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Abstract

We construct a supersymmetric grand unified model in the framework of
a latticized extra dimension. The SU(5) symmetries on the lattice are broken
by the vacuum expectation values of the link fields connecting adjacent SU(5)
sites, leaving just the MSSM at low energies. Below the SU(5) breaking scale,
the theory gives rise to a similar spectrum as in orbifold breaking of SU(5)
symmetry in 5 dimensions, and shares many features with the latter scenario.
We discuss gauge coupling unification and proton decay emphasizing the dif-
ferences with respect to the usual grand unified theories. Our model may be
viewed as an effective four dimensional description of the orbifold symmetry
breaking in higher dimensions.
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1 Introduction

Recently, a new approach to gauge theories in extra dimensions has been introduced by

considering extra dimensions on a transverse lattice [1, 2]. This provides an “ultraviolet

complete” gauge invariant description of the higher dimensional gauge theory. On the

other hand, from a purely 4-dimensional point of view, the extra dimensions are “gen-

erated” through a series of gauge groups and link fields among them. This latticizing

or desconstructing approach to the extra dimensions provides a great tool to understand

higher dimensional gauge theories, and to obtain new models both in pure 4 dimensions

and higher dimensions [3, 4, 5, 6].

In this note, we examine the orbifold breaking of the grand unified (GUT) gauge

symmetry [7, 8, 9, 10, 11] from the point of view of the deconstructed extra dimensions. In

the case of SU(5) GUT breaking, a reflection around an orbifold fixed point y = 0 with the

parity transformation Aµ(−y) = P−1Aµ(y)P, P = diag(−1,−1,−1, +1, +1) projects out

the zero modes of the X, Y gauge bosons and breaks SU(5) down to SU(3)×SU(2)×U(1).

In field theory, the orbifold should be viewed as a theory defined on a finite interval with

suitable boundary conditions. In this case, the boundary condition is such that the

gauge symmetry at the boundary point y = 0 is only SU(3) × SU(2) × U(1), while the

SU(5) gauge symmetry is preserved in the bulk. The usual gauge coupling unification can

be preserved because the gauge couplings are dominated by the SU(5) symmetric bulk

contributions which are enhanced by the volume factor relative to the contributions from

the boundary. There are several nice features of this GUT breaking mechanism. It is easy

to obtain doublet-triplet splitting in the Higgs sector, at the same time avoiding proton

decay mediated by the colored triplet Higgs fields, which may already pose a problem with

the current experimental bounds in the usual 4-dimensional GUT. The gaugino mediated

supersymmetry (SUSY) breaking [12] can naturally be incorporated in this framework to

solve the SUSY flavor problem.

In the following, we consider this orbifold GUT breaking on latticized extra dimensions.

It becomes a 4-dimensional theory with a series of gauge groups, broken down to the

diagonal subgroup by the link field vacuum expectation values (VEV’s). The simplest

realization is to have only SU(3)×SU(2)×U(1) gauge symmetry on one lattice point at

the end, and SU(5)’s on all other lattice points. However, we prefer to start with SU(5)’s

on all lattice points, and break them down to SU(3) × SU(2) × U(1) with the VEV’s of

the link fields. Since the link fields are identified with the A5 component of the gauge field
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in the continuum limit, this is equivalent to the “Wilson line breaking,” which has been

shown to be equivalent to the orbifold breaking in the continuum theory [13, 14, 15]. In

this model, the SU(3), SU(2), and U(1) gauge couplings are truly unified at some high

scale. We will find that the spectrum of the continuum theory is reproduced in the limit of

large number of lattice points. We will also discuss related issues such as doublet-triplet

splitting and gauge coupling unification in this 4-dimensional picture. While finishing

this work, we learned that a similar idea is being pursued by C. Csaki, G. D. Kribs, and

J. Terning [16].

2 Formalism

2.1 SUSY SU(5) on the orbifold lattice

We will begin with a supersymmetric SU(5) theory on a latticized extra dimention. We

assume that we have N + 1 SU(5) gauge groups with common gauge coupling g, with

N + 1 N = 1 vector multiplets Vi (i = 0, · · · , N), one for each SU(5). There are also two

sets of N chiral multiplets Φi and Φi, Φi forms (5i−1, 5i) under the two nearest SU(5)’s,

while Φi has the opposite charges. The Lagrangian for the vector multiplets and the chiral

fields is the following:

L =
∫

d4x

[

∫

d4θ
N

∑

i=1

(

Φ†
ie

(Vi−1−Vi)Φi + Φ
†
ie

(−Vi−1+Vi)Φi

)

+
∫

d2θ
N

∑

i=0

W α
i Wi,α

]

. (2.1)

As shown in [5], if the diagonal components of the link fields, Φi and Φi, acquire

universal vacuum expectation values v/
√

2 which preserve the N = 1 supersymmetry,

〈Φi〉 = 〈Φi〉 =
v√
2
diag(1, 1, 1, 1, 1), (2.2)

then SU(5)N+1 is spontaneously broken down to a diagonal SU(5).1 The vector mul-

tiplets have the mass spectrum MV,n = 2gv sin nπ
2(N+1)

, n = 0 · · ·N , while certain linear

combinations of some components in the link fields Φ and Φ, which become part of the

massive N = 1 vector multiplets, receive D term contributions and acquire the mass

spectrum MΦ,Φ,n = 2gv sin nπ
2(N+1)

, n = 1 · · ·N . The other components of Φ and Φ acquire

masses ∼ v or higher and thus decouple from the low energy effective theory. Therefore,

one recovers an N = 1 SU(5) theory at the zero mode level.

1For simplicity and ease of comparison with the result of orbifold breaking in 5D, we assume that the
gauge couplings and the link VEV’s are the same for all lattice points.
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In addition, we have four sets of chiral fields: H5,i = {HC,i, HU,i} and its conjugate

Hc
5,i = {Hc

C,i, H
c
U,i}; as well as H5,i = {HC,i, HD,i} and its conjugate Hc

5,i
= {Hc

C,i
, Hc

D,i},
where the subscripts show the charges of the fields under each SU(5). We assume that

on the zeroth brane, one only has H5,0 and H5,0, but not their conjugate partners. The

superpotentital for these fields is the following,

L ∼
∫

d4x
∫

d2θ
N

∑

i=1

(MHH5,iH
c
5,i − λΦiH5,i−1H

c
5,i + MHH5,iH

c
5,i − λΦiH5,i−1H

c
5,i)... (2.3)

When Φi and Φi accquire VEV’s, and assuming MH = λv/
√

2, the mass spectra for the H

fields arising from the superpotential are such that H5 and H5 have massless zero modes

which preserve N = 1 SUSY, while all conjugate fields become massive. The massive

H and Hc fields have the spectra MH,Hc,n = 2MH sin nπ
2(N+1)

, n = 1, · · · , N , which is the

same as the massive vector multiplets and the massive chiral link fields, given the choice

MH = gv (λ =
√

2g).

The results map onto a continuum five-dimensional theory with N = 1 supersymmetry

compactified on a Z2 orbifold of size L = (N +1)/gv. Orbifolding breaks the N = 1 SUSY

in five dimensions (which is equivalent to N = 2 SUSY in four dimensions) down to N = 1

SUSY in four dimensions. The Higgs fields H5 and H5 are complete hypermultiplets in

the 5D theory, while in 4D N = 1 language each of them includes two chiral multiplets

that are conjugate of each other.

2.2 SU(5) breaking

To generate SU(5) breaking, we assume that the first set of link fields takes on a different

form. We assume that there are four link fields, Φ1, Φ1, Φ
′

1, Φ
′

1 that are charged under

SU(5)0 and SU(5)1. Φ1 and Φ
′

1 form (50, 51) representation, and Φ1 and Φ
′

1 form (50,

51). Their VEV’s have the following structure,

〈Φ1〉 = 〈Φ1〉 = v√
2
diag(1, 1, 1, 0, 0);

〈Φ′

1〉 = 〈Φ
′

1〉 = v√
2
diag(0, 0, 0, 1, 1);

(2.4)

These VEV’s can be obtained with suitable superpotential interaction [17, 18]. All other

link fields have the same structure and VEV’s as previously discussed. The unbroken

gauge group is then SU(3) × SU(2)×U(1), which is easily seen from the mass spectrum

of the gauge bosons. For the SU(3) × SU(2) × U(1) gauge bosons, the mass matrix
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remains the same as in the case considered previously in Sec. 2.1,

M2
3−2−1 =

1

2
g2v2





























1 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

· · ·
0 0 · · · −1 1





























. (2.5)

Hence, there is a zero mode for each of the gauge groups. The X, Y gauge bosons,

however, accquire a different mass spectrum, due to the fact that the VEV’s of Φ1 and Φ
′

1

do not generate off-diagonal mass terms between the gauge bosons of SU(5)0 and SU(5)1,

M2
X,Y =

1

2
g2v2





























1 0 0 · · · 0

0 2 −1 · · · 0

0 −1 2 · · · 0

· · ·
0 0 · · · −1 1





























. (2.6)

As a result, the X, Y gauge bosons on the 0th brane are decoupled from the rest of the

lattice, and have masses M 0 = gv. The other X, Y bosons on branes 1..N accquire the

mass spectrum MX,Y,n = 2gv sin (n−1/2)π
(2N+1)

, n = 1, · · ·N .

Since the model preserves N = 1 SUSY, we expect it to contain the full vector mul-

tiplets of SU(3) × SU(2) × U(1), and the X, Y vector multiplets to exhibit the same

mass spectrum as their scalar components. The corresponding components in the Φ and

Φ fields also split in a similar fashion.

In the Higgs sector, we modify the couplings between the Higgs fields on the 0th and

1st brane and the corresponding link fields, while keeping the couplings on all other branes

the same. The superpotential takes the following form,

W ∼ λ
′ H5,0Φ1Φ1H5,0

M
−λH5,0Φ

′

1H
c
5,1+MHH5,1H

c
5,1−λH5,0Φ

′

1H
c
5,1+MHH5,1H

c
5,1+... (2.7)

where the ... include the couplings of the H, Hc fields present in Eq. (2.3).

Since Φ
′

1 and Φ
′

1 have non-zero VEV’s only in their last two diagonal components,

the Higgs doublets HU,i and HD,i from H5,i and H5,i accquire the same mass spectrum

as the SU(3) × SU(2) × U(1) vector multiplets, as we previously discussed. Namely,
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MHU ,HD,n = 2gv sin nπ
2(N+1)

, n = 0 · · ·N . However, the structure for the colored Higgs

components is changed. Φ
′

1 and Φ
′

1 do not generate off-diagonal mass terms between the

0th and 1st colored Higgs field, hence, the colored triplets on the 0th brane HC,0 and HC,0

are decoupled from the rest of the lattice. The N ×N mass matrix for the colored Higgses

on the n = 1, · · ·N branes takes the following form,

M2
HC ,H

C
= M2

H





























2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

· · ·
0 0 · · · −1 1





























. (2.8)

Therefore, there are N massive modes, with the spectrum MHC ,H
C

,n = 2gv sin (n−1/2)π
(2N+1)

,

n = 1, · · ·N . Finally, the colored components in H5,0 and H5,0 accquire masses from

the higher dimensional coupling that is localized on the first brane, as shown in eqn.(2.7).

Their masses are λ
′

v2/2M . One can tune the parameter λ
′

, assuming that v is comparable

to M , such that λ
′

v2/2M = gv. Hence, the complete colored Higgs spectrum matches

onto that of the X, Y vector multiplets.

It is easy to verify that the Hc fields also exhibit the same splitting between their

colored components and their doublet components, due to the vacuum structure of the

first set of link fields. The doublet components of the Hc fields have the spectrum MHc
U,D

=

2gv sin nπ
2(N+1)

, n = 1 · · ·N , while the triplets have the spectrum MHc
C

= 2gv sin (n−1/2)π
(2N+1)

.

In summary, the massless modes in our model include N = 1 SU(3) × SU(2) × U(1)

vector multiplets and two Higgs chiral multiplets HU and HD. The massive modes fall

into two types according to their spectrum.

• M1n = 2gv sin( nπ
2(N+1)

), n = 1, · · · , N . The fields that have this type of mass spec-

trum are the KK modes of the SU(3)×SU(2)×U(1) gauge supermultiplets, which

include components coming from the link fields Φ and Φ, and the KK towers of

Higgs doublets including HU,D and Hc
U,D.

• M0 = gv and M2n = 2gv sin (n−1/2)π
(2N+1)

, n = 1, · · ·N . This category includes the

massive X, Y vector multiplets, which contain components from the link fields, and

the KK towers of Higgs triplets which include HC,C . At the same time, the massive

colored Higgs modes belonging to the Hc
5,5

(there is a total of N of those) do not

include M0.
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There are other components of the link fields (and other possible fields required to

generate the link VEV’s) acquiring masses of order v or higher from minimizing the

potential.

At n ≪ N , M1n ≈ gv nπ
N

, while M2n ≈ gv (n−1/2)π
N

. Hence, the masses of the two sets

of KK modes have a relative shift of gvπ
2N

. The low energy spectrum is the same as that of

the KK modes in [10], in which a SUSY SU(5) model in five dimensions is compactified

on a Z2 × Z2 orbifold.

One complete family of quarks and leptons comes from a 5 and a 10 of the SU(5). We

can assume that these matter fields are localized on a single lattice point (i.e., transform-

ing under a single gauge group). Having matter fields localized on the boundary which

preserves (breaks) the SU(5) gauge symmetry in the continuum theory corresponds to

having them transforming under the Nth (0th) gauge group. Alternatively, they can have

wavefunctions distributed in the latticized bulk if one adds 10, 10 and 5, 5 on several lat-

tice points, linked by the Φ, Φ fields as in the Higgs sector. Because the zero modes of the

Higgs doublets are equal linear combinations of HU,i and HD,i on all lattice points, they

couple to fermions localized on different branes through Yukawa couplings and generate

masses and mixings for the standard model fermions after the electroweak symmetry is

broken.

3 Discussion

Given the spectrum presented in the previous section, the running of the gauge couplings

at the 1-loop level including the threshold corrections from all massive modes can be easily

calculated as follows,

α−1
a (MZ) = α−1

G (M∗)+
1

2π

[

βa ln(
M∗

MZ

) + γa

N
∑

n=1

ln(
M∗

M1n

) + δa

N
∑

n=1

ln(
M∗

M2n

) + δ
′

a ln(
M∗

M0

) + ∆a

]

.

(3.9)

Here αG = g2/(4π(N + 1)), and the numerical coefficients are determined only by the

group structure of the fields. βa (a = 1, 2, 3 refers to U(1), SU(2) and SU(3)) includes the

contribution from the zero modes, γa includes the contribution from the modes which have

a Type I mass spectrum, δa accounts for the the modes with a Type II mass spectrum for

n = 1, · · ·N . These coefficients have been calculated in [10], where a model with a similar

spectrum has been constructed from a Z2 × Z2 compactification of a supersymmetric 5D

theory: βa = (33
5
, 1,−3), γa = (6

5
,−2,−6), δa = (−46

5
,−6,−2). δ

′

a counts the contributions
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from the X and Y gauge bosons and HC,C, both with mass M 0. It is easy to show

that δ
′

a = (−48
5
,−6,−3). ∆a includes the threshold corrections from heavy link field

components, which are near or above the SU(5) breaking scale.

As discussed in Refs. [10, 19], gauge coupling unification is not ruined by the presence

of the Kaluza-Klein spectrum. We now examine this in our model in more detail.

Let us define MG = 2 × 1016 GeV as the scale where α1 and α2 meet in the MSSM.

Previous studies [20, 21] have shown that with the central values for the gauge couplings at

the weak scale, and a SUSY spectrum which is not unnaturally heavy, the gauge couplings

miss each other at the scale MG by

ε3 ≡
g3 − g1

g1
∼ −(1 − 2)% . (3.10)

This mismatch should be accounted for by the GUT-scale threshold corrections within

any specific grand unified model. We now proceed to calculate the prediction for ε3 in

our model.

We choose to match the MSSM onto the full GUT theory at the scale M∗ = MG. The

condition α1(MG) = α2(MG) implies that the threshold corrections to α1 and α2 at the

scale MG should be equal. This allows us to compute the value of M 0 = gv for any given

fixed N :

ln
MG

M0

= −8

9
(GN − DN ), (3.11)

where the numerical factors GN and DN are defined as follows,

GN ≡
N

∑

n=1

ln

[

2 sin
nπ

2(N + 1)

]

=
1

2
ln(N + 1),

DN ≡
N

∑

n=1

ln

[

2 sin
(n − 1/2)π

2N + 1

]

= 0 . (3.12)

(In what follows, we ignore the model-dependent effects from ∆a.)

Having determined M 0 = gv, there are no free parameters left, and for any given N

we get a prediction for ε3 at the unification scale MG:

ε3 = −αG

3π
(GN − DN). (3.13)

In Fig. 1 we show the prediction for ε3 and M0 for several different values of N . For

N ∼> 20 the proton decay rate from the dimension 6 operator exceeds the experimental

bound, as discussed below. The points which are consistent with (marginally consistent

7



Figure 1: Predictions for ε3 and M 0 for several different values of N . The circles
(diamonds, crosses) are consistent (marginally consistent, excluded) with the proton decay
limits from dimension 6 operators. The shaded region is the range of ε3 preferred by low
energy data (see Eq. (3.10)).

with, excluded by) proton decay, are denoted by circles (diamonds, crosses). We see

that the predicted threshold correction ε3 is negative, i.e. goes in the right direction.

However, its magnitude is not large enough to completely fix gauge coupling unification.

One might hope that the additional threshold effects ∆a due to the heavy components of

the link fields will ameliorate the situation. Alternatively, gauge coupling unification can

be further improved by reducing λ′, hence lowering the mass of the colored triplet Higgs

on lattice point 0, which results in an addtitional negative contribution to ε3.

From Fig. 1 we also see that the SU(5) breaking scale, defined as 2gv = 2M0, is a few

times higher than the usual MG, and it grows for larger N . The mass of the lowest KK

mode, namely, the effective compactification scale, is between 0.4 ∼ 0.8 × MG.

The colored triplet Higgs mediated proton decay is absent if the matter fields are

localized away from the zeroth lattice point (i.e., do not transform under SU(5)0), because

the two sets of Higgs fields containing HU and HD do not couple to each other away from
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lattice point 0. Although the triplets on lattice point 0, HC,0 and HC,0, couple through

the non-renormalizable interaction λ′, they decouple from the triplets on the other lattice

points. As a result, the proton decay process mediated by HC,0 and HC,0 can only take

place if the quarks and the leptons are on the 0th brane.2

If the matter fields are localized on branes away from the 0th brane, the dimension 6

proton decay operators from the X, Y gauge boson exchange will be enhanced compared

to the usual SUSY GUT, because there are many X, Y gauge bosons contributing to

the process and the lightest ones are lighter than those in the traditional 4D SUSY

GUT. The experimental value of the proton lifetime thus imposes constraints on the

scales in our construction. The decay mode p → e+π0 through exchanging of X and Y

gauge bosons requires that the lightest X and Y gauge bosons both should have mass

gvπ/(2N + 1) ≥ 5× 1015 GeV. On the other hand, as we discussed ealier, the X, Y gauge

bosons on lattice point 0 are decoupled from the other X, Y gauge bosons, and have

mass gv, which is not supressed by the volume factor N and somewaht larger than the

usual SUSY GUT scale. Therefore, if the matter fields are localized on the lattice 0, the

dimension 6 proton decay operators will be suppressed compared to the case when matter

is localized away from the 0th brane.

As mentioned in the Introduction, gaugino mediated SUSY breaking can be easily

incoporated in the orbifold GUT breaking scenario. In our case, similar superpartner

spectrum can be obtained if SUSY breaking only couples to the gauge group on the

lattice point away from where matter fields are localized [5, 6].

In summary, we have constructed a 4D SUSY GUT theory with many SU(5) gauge

groups. The gauge symmetry breaking scale is somewhat higher than the GUT scale in

the usual 4D theory. However, gauge coupling unification is achieved due to the threshold

corrections from the “Kaluza-Klein” modes lighter than the symmetry breaking scale. It

shares many features with the 5D orbifold GUT breaking models, and may be viewed as

an effective 4D description of these higher dimensional mechanisms.

2In Ref. [10], a U(1)R symmetry is imposed to completely forbid the dimension 5 proton decay op-
erators. This U(1)R symmetry is not respected by the non-renormalizable interaction λ

′ in our model.
However, the size of the dimension 5 proton decay operators depends on the flavor structure [22] and
hence is difficult to estimate without a flavor theory.
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