.
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Tracking of charged particles is performed by a central detector, consisting of a silicon mi-
crovertex detector, a vertex chamber, a jet chamber and z-chambers 1. The central detector is
inside a solenoid, which provides a uniform axial magnetic field of 0.435 T. The silicon microver-
tex detector consists of two layers of silicon strip detectors; for most of the data used in this
paper, the inner layer covered a polar angle range of | cos θ| < 0.83 and the outer layer covered
| cos θ| < 0.77, with an extended coverage for the data taken after the year 1996. The vertex
chamber is a precision drift chamber which covers the range | cos θ| < 0.95. The jet chamber is
a large-volume drift chamber, 4.0 m long and 3.7 m in diameter, providing both tracking and
ionisation energy loss (dE/dx) information. The z-chambers provide a precise measurement of
the z-coordinate of tracks as they leave the jet chamber in the range | cos θ| < 0.72.

Immediately outside the tracking volume is the solenoid and a time-of-flight counter array
followed by an electromagnetic shower presampler and a lead-glass electromagnetic calorimeter.
The return yoke of the magnet lies outside the electromagnetic calorimeter and is instrumented
with limited streamer chambers. It is used as a hadron calorimeter and assists in the recon-
struction of muons. The outermost part of the detector is made up by layers of muon chambers.

Hadronic Z decays collected with the OPAL detector at e+e− centre-of-mass energies around
the Z resonance are selected using a standard multihadron selection [11]. To reduce further
the small contribution of Z → τ+τ− decays an additional requirement of at least 7 tracks
in each event is imposed. With these criteria, the selection efficiency for hadronic Z decays
is (98.1 ± 0.5)% [12] with a background of (0.11 ± 0.03)%. After hadronic event selection
and Z → τ+τ− rejection, the resulting data sample collected in the years 1992-2000 after the
installation of the silicon microvertex detector consists of 3.70×106 events. About 11% of the
data used were recorded in the years 1996-2000, for calibration purposes.

A Monte Carlo sample of hadronic Z decays of about seven times the size of the recorded
data sample for b flavour events and about the same size as the recorded data for the other
flavours is used in the analysis. The Monte Carlo events are generated using JETSET 7.4 [13]
with the b and c quark fragmentation modelled according to the parameterisation of Peterson et
al. [14]. A global fit to OPAL data has been performed to optimise the JETSET parameters [15].
The decay b → τ−ντX is modelled in JETSET using matrix elements neglecting the mass of
the final state particles. The energy distribution of the τ lepton in the b rest frame is therefore
reweighted to reproduce the energy distribution calculated by including mass effects [4, 16].
The polarisation of the τ leptons is simulated by interfacing JETSET to the TAUOLA [17] τ
decay simulation package. The τ polarisation is calculated according to [4] with the HQET
parameters λ1 and λ2 set to zero, corresponding to the free quark model.

All events have been processed using a full simulation of the OPAL detector [18] and the
same reconstruction algorithms that were applied to the data.

3 Event and hemisphere selection

Each event is divided into two hemispheres using the thrust variable, T , which is defined by [19]

T = max
~n

(∑
i |~pi · ~n|∑

i |~pi|
)

, (1)

1A right handed coordinate system is used, with positive z along the e− beam direction and x pointing
towards the centre of the LEP ring. The polar and azimuthal angles are denoted by θ and φ, and the origin is
taken to be the centre of the detector.
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where ~pi are the momentum vectors of the particles in an event. The thrust axis ~nT is the
direction ~n which maximises the expression in parenthesis. A plane through the origin and
perpendicular to ~nT divides the event into two hemispheres.

Signal hemispheres are characterised by large missing energy. Particles escaping close to
the beam pipe can fake the large missing energy signature of neutrinos. By requiring the polar
angle θ of the thrust axis ~nT of the event to satisfy | cos θ| < 0.8, only events well contained in
the central detector are accepted. Events with a two-jet topology are expected to have thrust
values close to one and are therefore selected by requiring the thrust T > 0.85.

The b-tagging algorithm [20] gives a likelihood that a hemisphere originates from a b de-
cay by combining the information from a secondary vertex neural network, a jetshape neural
network and a prompt lepton finder. A cut on the b likelihood was applied giving a selection
efficiency of 47% and a purity of 92% for b flavour hemispheres in the selected sample according
to Monte Carlo.

The hemisphere opposite to the signal hemisphere is used for b-tagging. This reduces the
dependence on the Monte Carlo description for the signal since the b tagging efficiency can be
measured directly from the data using events with one and two tagged hemispheres.

4 Missing energy distribution

In each hemisphere the missing energy Ehemi
miss is calculated by

Ehemi
miss = Ebeam + Ecorr − Ehemi

vis . (2)

The sum of the beam energy Ebeam and the correction term Ecorr is the predicted energy in the
hemisphere. The missing energy Ehemi

miss is obtained by subtracting the visible energy Ehemi
vis . The

correction term Ecorr is determined by exploiting the overall energy and momentum conservation
in the Z decay. Assuming a decay of the Z boson into two particles, the correction term is

Ecorr =
M2

hemi −M2
ohemi

4Ebeam
, (3)

where Mhemi and Mohemi are the measured invariant masses of the signal hemisphere and of the
opposite hemisphere.

The visible energy Ehemi
vis in the hemisphere is obtained by summing separately the energies

of charged particles reconstructed in the central detector and neutral particles depositing energy
in the electromagnetic calorimeter. A matching algorithm [21] is used to associate tracks in
the central detector with clusters in the electromagnetic calorimeters. This algorithm corrects
the measured electromagnetic calorimeter cluster energy if a track is matched to the cluster.
Tracks are counted only if they have been reconstructed using at least 20 jet chamber hits, have
a pt of at least 120 MeV with respect to the beam axis and a distance of closest approach d0 to
the beam axis of less than 2.5 cm. Electromagnetic clusters are counted if they have at least
100 MeV energy in the barrel region or 250 MeV in the forward region of the detector.

Only hemispheres with missing energy Ehemi
miss > 5 GeV are used. The cut has been optimised

to maximise the statistical sensitivity of the fit whilst minimising the systematic uncertainty
due to the Monte Carlo description of the missing energy distribution. The optimisation is
discussed in Section 5.

To remove background from non-τ semileptonic b decays, hemispheres with identified elec-
trons or muons are rejected. Neural networks are used to identify electrons [22] and muons [24]
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with momenta larger than 2 GeV. In the selected Monte Carlo sample 91% of the hemispheres
with prompt electrons or muons from semileptonic b and c decays are rejected with this re-
quirement. Tracks tagged as originating from photon conversions [23] in the tracking detector
are not accepted as electron candidates.

A sample of 90587 hemispheres remains in the data after applying all cuts. Using the
Monte Carlo it is estimated to contain about 9% signal events, 3% D−s → τ−ντ decays, 35%
non-τ semileptonic b and c decays, 4% light quark decays and 49% hadronic b and c decays. A
large fraction of the semileptonic b and c decays are decays with leptons with momenta below
2 GeV. Using the Ehemi

miss distributions predicted by the Monte Carlo simulation for signal and the
sum of all backgrounds, a binned maximum likelihood fit is used to determine BR(b → τ−ντX
) with the fraction of signal events as the only free parameter. The result of the fit is

BR(b → τ−ντX) = (2.78± 0.18)%, (4)

where the uncertainty takes into account the limited number of Monte Carlo and data events [25].
The result is obtained by fitting the data samples of the different years with the correspond-
ing Monte Carlo samples. The minimum of the fits correspond to χ2 values for 34 degrees of
freedom in the range 31 to 45. The Ehemi

miss distribution for the total data sample is shown in
Fig. 1.

5 Systematic uncertainties

The measurement of BR(b → τ−ντX ) relies on the Monte Carlo modelling of the missing
energy distribution for the signal and background events. Other systematic uncertainties arise
from the reproduction of the selection and veto efficiencies for the data in the Monte Carlo
simulation and from limited knowledge of the branching ratios for decays involving a heavy
quark and a lepton. The sources of systematic uncertainties are described below and their
contributions to the total systematic uncertainty are summarised in Table 1.

An imperfect modelling of the signal region of the Ehemi
miss distribution by the Monte Carlo

simulation can bias the result. We have therefore studied the modelling of the Ehemi
miss distribu-

tion using three different signal-depleted control samples: a sample enriched in semileptonic b
decays, a sample enriched in hadronic b decays and a light quarks control sample. In these
samples, the ratio of the Ehemi

miss distributions of data and Monte Carlo has been studied. The
missing energy distributions for the control samples together with the corresponding Monte
Carlo predictions are shown in Fig. 2.

Leptonic control sample: A sample enriched in semileptonic b decays is selected by using the
same requirements for the b-tagging as for the signal sample (Section 3). For the leptonic
control sample, hemispheres with electrons and muons are selected and not rejected. To
obtain a pure sample, at least one electron or one muon candidate with a high value
for the output of the lepton identification neural networks is required. According to the
Monte Carlo about 85% of the control sample are semileptonic b and c decays.

The Ehemi
miss distribution for this class of events is well described by the Monte Carlo simula-

tion (Fig. 2a). To estimate the systematic uncertainty associated with residual differences,
the ratio of the data and the Monte Carlo distribution (Fig. 2b) is fitted with a straight
line separately for every year of data taking. The largest slope a obtained from these fits
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Figure 1: Distribution of the missing energy in a hemisphere, Ehemi
miss , for all selected data

events and for the Monte Carlo simulation shown on a logarithmic scale and on a linear scale.
The backgrounds from semileptonic heavy quark decays into electrons and muons, and from
D−s → τ−ντ decays are shown separately. The number of b → τ−ντX signal events is set to the
result of the fit.
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Source ∆BR(b → τ−ντX )
leptonic Ehemi

miss description −0.16%
hadronic Ehemi

miss description +0.15%
tracking resolution ±0.04%
calorimeter resolution ±0.06%
b tagging efficiency ±0.04%
e± veto ±0.11%
µ± veto ±0.07%
〈xb〉 = 0.702± 0.008 [26] ±0.33%
〈xc〉 = 0.484± 0.008 [26] ±0.04%
b → τ−ντX decay modelling ±0.03%
semileptonic b decay models ±0.26%
BR(b → `−νX)=(10.73± 0.18)% [9] ±0.08%
BR(b → c or c → `νX )=(9.69± 0.51)% [26] ±0.05%
BR(D−s → τ−ντ )=(7.2± 2.3)% [27, 28] ±0.13%
f(b → D−s ) = (18± 5)%) [29] ±0.10%
Total systematic uncertainty ±0.51%

Table 1: The contributions to the systematic uncertainty on BR(b → τ−ντX ).

is used to reweight the Ehemi
miss distribution for semileptonic b decays in the Monte Carlo

background. The events are reweighted using a weight

w(Ehemi
miss ) = 1 + a(Ehemi

miss − E
hemi
miss ), (5)

where E
hemi
miss is the mean of the missing energy distribution. Using a second order poly-

nomial fit instead yields a similar systematic uncertainty.

Hadronic control sample: To study the description of the missing energy distribution for
hadronic b decays, a sample is selected by applying b-tagging, the lepton veto and by
requiring at least 10 GeV energy deposit in the hadron calorimeter. These requirements
enrich the sample in events with large hadronic energy. The agreement between data
and Monte Carlo for the Ehemi

miss distribution is reasonable in the signal region (Fig. 2c,d).
The systematic uncertainty is estimated using the method described above and given in
Table 1. It increases if the cut on Ehemi

miss is reduced (Table 2). To keep the quadratic sum
of the statistical and systematic uncertainty small, the cut Ehemi

miss > 5 GeV is chosen. All
other relevant systematic uncertainties show only a small dependence on the Ehemi

miss cut.

Light quarks control sample: A further test of the Monte Carlo description of the Ehemi
miss

distribution is performed for a light quark (uds) flavour sample. The sample is selected by
exploiting the fact that events with a hadron carrying reconstructed momentum between
0.5 and 1.07 of the beam momentum mostly originate from uds primary quarks [30]. The
light quark tag is applied in the opposite hemisphere. The Ehemi

miss distribution for this
sample is shown in Fig. 2e. Reweighting the light quark background events according to
Eq. 5 results in a negligible contribution to the total systematic uncertainty.

Detector effects: The description of the visible energy distribution depends on a correct re-
production of the detector resolution in the Monte Carlo samples. The tracking resolution
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Ehemi
miss cut stat syst
(GeV)

0 ±0.14% +1.00%
3 ±0.16% +0.45%
5 ±0.18% +0.15%
7 ±0.21% +0.09%
9 ±0.27% +0.08%

Table 2: The statistical and the systematic uncertainty on the measurement of BR(b → τ−ντX
) due to the Monte Carlo description for events with hadronic b and c decays for different fitting
ranges.

has been modified by ±10% to evaluate the systematic uncertainty [22]. The energy scale
of the electromagnetic calorimeter (ECAL) is varied according to the small shift between
the mean of the ECAL energy distributions in data and Monte Carlo found for an inclu-
sive sample of hadronic Z decays. The uncertainty obtained by varying the resolution by
±10% is found to be even smaller. The estimated uncertainties are listed in Table 1.

The following systematic uncertainties are related to the modelling of the cuts:

b-tagging efficiency: The b-tagging efficiency is checked by comparing the fraction of events
with one and two tagged hemispheres in data and Monte Carlo. Using the hemisphere
correlation from the Monte Carlo simulation a b-tagging efficiency of 45.7% is obtained
using the data compared to 47% using the Monte Carlo, i.e. the Monte Carlo is over-
estimating the b-tagging efficiency by approximately 3%. This result is consistent with
similar recent studies [20]. The b-tagged events are reweighted according to this change
in efficiency and the systematic shift is found to be negligible, so no correction is applied.
In addition, the uncertainty on the rejection efficiencies for the other flavours is evalu-
ated by changing the efficiencies by 10%. Since the b-tagging is applied in the opposite
hemisphere and the contamination of non-b flavours in the selected sample is below 10%,
the contribution to the total systematic uncertainty is small.

Lepton identification: An important background with missing energy due to neutrinos orig-
inates from semileptonic decays of b and c quarks to muons or electrons. In [24, 22], the
systematic uncertainties on the efficiencies for identifying muons or electrons determined
by the Monte Carlo are found to be 5% and 4%. This uncertainty is taken into account
in the efficiency for rejecting hemispheres with electrons or muons.

The systematic uncertainties due to the other selection cuts are negligible. The remaining
errors are due to fragmentation parameters and decay rates which have to be taken from other
measurements.

Heavy quark fragmentation and decay modelling: The distribution of the missing en-
ergy depends on the b fragmentation modelling. The effect of the uncertainty is deter-
mined by reweighting the Monte Carlo events to reproduce the experimental uncertainty
on the mean energy of the b hadrons, 〈xb〉 using Peterson fragmentation and two other
fragmentation models [32, 33]. This variation produces a different energy distribution for
the b hadron decay products, resulting in the largest systematic uncertainty.
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Figure 2: Comparison of the distributions of the missing energy in a hemisphere, Ehemi
miss , between

the data taken in 1994 and the Monte Carlo simulation for the three control samples: a,b)
leptonic control sample; c,d) hadronic control sample; e,f) light quarks control sample (see text).
The number of hemispheres in the Monte Carlo is normalised to the number of hemispheres in
the data. The lines indicate the weight function w(Ehemi

miss ) (Eq. 5) for the fitted slopes a and for
a = 0, i.e. perfect agreement between data and Monte Carlo simulation for the control samples.

10



Since only about 5% of the sample is expected to be Z→ cc̄ events, the uncertainty on
〈xc〉 yields only a small contribution to the total systematic uncertainty.

HQET calculations to order 1/m2
b show that the τ polarisation changes by 4% compared

to the free quark decay model used in the simulation. A change in polarisation leads to
a different τ energy spectrum. To estimate the effect of non-zero HQET parameters λ1

and λ2, the polarisation of the τ leptons in the Monte Carlo simulation is varied by 4%
resulting in a systematic uncertainty of 0.03%.

Semileptonic decay models: A large part of the background is composed of semileptonic b
decays where the leptons have a momentum smaller than 2 GeV. Both the fraction of these
decays and the shape of the missing energy distribution depend on their modelling. The
ACCMM model [34] is used for the measurement. Using the ISGW [35] model changes
the result by +0.14% and using the ISGW** [36] model changes the result by −0.26%.
The larger of the two variations is used as an estimate of the systematic uncertainty.

Uncertainties on decay rates: The branching fractions of the Z boson into cc̄ and bb̄ pairs
in hadronic events, Rc and Rb, are taken from [26]. The variation of Rc and Rb within
their uncertainties yields a negligible contribution to the systematic uncertainty. The only
significant background involving τ leptons originates from D−s → τ−ντ decays. Averaging
a recent measurement [27] with the measurement in [28], we obtain BR(D−

s → τ−ντ ) =
(7.2±2.3)%. The branching fraction of b quarks into D−s is f(b → D−s ) = (18±5)%) [29].
These uncertainties and the uncertainties on the semileptonic branching fractions BR(b
→ `−νX) and BR(b → c or c → `νX ) have been taken into account by reweighting the
Monte Carlo events using the branching fractions and the uncertainties given in Table 1.

6 Results

Using about 3.70 million hadronic Z decays we have measured the inclusive branching ratio:

BR(b → τ−ντX) = (2.78± 0.18± 0.51)%. (6)

The size of the total uncertainty is similar to the uncertainties of the measurements in [1-3].
A contribution from charged Higgs decays is expected to enhance the branching ratio com-

pared to that in the Standard Model. Since we have found no large enhancement of the branch-
ing ratio compared to the Standard Model prediction BR(b → τ−ντX) = (2.36 ± 0.17)%, we
set a constraint on such a contribution for Type II Two Higgs Doublet Models [7].

The τ polarisation depends on the Higgs contribution and can be calculated as a function of
r = tan β/MH± [7]. This is taken into account by an iterative procedure for the limit calculation.
A limit of r < 0.52 GeV−1 is obtained assuming τ polarisation as for the Standard Model decay.
The polarisation of the τ leptons in the Monte Carlo simulation is changed according to this
value of r and the limit is recalculated. The resulting limit is

tan β

MH±
< 0.53 GeV−1 (7)

at 95% confidence level.

11



Acknowledgements

We thank Y. Grossman for helping us with the limit calculations and P. Urban for very useful
discussions on the modelling of the b → τ−ντX decay. We particularly wish to thank the SL
Division for the efficient operation of the LEP accelerator at all energies and for their con-
tinuing close cooperation with our experimental group. We thank our colleagues from CEA,
DAPNIA/SPP, CE-Saclay for their efforts over the years on the time-of-flight and trigger sys-
tems which we continue to use. In addition to the support staff at our own institutions we are
pleased to acknowledge the
Department of Energy, USA,
National Science Foundation, USA,
Particle Physics and Astronomy Research Council, UK,
Natural Sciences and Engineering Research Council, Canada,
Israel Science Foundation, administered by the Israel Academy of Science and Humanities,
Minerva Gesellschaft,
Benoziyo Center for High Energy Physics,
Japanese Ministry of Education, Science and Culture (the Monbusho) and a grant under the
Monbusho International Science Research Program,
Japanese Society for the Promotion of Science (JSPS),
German Israeli Bi-national Science Foundation (GIF),
Bundesministerium für Bildung und Forschung, Germany,
National Research Council of Canada,
Research Corporation, USA,
Hungarian Foundation for Scientific Research, OTKA T-029328, T023793 and OTKA F-023259.

12



References

[1] ALEPH Collab., R. Barate et al., Eur. Phys. J. C19 (2001) 213.
(BR(b → τ−ντX) = (2.43± 0.20± 0.25)%).

[2] DELPHI Collab., P. Abreu et al., Phys. Lett. B496 (2000) 43.
(BR(b → τ−ντX) = (2.19± 0.24± 0.40)%).

[3] L3 Collab., M. Acciarri et al., Phys. Lett. B332 (1994) 201.
(BR(b → τ−ντX) = (2.4± 0.7± 0.8)%).

[4] A. Falk, Z. Ligeti, M. Neubert and Y. Nir, Phys. Lett. B326 (1994) 145.

[5] Z. Ligeti and Y. Nir, Phys. Rev. D49 (1994) 4331.

[6] P. Krawczyk and S. Pokorski, Phys. Rev. Lett. 60 (1988) 182;
B. Grzadkowski and W.S. Hou, Phys. Lett. B272 (1991) 383;
G. Isidori, Phys. Lett. B 298 (1992) 409.

[7] Y. Grossman and Z. Ligeti, Phys. Lett. B 332 (1994) 373;
Y. Grossman, H.E. Haber and Y. Nir, Phys. Lett. B357 (1995) 630.

[8] J. A. Coarasa, R. A. Jimenez and J. Sola, Phys. Lett. B406 (1997) 337.

[9] The Particle Data Group, D.E. Groom et al., Eur. Phys. J. C15 (2000).

[10] OPAL Collab., K. Ahmet et al., Nucl. Instr. and Meth. A305 (1991) 275;
P.P. Allport et al., Nucl. Instr. and Meth. A346 (1994) 476;
P.P. Allport et al., Nucl. Instr. and Meth. A324 (1993) 34;
O. Biebel et al., Nucl. Instr. and Meth. A323 (1992) 169;
M. Hauschild et al., Nucl. Instr. and Meth. A314 (1992) 74;
B.E. Anderson et al., IEEE Trans. Nucl. Sci. 41 (1994) 845.

[11] OPAL Collab., G. Alexander et al., Z. Phys. C52 (1991) 175.

[12] OPAL Collab., R. Akers et al., Z. Phys. C65 (1995) 17.
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