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Abstract

Data on muon pair production obtained by the OPAL collaboration at centre
of mass energies near the Z peak are analysed. Small angular mismatches between
the directions of the two muons are used to assess the effects of initial state pho-
ton radiation and initial-final-state radiation interference on the forward-backward
asymmetry of muon pairs. The dependence of the asymmetry on the invariant
mass of the pair is measured in a model-independent way. Effective vector and
axial-vector couplings of the Z boson are determined and compared to the Standard
Model expectations.
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1 Introduction

Many experiments have studied the forward-backward asymmetry of muon pairs produced
in electron positron annihilation [1–3], motivated by its sensitivity to interference between
the axial-vector coupling of the Z and the vector couplings of the Z and the photon, the
clean signature of the muons, and the lack of complications from t-channel exchange. The
asymmetry depends on the centre of mass energy and, at tree level near the Z peak, this
dependence is described by a straight line [4], with a slope and intercept directly related
to parameters of the Z boson.

In the conventional method of analysis, however, the asymmetry is measured within
a kinematic phase-space which integrates over the spectrum of radiated photons. This
integrated asymmetry is then compared with the predictions of a theoretical model, whose
parameters are varied to produce the optimum agreement. The integration over the
spectrum of radiated photons noticeably changes the energy dependence of the asymmetry
through two effects:

• Initial State Radiation (ISR) lowers the effective centre of mass energy of the event,
so the muon pair has an angular distribution which is appropriate to a lower energy
and, furthermore, is distorted by the Lorentz boost.

• Interference between photons emitted in the initial and final state (IFI) distorts the
angular distribution from the usual 1 + cos2 θ + a cos θ dependence and produces
a forward-backward asymmetry, strongly dependent on angular cuts, even in the
absence of any axial coupling [5].

These effects depend on the centre of mass (CM) energy (e.g., the intensity of ISR increases
strongly when the energy exceeds the Z mass) and significantly distort the asymmetry at
the levels of precision obtained by the LEP 1 experiments [2, 3].
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In conventional analyses ISR is modelled by folding a radiator function calculated in
QED with a Breit-Wigner model of the resonance cross section. For the effects of IFI,
conventional analyses rely on the large cancellation expected if the cuts are set wide, i.e.
when the cross section is integrated over a phase space which accepts almost all radiation
from the initial and final states and the interference between the two [6]. This integration
represents a loss of angular information and the cancellation has not previously been
verified experimentally.

We present here an analysis which explicitly studies the effects of electromagnetic
radiative corrections for muon pairs:

• We consider ISR on an event-by-event basis. This enables us to assess the effective
invariant mass of the muon pair, and thus study the variation of the asymmetry
with energy, even at a single energy of the colliding beams.

• We measure the effect of IFI on the angular distributions. By analysing small angu-
lar mismatches between the directions of the two muons it is possible to identify and
study those areas of the phase space where the IFI-induced asymmetry is significant,
and see how the above-mentioned cancellation works.

Our approach enables us to measure the Z boson effective couplings in a model-
independent way, using only asymmetry measurements around the Z peak. The only
assumptions used are those of QED, electron-muon universality, and the spin-1 nature of
the Z boson. Our analysis is based on the measured properties of the µ+µ− pair alone,
and does not directly involve the detection of the radiated photons, which often escape
direct detection either because of their low energy or because they go down the beam
pipe. It thus includes the effect of soft radiative corrections, in contrast to approaches
utilizing detected photons, which probe only hard corrections [7].

2 Choice of variables

At tree level, muon pair production in e+e−-annihilation is a straightforward 2 → 2
process:

e+e− → µ+µ− (1)

with the two final-state muons exactly back-to-back in the centre of mass (CM) system.
For unpolarised beams, the azimuthal orientation of the event does not carry any useful
information, and there is only one angle of interest, which can be chosen to be the polar
angle of either of the two final-state muons θ±. Here we adopt the usual coordinate
conventions, where the electron beam direction is along the +z axis of a right-handed
cartesian system. The polar angles of the outgoing µ− and µ+ with respect to this
direction are respectively θ− and θ+, and the corresponding azimuthal angles φ− and φ+

are measured with respect to the x-axis, which points to the centre of the LEP ring.

Higher-order corrections give rise to the radiation of real photons:

e+e− → µ+µ−γ(γ . . .) (2)

4



The radiated photons are not always directly observable: they may have very low energy,
or may be radiated along the beam pipe, thus missing the detector altogether. But
the photons can still be accounted for by measuring the angular mismatch between the
directions of the muons. Since the two muons are no longer back-to-back, one needs three
non-trivial angular variables to describe their directions. An especially convenient set is
θ•, η and ξ.

Following [8] the angle θ• is defined by:

cos θ• =
sin(θ− − θ+)

sin θ− + sin θ+
. (3)

It reduces to cos θ• = cos θ+ = − cos θ− when θ+ = π − θ−. In the case of ISR collinear
with the beam direction, cos θ• equals cos θ+ in the CM system of the muon pair.

The variable η also depends only on θ+ and θ−:

η =
| sin(θ+ + θ−)|

| sin(θ+ + θ−)| + sin θ+ + sin θ−
. (4)

If a photon is radiated exactly along the beam direction, η is the boost parameter and
the energy of the photon, Eγ , is

Eγ = η
√

s. (5)

In this case, η measures the mismatch between the polar angles of the two muons, and is
equal to zero if the muons are back-to-back. The invariant mass squared s′ of the muon
pair is then given by 1

s′ = (1 − 2η)s. (6)

The acoplanarity ξ is defined in the x − y plane:

ξ =
∣

∣

∣

∣

∣φ+ − φ−
∣

∣ − π
∣

∣

∣
. (7)

It measures the angular mismatch between the two muons in the transverse direction, and
is also equal to zero if the muons are back-to-back.

Conventional analyses often use the acollinearity angle ζ defined through the 3-
momenta ~p± of the final muons:

cos ζ = − ~p+ · ~p−
|~p+||~p−|

. (8)

It combines the angular mismatch in θ with the mismatch in φ. This is not sensible in
experiments where the resolution of the φ measurement is significantly better than that
of θ. Moreover, a mismatch in θ is mostly due to strong ISR with the photon going along
the beam direction, while a strong mismatch in φ is mostly due to photon radiation from
one of the final state muons (FSR). These two processes, and their interference (IFI),
have significantly different angular dependences, and their separation is an essential part
of the present analysis. For these reasons, the acollinearity angle ζ is not used here.

1This is true for any number of photons as long as they all have the same direction along the beam.
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3 Theoretical treatment

3.1 Tree level formulae

Consider first the (unphysical) case with no radiated photons, to which corrections will
then be calculated. The normalised angular dependence of muon pair production at a
CM energy

√
s is given by:

1

σ(s)

d3σ(s)

d cos θ dξ dη
=

{ 3

8
(1 + cos2 θ) + AFB(s) cos θ

}

δ(ξ) δ(η) (9)

which has a trivial dependence on ξ and η, described by the two Dirac δ-functions. The
coefficient AFB(s) of the term linear in cos θ is the forward-backward asymmetry:

AFB(s) =
σ(cos θ > 0) − σ(cos θ < 0)

σ(cos θ > 0) + σ(cos θ < 0)
(10)

=
3

4

F3(s)

F1(s)
. (11)

Assuming only that the Z boson is a massive spin-1 resonance with mass MZ and width
ΓZ , and following the notation of [3], the energy-dependent functions F1,3(s) near the Z
peak have the following form [3, 9]:

F1(s) = 1 + 2 Re{χ∗

0(s) Cs
γZ} + |χ0(s)|2 Cs

ZZ , (12)

F3(s) = 2 Re{χ∗

0(s) Ca
γZ} + 4 |χ0(s)|2 Ca

ZZ , (13)

where

χ0(s) =
1

K

s

s − M2
Z + iMZΓZ

. (14)

Assuming electron-muon universality in vector and axial-vector couplings, ge
V,A = gµ

V,A ≡
gV,A, the coefficients C take the form:

Cs
γZ = g2

V , Cs
ZZ = (g2

V + g2
A)2 , (15)

Ca
γZ = g2

A , Ca
ZZ = g2

V g2
A . (16)

In the immediate vicinity of the Z pole the asymmetry (11) is a linear function of s:

AFB(s) =
3Ca

ZZ

Cs
ZZ

+
s − M2

Z

2s
K

3Ca
γZ

Cs
ZZ

(17)

=
3g2

V g2
A

(g2
V + g2

A)2
+

s − M2
Z

2s
K

3g2
A

(g2
V + g2

A)2
. (18)

The first (constant) term in both (17) and (18), the asymmetry at peak, depends only on
the ratio gV /gA, while the slope with energy of the second term allows one to measure the
axial-vector leptonic coupling, gA. The constant K, which stands for the ratio of the Z
boson and photon propagator normalisation factors, determines the scale of the gV and gA
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parameters: only two of the three quantities gV , gA and K are independent, if asymmetry
is the only measured quantity.

Note that eqs. (17) and (18) do not contain ΓZ . In particular, the slope of the asym-
metry with energy is independent of ΓZ . The linear approximation remains valid over the
region where the Z dominates the photon.

In the Standard Model, the constant K is expressed through the ratio of the electro-
magnetic coupling α and the Fermi constant GF :

K ≡ 2
√

2πα

GF M2
Z

(19)

After the imaginary part of the photon propagator is taken into account, which results
in a small offset in the forward-backward asymmetry at peak [12], eqs. (12—19) still
hold [10–12] in what is called the “Improved Born Approximation”, with gV and gA now
standing for the real parts of the effective vector and axial-vector couplings of the Z boson.
The contributions of the imaginary remnants of the effective couplings are small, and
have been neglected in this analysis. The numerical value of the normalisation constant
K changes as the scale dependence of the electromagnetic coupling is taken into account:

α → α(M2
Z) ≈ 1/128.89. (20)

3.2 Radiative QED corrections

Initial state radiation (ISR), final state radiation (FSR) and the interference of the two
(IFI) affect the angular distribution of final muons in different ways.

ISR photons are radiated mainly along the beam axis, and the CM frame of the muon
pair acquires a boost. As mentioned above, under collinear ISR θ• remains equal to θ+

in this frame. The acoplanarity variable ξ, defined in the transverse plane, is also largely
insensitive to ISR. The parameter η however, is essentially proportional to the energy of
the emitted photon. Thus, events with significant ISR typically have η significantly larger
than ξ. The angular distribution

d2σ

d cos θ• dη
∼

{ 3

8
(1 + cos2 θ•) + AFB(s′) cos θ•

}

f(η) (21)

acquires a non-trivial η-dependence described by the function f(η), and an additional
η-dependence through the argument s′ = (1 − 2η)s of the asymmetric term AFB(s′). So,
the measurement of the mismatch in the polar angles of the two muons, described by
the variable η, allows the forward-backward asymmetry AFB to be measured directly at
various energies

√
s′, below and up to the actual initial CM energy,

√
s.

FSR is essentially symmetric around the final muon direction, and an angular mis-
match in the longitudinal direction is close to that in the transverse direction, yielding on
average η ≃ ξ. FSR is mainly directed along the final muons, and its effect alone on the
forward-backward asymmetry is unmeasurably small.

Radiation with significant initial-final interference, IFI, is concentrated also mainly in
the areas where η ≃ ξ. It is a complicated function of all three angular variables and
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contains a term which is odd in cos θ•, thus introducing an additional forward-backward
asymmetry. This is expected to be positive for softer photons, Eγ . ΓZ/2, and negative
for harder ones. This strong variation of the asymmetry as a function of acoplanarity
has been observed in [13]. For a totally inclusive treatment (when one integrates over all
values of η and ξ), IFI should have a negligible effect on the asymmetry, as these two
regions cancel each other almost completely [6]. By measuring η and ξ we can identify
those areas of the phase space where this IFI-induced asymmetry is significant and check
the mechanics of the expected cancellation.

Consider a tight cut on acoplanarity ξ < ξ0. This restricts the phase space of the
radiated photon and disturbs the delicate balance required for the cancellation of the
initial-final interference effects. The additional asymmetric term, which enters the ex-
pression for the full differential cross section, has a characteristic logarithmic dependence
on cos θ• [12, 14]:

∫ ξ0

0

dξ
d3σ(s′)

d cos θ• dξ dη
∼

{ 3

8
(1 + cos2 θ•) + AFB((1 − 2η)s) cos θ•

}

×
{

f+(η)[1 + β(η, cos θ•)] + f−(η)
1

2
ln

1 + cos θ•

1 − cos θ•

}

. (22)

The functions β(η, cos θ•) and f±(η) implicitly depend upon the value of the acoplanarity
cut ξ0; a complete theoretical calculation of these functions for arbitrary values of the
cut ξ0 would involve a detailed analysis of the participating interfering diagrams and the
complete set of the SM parameters. However, the treatment is significantly simplified if
the cut ξ0 is chosen to be very tight, of order 10−3. In this case, the functions f± and β
can be calculated by numerical integration of the analytic formulae describing QED ra-
diative corrections in the single soft photon approximation [14]. By comparing theoretical
formulae and generator-level Monte Carlo simulations with [15, 16] and without [14, 17]
exponentiation of radiative corrections, it was verified that the above approximation is
adequate at energies around the Z peak, if ξ and η are small enough and one does not get
too close to the edges of cos θ• distribution.

In this approximation, the term with the function f+(η) contains the contributions
from ISR, which is cos θ•-independent, and from the remnants of FSR, which result in
an even cos θ•-dependence, described by the function β(η, cos θ•). The latter can be
parametrised as

β(η, cos θ•) =
f−(η)

f+(η)

1

4 cos θ•
ln

1 + cos θ•

1 − cos θ•
(23)

and, in the range of the angular variables considered in this analysis, represents a small
(∼ few percent) correction to the main symmetric term.

The last term in (22), with the function f−(η), describes the contribution of initial-final
radiation interference, and has an odd cos θ•-dependence. This term is responsible for the
additional asymmetry which arises because of the tight acoplanarity cut. Fortunately,
the cos θ•-dependences of the two odd terms in (22) are significantly different, and, given
the statistical power of the LEP 1 data set, these two asymmetric contributions can be
separated.
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4 Monte Carlo samples

Three Monte Carlo samples have been used at various stages of this study. They were
obtained using KORALZ generator version 4.0 [17] and full OPAL detector simulation [18].
It is an important feature of this analysis that the numerical results obtained in Section
7 are, in fact, almost independent of these simulations, the samples being used only to
assess systematic errors and derive a few small corrections.

The first sample contains 600000 muon pair events with soft photon exponentiation,
but without the initial-final radiation interference. This sample, labelled “MC1”, was
used to study resolutions and efficiencies, as described in subsections 5.2 and 7.1.

The second sample, labelled as “MC2”, contains 100000 events with the complete set
of O(α) corrections, which includes the initial-final radiation interference. Alongside with
MC1, MC2 is used in Section 6 to illustrate the differences in the angular distributions of
the various data subsamples.

The third sample contains 600000 τ pair events. It is referred to as “MC3”, and is
used for background studies together with MC1, as described in the following section.

5 Event selection

Events collected by the OPAL experiment at LEP 1, at and around the Z peak during
1993, 1994 and 1995 are used in this study. The data correspond to total integrated
luminosities of about 82 pb−1 at the CM energy around 91.22 GeV (hereafter referred to
as “peak”), 17 pb−1 at 89.44 GeV (“peak−2”) and 18 pb−1 at 92.97 GeV (“peak+2”).

A detailed description of the OPAL detector is given elsewhere [19,20]. Here we briefly
describe some subdetectors relevant to our analysis. Most of these form a set of coaxial
cylinders, with varying coverage in θ. The innermost is the central vertex detector, which
consists of a set of axial (CVA) and stereo (CVS) wires, both with angular coverage
| cos θ| = 0.92. This is followed by the multi-wire jet chamber (CJ), which is surrounded
by thin z-chambers (CZ), the latter covering the angular range | cos θ| < 0.72. The
coaxial magnetic field of 0.435 T allows the measurement of the momenta of charged
particles. The following layer is formed by the electromagnetic (ECAL) and hadronic
(HCAL) calorimeters. The outer layer consists of a set of barrel (MB) and endcap (ME)
muon chambers.

5.1 Selection of Muon Pair Events and Background Rejection

Muons are identified either by hits in muon chambers (MB and/or ME) or by the specific
pattern of energy deposition in HCAL or ECAL. Events passing the multihadron and
cosmic veto and containing 2 tracks identified as muons are selected if the visible energy
in the event (defined as the sum of the two muon energies and the highest energy ECAL
cluster in the event) is larger than 0.6

√
s (see [3] for details). This part of the e+e− →

µ+µ− selection is identical to that described in [3], except that here we do not require the
cut on the acollinearity angle (8), but do require that the two muon tracks be measured
to have opposite charges.

9



The visible energy cut is designed to reduce the only significant background to the
processes (1,2), τ pair production, studied using Monte Carlo samples MC1 and MC3.
In the usual inclusive asymmetry analysis this cut removes most of the ττ background,
reducing its fraction in the data event sample to about 1%. However, ττ events have a
much broader η-distribution than µµ events, and even this small amount of background
can interfere with the analysis presented here. An additional cut is applied to the missing
transverse momentum in the event:

xT =

√

(Σpx)
2 + (Σpy)

2

s
≤ 0.1, (24)

where the sums are taken over respective components of the momenta of the two charged
particles and the two most energetic electromagnetic clusters in the event. The cut (24)
removes ∼ 75% of the remaining background, as shown in fig. 1. For the asymmetry
analysis described in Section 7, we also impose a strong requirement on the acoplanarity,
ξ< 0.004, restrict | cos θ•| < 0.92, and limit s′ to the region where the asymmetry remains
the linear function of energy by imposing η < 0.06, 0.08 and 0.10 at the peak−2, peak
and peak+2 energy points, respectively.

These additional cuts eliminate the charge-dependent tracking problems described
in [3], which lead to asymmetry biases in the subsample of poorly measured events retained
for the conventional OPAL asymmetry measurements. and further reduce the τ pair
background. The ξ-distribution is much broader for the τ pair background than for the
µ pair signal, so the tight cut on acoplanarity rejects most of the remaining background
events. For the asymmetry sample, used in our fits in Section 7, the estimated number of
remaining ττ events is 25 ± 3 out of 66143 selected events.

As described in the next subsection, we also require that all tracks in the asymmetry
sample be measured by subdetectors with optimum resolution, which retains about 62%
of otherwise selected events.

5.2 Angular resolutions and muon pair event classification

It is essential for this analysis to achieve the best possible angular resolutions in both
θ and φ. For this reason, both muon tracks are required to have at least one hit in
the central vertex detector in both axial (CVA) and stereo (CVS) planes, giving a good
measurement of the production vertex. This requirement rejects about 25% of selected
events. The z-resolution of the central jet chamber (CJ) is insufficient for this analysis, and
therefore measurements are required from either the z-chambers or the muon chambers.
This requirement rejects a further 13% of the selected events.

The azimuthal angle measurement is made by the jet chamber CJ, which determines
the resolution in ξ. A graphical illustration of the effect of the finite ξ resolution is
given in fig. 2a, which shows the distribution of a subsample of events from the central
region, | cos θ•| < 0.2, with respect to the variable log(1/ξ). With a perfect detector, this
distribution is expected to fall slowly and smoothly after reaching a plateau at log(1/ξ) ≃
2.5 − 3. With a finite resolution σξ, all events with unmeasurably small true angular
mismatch ξ ≪ σξ, which would have appeared at very high values of log(1/ξ) if the
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measurements were perfectly accurate, acquire larger ξ of order of σξ, and gather into the
sharp peak at log(1/ξ) ≃ log(1/σξ) ≃ 3.5. The solid line in fig. 2a represents the result
of a Gaussian fit (in ξ) to the data points, resulting in the estimated resolution for this
subsample, σξ = 0.36 mrad, with a statistical error about 1%. The ξ resolution remains
virtually constant in the barrel region of the detector, |cos θ•| < 0.72, and increases
gradually to ≃ 0.85 mrad for |cos θ•| > 0.85.

The resolution of the η measurements depends on the subdetector used to measure
the far ends of the two tracks in the event. CZ provides the best measurement, followed
by MB, ME and, finally, CJ. The selected muon pair events are classified according to the
effective resolution of η measurement:

1. Polar angles of both tracks are determined from hits in the CZ. These events have
the best resolution in θ.

2. Muon chambers are used to measure both polar angles.

3. One of the tracks has its θ determined from the CZ measurement while the other is
measured with the muon chambers.

4. Either or both tracks have their polar angle determined by CJ, and/or have no hits
in CVA/CVS.

The distribution in log(1/η) of a subsample of class 1 events from the same region
| cos θ•| < 0.2 is shown in fig. 2b. Here too, the position of the peak defines the resolution
of the detector. For this particular subsample, the Gaussian fit (in η), shown by the curve
in fig. 2b, gives ση = 0.95 ·10−3, with a statistical error of about 1%. Like the ξ resolution,
the η resolution increases for cos θ• values outside the barrel region.

Both ξ and η resolutions were determined separately for 10 bins of |cos θ•|. Non-
Gaussian tails were approximated by a Breit-Wigner distribution, with parameters deter-
mined from the Monte Carlo sample MC1. The η resolution was determined separately
for the different event classes defined above. Numbers of selected events in each class are
shown in table 1 together with respective estimated resolutions.

Only events from classes 1 and 2 are used in our main analysis (adding up to about
62 % of the selected muon pair events remaining after the cut on missing transverse
energy), with class 3 events used for systematic studies. The η resolution for events from
class 4 was found to be non-uniform with respect to the polar angle and generally poor,
so that they could not be used.

6 cos θ• distributions for various η, ξ regions

The scatter plot of the class 1 events in the log(1/η) − log(1/ξ) plane is shown in fig. 3.
As explained above, the events placed along the diagonal of this plot, corresponding to
η ∼ ξ (area with dense horizontal shading), have a high probability of strong FSR and/or
IFI. Events with η ≫ ξ, scattered above the diagonal (diagonally shaded triangular area
in fig. 3) typically have a high probability of significant ISR. As in fig. 2, the position of
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〈Ecm〉 Class 1 Class 2 Class 3 Class 4 Total

p−2 89.45 GeV 3215 1265 579 2082 7141
peak 91.22 GeV 46727 18858 9401 31244 106230
p+2 92.97 GeV 4853 1896 889 3147 10785

Total 54795 22019 10869 36473 124156

Resolutions
ση, 10−3 0.95 2.0 — 3.4 1.5 2.4 — 8.0
σξ, mrad 0.35 0.35 — 0.85 0.35 0.35 — 2.5

Table 1: Numbers of events (prior to any cuts on angular variables cos θ•, η and ξ, but
after all other cuts) and estimated resolutions in η and ξ for the three energy points and
various classes of events as defined in the text. Events from classes 1 and 3 are from the
barrel region of the detector, | cos θ•| < 0.72; most of class 2 events belong to the region
0.72 < | cos θ•| < 0.92. For classes 2 and 4 the resolutions depend on the polar angle: the
smaller numbers for the resolutions ση, σξ correspond to | cos θ•| & 0.72, while the larger
numbers refer to the edge of acceptance | cos θ•| . 0.92.

the peak in fig. 3 is determined by the detector resolution in η and ξ. Class 2 events show
a very similar scatter plot, apart from the fact that, because of the inferior resolution, the
peak is shifted towards higher values of ξ and η (i.e. down along the diagonal of the plot
in fig. 3).

A cut on acoplanarity ξ0 = 0.004, corresponding to log10(1/ξ) ≈ 2.4, is shown in
fig. 3 by the horizontal dashed line. The vertical dashed line corresponds to η = 0.008,
log10(1/η) ≈ 2.1. This value was chosen to separate the area of relatively large η values,
where the finite η-resolution effects are not too important, and the region of small η,
where the distributions are significantly smeared by the detector resolution.

The upper-left quadrant in fig. 3 is filled with events with small ξ (ξ < 0.004) and
large η (η > 0.008). In this kinematic range there is a high probability of strong ISR, but
it is essentially free of IFI and FSR contributions. Thus the distribution of the events
from this quadrant in cos θ• should be well described by the usual quadratic function of
cos θ•, eq. (21).

The upper right quadrant in fig. 3 contains events with both ξ and η small. Here the
IFI contribution is expected to be strong and should lead to an additional logarithmic
dependence on cos θ•, described by the second term in curly brackets in eq. (22). This
dependence gives rise to an additional, IFI-induced forward-backward asymmetry, which
is expected to be positive in this part of the η–ξ plane.

The lower left quadrant of fig. 3 also contains a strong IFI contribution, but in this
region the IFI-induced asymmetry is expected to be negative. Theory predicts that, when
integrated over the whole range of ξ and η, these positive and negative logarithmic inter-
ference terms cancel each other so that the overall cos θ• distribution is again described
well by a simple quadratic function of cos θ•, with the only asymmetric term being linear
in cos θ•.
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Figs. 4a–d show the cos θ•-dependence for class 1 and class 2 events collected at the Z
peak. The measured distributions were corrected for efficiency and background using the
µµ and ττ Monte Carlo samples including full detector simulation. Figs. 4a–c correspond
to upper left, upper right and lower left quadrants of fig. 3 respectively, while fig. 4d shows
the cos θ• distribution integrated over the whole η–ξ plane. Also shown are fits to the
measured distributions using the following function:

(a + b cos θ• + c cos2 θ•)(1 + d
1

2
ln

1 + cos θ•

1 − cos θ•
). (25)

which is merely a simplified version of eq. (22) after the integration over the respective
quadrant of the η–ξ plane. Among the four fit parameters in (25), a, b, c and d, the
last one, d, is particularly interesting, as it determines the amount of the IFI-induced
forward-backward asymmetry. Its fitted values are shown in the figure for each of the
four distributions.

These fit results clearly demonstrate that theoretical expectations are fulfilled: the
cos θ•-distribution of the events taken from the upper left quadrant of fig. 3 is indeed well
described by a quadratic function, giving d = 0.01 ± 0.07, compatible with the absence
of IFI contribution. On the contrary, events from the two quadrants situated along the
diagonal of fig. 3 both show a significant non-zero IFI contribution: the upper right
quadrant yields a positive IFI-induced asymmetric term, d = 0.09± 0.03, while the lower
left quadrant (events with both ξ and η large) yields a negative value, d = −0.18 ± 0.05.
Most notably, when all regions of η and ξ are summed, the resulting cos θ• distribution
in fig. 3d, with d = 0.03 ± 0.03, is again compatible with the absence of the IFI-induced
logarithmic term.

Before moving on to the detailed quantitative analysis of the measured angular distri-
butions, let us show that the differences in the asymmetric parts of the measured cos θ•

distributions in different η–ξ regions are indeed caused by the initial-final radiation inter-
ference. Consider the “differential forward-backward asymmetry”, defined by

AFB(cos θ•) ≡
dσ(cos θ•)
d cos θ•

− dσ(− cos θ•)
d cos θ•

dσ(cos θ•)
d cos θ•

+ dσ(− cos θ•)
d cos θ•

, (26)

as a function of cos θ•, for the same three separate areas of the log(1/ξ)− log(1/η) plane
considered above. This is compared to two Monte Carlo samples, MC1 and MC2, as
defined in Section 4. MC1 has the IFI term switched off, while MC2 includes the IFI
contribution.

Fig. 5a represents the upper left corner of fig. 3, rich with ISR, and shows a negative
asymmetry with the smooth angular dependence ∼ cos θ•/(1 + cos2 θ•), typical of the
linear term. The two lines, corresponding to the Monte Carlo samples with and without
initial-final interference, display no significant differences, and both describe the data well.

In contrast, the shape of the angular dependence for the upper right (fig. 5b) and lower
left (fig. 5c) quadrants is dominated by the logarithmic term ∼ ln[(1+cos θ•)/(1−cos θ•)],
characteristic of the IFI-induced forward-backward asymmetry. The data and the MC2
sample agree reasonably well, while for the MC1 this is not the case.
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When integrated over the whole η-ξ plane, the angular dependence is essentially sym-
metric, as shown in fig. 5d, without any significant deviation between the data and either
Monte Carlo sample.

7 Asymmetry analysis

7.1 Probability density

As mentioned above, a tight cut on acoplanarity selects an area of phase space where
we can apply the formalism presented in section 3, measure the energy dependence of
the forward-backward asymmetry and determine the vector and axial-vector couplings of
Z. Based on the expression (22) for the double-differential cross section, one obtains the
following probability density function:

P(η, cos θ•) ∼
{ 3

8
(1 + cos2 θ•) +

[

A0 + A′
s′ − M2

Z

s

]

cos θ•
}

×f+(η)
{

1 + β(η, cos θ•) + B
f−(η)

f+(η)

1

2
ln

1 + cos θ•

1 − cos θ•

}

(27)

where A0, A′ and B are constants to be determined from a fit to the data. A0 and A′

correspond to the coupling combination terms in equation (18). In the single soft photon
approximation of QED one expects B = 1, so by measuring B we can accommodate and
measure deviations from this approximation.

The function f+(η) essentially defines the shape of the η-dependence of the cross sec-
tion, and was measured directly from the data. Indeed, the single-differential distribution
with respect to η, obtained by integrating the probability density (27) over the whole
cos θ• range, is essentially proportional to the function f+(η). The corrections from the
FSR contribution β, defined in eq. (23), and the product of the two terms in eq. (27)
which are odd functions of cos θ• are fairly small and can be easily taken into account.

Before application to the data, η resolution smearing must be explicitly applied to
(27). Note that the η dependence enters not only through f±, but also through s′ within
the first pair of curly brackets, so the probability distribution folded with the resolution is
no longer factorisable. However, the η-dependence of the first term is linear, so one only
needs to calculate three different ratios of folded functions: Ψ1(η) = f−(η)/f+(η), Ψ2(η) =
ηf−(η)/f+(η) and Ψ3(η) = ηf+(η)/f+(η), where f denotes a function f convoluted with
the η-resolution. These three ratios are presented in fig. 6, together with similar ratios
without resolution smearing. Even the largest of these three ratios, Ψ1 = f−/f+, which
essentially determines the IFI contribution to the asymmetry, is much smaller than 1 at
η ≃ 0 and quickly becomes even smaller outside a narrow range of η, the width of which
is governed by the cut on ξ and the resolution in η.

Since the standard OPAL selection efficiency for µ-pair events is very close to 100%,
the efficiency of the class 1 and 2 selections can be determined directly from the data.
Fig. 7 shows the ratios, εi(cos θ•), of class 1 and class 2 events to events of all classes, as
a function of cos θ•, for events passing all other requirements for the asymmetry sample,
including cuts on xT , ξ, η and cos θ•. The small inefficiencies due to the xT requirement
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and resolution losses in the ξ cut are calculated using the Monte Carlo, as described in
the Appendix.

Finally, the expected probability distributions (27) summed over event classes, con-
voluted with the respective η resolutions and appropriately weighted with the respective
efficiencies, are normalised so that the total probability is independent of the fit parame-
ters. The resulting formula, incorporating all the corrections described above, is given in
the Appendix.

It is convenient to re-express the asymmetry at peak, A0, and the slope of the asym-
metry with energy, A′, in terms of the vector and axial-vector couplings of the Z, as in
(18), and use the following set of fit parameters:

p1 =
|gV |
|gA|

, p2 =
|gA|√

K
, p3 = B. (28)

The first two parameters have obvious physical meanings, while the last determines the
measured intensity of the IFI-induced term, compared to the single soft photon approxi-
mation. The asymmetry at peak and the slope now read:

A0 ≡ AFB(M2
Z) = 3 p2

1/(1 + p2
1)

2 + Aγ, (29)

A′ ≡ A′

FB(M2
Z) = 3 (1/p2)

2/(1 + p2
1)

2, (30)

where Aγ = 0.002 is the offset to the pole asymmetry due to the imaginary part of the
photon propagator.

7.2 Results

An unbinned maximum likelihood fit is made using the data sample from classes 1 and 2,
with the probability density function and the set of parameters described in the previous
subsection. The cut on acoplanarity is chosen to be ξ0 = 0.004, which is found to be small
enough to reject most of the FSR contribution and justify the soft photon approximation,
while simultaneously being large enough compared to the ξ resolution. The range of cos θ•

used in the fit is limited by the acceptances of relevant subdetectors to −0.92 <cos θ•<
0.92, while the upper bound for the variable η, ηmax, is limited by the range of s′ where the
asymmetry is expected to be a linear function of energy. We choose ηmax = 0.06, 0.08, 0.10
for data taken at peak−2, peak and peak+2, respectively. This upper bound for η removes
about 0.1% of the remaining events.

Table 2 presents fit results for peak data only, for peak−2 and peak+2 simultaneously,
and for all three energy points simultaneously. The errors shown in the table are statistical
only. The corresponding correlation matrices are given in table 3. No meaningful results
have been obtained for peak−2 or peak+2 data sets separately, because of the limited
statistics at these energies.

The unbinned maximum likelihood fit does not give any goodness-of-fit parameter for
judging the quality of the fit. In order to do this and to illustrate our results graphically,
we subdivide the data into 30 bins in

√
s′, and perform a single parameter maximum

likelihood fit in each bin (with B fixed to its previously determined value, B = 0.840) for
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Ecm |gV /gA| |gA|/
√

K B

Z peak 0.0830 ± 0.0125 0.6013 ± 0.0314 0.811 ± 0.129

p−2 & p+2 0.0720 ± 0.0312 0.6226 ± 0.0212 0.952 ± 0.322

All energies 0.0795 ± 0.0114 0.6165 ± 0.0177 0.840 ± 0.120

Table 2: Fit results for various energy combinations. Errors are statistical only.

the coefficient of the cos θ• term in eq. (27). The results are presented in fig. 8. One sees
that the measured asymmetry at various

√
s′ values are indeed aligned close to a straight

line, whose value at s′ = M2
Z and slope can now be determined from a minimum χ2 fit

to these points. The fitted line is also shown in fig. 8. The value of χ2/d.o.f.= 38.9/28
suggests that the fit quality is acceptable. The results of this fit:

∣

∣

∣

gV

gA

∣

∣

∣
= 0.0813 ± 0.0082,

∣

∣

∣

gA√
K

∣

∣

∣
= 0.6246 ± 0.0184 (31)

are in agreement with the results of our main fit from table 2. The smaller error in (31)
is due to the fact that the parameter B was fixed; fixing B in the maximum likelihood fit
also results in smaller errors, 0.0082 and 0.0175, respectively.

7.3 Systematic Studies

The probability density function used in the fit depends upon a number of parameters
whose values cannot be precisely fixed. The variation of fit results due to varying these
parameters within a reasonable range allows one to estimate corresponding systematic
errors.

Various sources of systematic error have been considered, and the resulting errors are
summarised in table 4, for the data taken at the Z peak only, and for all three energies
analysed simultaneously.

1. The fit was repeated with an additional cut |cos θ•| < 0.90, to check sensitivity
against the variation of the edge of the geometric acceptance. The assigned sys-
tematic error is the absolute value of the shift, wherever the shift is statistically
significant, plus a small contribution due to the uncertainty of the absolute scale of
the cos θ• measurement.
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Z peak |gV /gA| |gA|/
√

K B

|gV /gA| 1.000 -0.396 -0.698

|gA|/
√

K -0.396 1.000 0.190
B -0.698 0.190 1.000

p-2 & p+2 |gV /gA| |gA|/
√

K B

|gV /gA| 1.000 -0.186 -0.663

|gA|/
√

K -0.186 1.000 0.113
B -0.663 0.113 1.000

All energies |gV /gA| |gA|/
√

K B

|gV /gA| 1.000 -0.261 -0.694

|gA|/
√

K -0.261 1.000 0.133
B -0.694 0.133 1.000

Table 3: Correlation matrices for the three fits.

2. The parameters ση, describing the experimental resolution in the η measurement,
and determined from the data in bins of cos θ• for various classes of events, were
scaled by a factor of 1± 0.1 for each class separately. The assigned systematic error
is the largest of the absolute values of the observed shifts.

3. The calculations involving the function f−(η) are less reliable for η & ΓZ/(2MZ),
where the photon spectrum can be affected by the Z resonance lineshape. To study
the influence of this uncertainty, the fit was repeated with f−(η) set to zero for
η > 0.010. The assigned systematic error is the absolute value of the shift.

4. In order to check for possible biases due to the approximations made in deriving
eq. (18), the fit was repeated with next-to-leading terms in η taken into account.
The assigned systematic error is the absolute value of the shift.

5. Monte Carlo studies have shown that deviations from the equation s′ = s(1 − 2η)
within the angular range considered here do not exceed ±0.5%. Possible biases
were checked by replacing η with δ1 + (1 + δ2)η, where δ1,2 = ±0.5%. The assigned
systematic error is the largest of the absolute values of the shifts.

The total systematic uncertainty for each fit parameter was calculated as a quadratic
sum of the partial contributions.

The following checks have also been made:

• The fit was repeated with an additional cut to remove data in the range 0.70 <
|cos θ•| < 0.75, to exclude the edge of the barrel part of the detector.

• The acoplanarity cut ξ0 was varied by ±0.001 from its central value of 0.004.

• The upper limit of the η range was varied by ±0.010 from its central value for each
energy point.
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Z peak All energies

Variation |gV /gA| |gA|/
√

K B |gV /gA| |gA|/
√

K B

1 | cos θ•| < 0.90 0.0014 0.0000 0.054 0.0002 0.0000 0.062
2 ση 0.0005 0.0009 0.002 0.0006 0.0002 0.002
3 f−(η) tail 0.0001 0.0038 0.001 0.0006 0.0012 0.003
4 s′-dependence 0.0005 0.0053 0.004 0.0007 0.0018 0.001
5 s′ ↔ η relation 0.0001 0.0015 0.001 0.0001 0.0016 0.001

Total syst. 0.0016 0.0068 0.054 0.0011 0.0027 0.063

Stat. error 0.0125 0.0314 0.129 0.0114 0.0177 0.120

Total error 0.0126 0.0321 0.140 0.0115 0.0179 0.136

Table 4: Various contributions to the systematic errors, for the data taken at the Z peak
only, and for all three energy points.

• The number of bins in the measured η-dependence was changed by ±10 from its
default value of 50.

• In order to check the reliability of the efficiency calculation, class 3 events (defined
in subsection 5.2) were added to the analysis.

• The number of bins in the measured efficiency as a function of cos θ• was changed
by ±50 from its default value of 100.

• The cut on the missing transverse energy (24) was tightened from 0.10 to 0.05,
effectively reducing the τ pair background contribution by a factor of 2.

In all these cases, the observed shifts were well within expected statistical variations,
each of which constituted a fraction of the total statistical error, therefore no additional
systematic errors were assigned.

7.4 Determination of gV , gA and sin2 θW

Combining statistical and systematic errors, for the results at all three energy points we
obtain:

∣

∣

∣

gV

gA

∣

∣

∣
= 0.0795 ± 0.0115 (32)

∣

∣

∣

gA√
K

∣

∣

∣
= 0.6165 ± 0.0179 (33)

B = 0.840 ± 0.136. (34)

These results are essentially independent of SM assumptions and SM parameter values.
The only assumptions used are those of QED, electron-muon universality and the spin-1
nature of Z.
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For comparison, the values for the quantities (32) and (33), extracted from the ratios
Ca

ZZ/Cs
ZZ and Ca

γZ/Cs
ZZ , as measured in the conventional asymmetry analysis [3] using

the full OPAL muon data sample of 1990-1995, are:
∣

∣

∣

gV

gA

∣

∣

∣
= 0.0713 ± 0.0055 (35)

∣

∣

∣

gA√
K

∣

∣

∣
= 0.6178 ± 0.0147. (36)

These two sets of numbers are in agreement with each other, as well as with the SM
expectations 2:

∣

∣

∣

gV

gA

∣

∣

∣
= 0.0729+0.0015

−0.0043 (37)
∣

∣

∣

gA√
K

∣

∣

∣
= 0.59459+0.00047

−0.00013. (38)

The measured value of B, eq. (34), is also compatible with the expectation, B = 1, of
the single soft photon approximation.

From the measured ratio |gV /gA| we can directly determine the effective weak mixing
angle in the Standard Model (assuming that gV and gA have the same signs):

sin2 θeff
W ≡ 1

4

(

1 − gV

gA

)

= 0.2301 ± 0.0029, (39)

which is in agreement with the world average 0.23150±0.00016 [9]. In order to determine
the effective couplings gV and gA separately, we have to substitute numerical values (which
are well measured elsewhere [9] in the context of the Standard Model) into the definition
of the normalization constant K (eq. (19)). Using (20), one gets

√
K = 0.843108, which

gives the following values for the vector and axial-vector couplings of the Z boson:

|gV | = 0.0413 ± 0.0060,

|gA| = 0.520 ± 0.015. (40)

The higher precision of the conventional analysis is mostly due to its higher statistics,
since this analysis is restricted to events with accurate angular measurements. However,
in contrast with the conventional analysis, this analysis has the ability of extracting the
slope of the energy dependence of the asymmetry (and hence the parameter gA) from the
data taken at a single energy point. By comparing the errors on the parameter gA/

√
K

determined from the peak and off-peak data in Table 2 one can see that the weight
of the peak contribution to the final precision is quite significant. This information is
clearly complementary to the standard analysis, and can be combined with the results
of the latter to improve the overall precision on the relevant coefficient, Ca

γZ . The values
for these coefficients from the standard OPAL analysis [3], from muon data only, and
averaged over the three lepton flavours,

Ca
γZ(µ+µ−) = 0.232 ± 0.011, Ca

γZ(l+l−) = 0.2350 ± 0.0080, (41)

2Assuming MH = 150+850
−60 GeV, Mt = 175±5 GeV, αs = 0.119±0.002 and ∆α

(5)
h

= 0.02804±0.0065.
See [3] for details.
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can be combined with the value obtained, using eq. (16), from this analysis (Z peak only):

Ca
γZ(µ+µ−) = 0.257 ± 0.027. (42)

We obtain:

Ca
γZ(µ+µ−) = 0.236 ± 0.010, Ca

γZ(l+l−) = 0.2368 ± 0.0077, (43)

which now represent the best OPAL values for these coefficients.

8 Conclusion and outlook

We have analysed the angular dependence of muon pair production in electron-positron
annihilation at centre of mass energies near the Z peak, using various angular variables.
Our approach is novel in a number of respects. The usual procedure involves the inte-
gration over the phase space of the radiated photons, limited by a cut on acollinearity
(eq. (8)). In contrast, we measure small angular mismatches between the directions of
the two final muons, separately in the polar (η) and azimuthal (ξ) directions, and use
them to determine the influence of the initial and final state photon radiation and their
interference. Effects of final state photon radiation are removed by applying a tight cut
on the acoplanarity, ξ. The contribution of the additional asymmetric term arising as a
result of this cut is measured through its specific polar angle dependence. The variable η
is used to assess the energy of the radiated photon and to determine the variation of the
forward-backward asymmetry with the invariant mass of the muon pair, which is shown
to be linear in the vicinity of the Z peak (see fig. 8).

By using a well-behaved variable, cos θ•, instead of the polar angle of one of the muons,
and explicitly incorporating the initial-final interference into the fit, we significantly reduce
the dependence of the measured asymmetry upon the polar angle acceptance cut.

The measured values presented in equations (32–34) are directly obtained from the
data; they can be compared to those of other experiments, or to theoretical models.
By substituting the SM value for the constant K, we get results for gV , gA and the
effective weak mixing angle compatible with those obtained with the analyses based on
the assumptions of the Standard Model. The statistical precision of our result, while
obviously inferior to that of the model dependent analysis when applied to many channels,
is comparable with the precision of a conventional analysis which just uses the data from
the muon pair asymmetry (there is some loss of statistical power due to the more restrictive
requirements for events with accurate angular measurements).

We have also demonstrated that the effect of IFI is adequately described by the leading
order QED corrections, and that the asymmetry does vary greatly with the angular cut
imposed, showing that, while the correction to a conventional analysis which integrates
over all photon phase space is small, this is because of a large cancellation which requires
respectful treatment.

In experiments at proposed future electron-positron colliders [21], the collisions be-
tween the very dense bunches will produce radiation and lower the effective CM energy.
This effect is similar to ISR, but depends not only on a standard QED radiator function
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but also on the detailed bunch dynamics, which can vary from one collision to the next.
This presents a serious challenge for conventional muon pair analysis at such machines,
whereas this method is not disturbed by such a variation.

9 Appendix

The full expression for the probability density used in the unbinned likelihood fit has the
following form:

P(η, z) =
1

N εξ(|z|) εt(|z|)
∑

i

εi(z) ρi(s, η)
9

∑

j=1

Di
j(η) Hj(z) (44)

where Hj stand for different types of dependence upon z ≡cos θ•:

H1 =
3

8
(1 + z2)

H2 =
3

8
(1 + z2)

1

4z
ln

1 + z

1 − z

H3, H4 = z
1

2
ln

1 + z

1 − z
H5, H6 = z (45)

H7, H8 = z
1

4z
ln

1 + z

1 − z

H9 =
3

8
(1 + z2)

1

2
ln

1 + z

1 − z

Coefficients Di
1 — Di

9 are expressed through constants A0, A′, B, defined in eqs. (28–30),
and the ratios, Ψ1, Ψ2, Ψ3, of the convoluted functions f±:

Di
1 = 1

Di
2 = Ψi

1(η)

Di
3 = [A0 + A′(s − M2

Z)/(2s)] B Ψi
1(η)

Di
4 = −A′ B Ψi

2(η)

Di
5 = [A0 + A′(s − M2

Z)/(2s)] (46)

Di
6 = −A′ Ψi

3(η)

Di
7 = [A0 + A′(s − M2

Z)/(2s)] Ψi
1(η)

Di
8 = −A′ Ψi

2(η)

Di
9 = B Ψi

1(η)

where

Ψi
1(η) =

f−(η)

f+(η)
, Ψi

2(η) =
ηf−(η)

f+(η)
, Ψi

3(η) =
ηf+(η)

f+(η)
, (47)

with the horizontal bar denoting resolution smearing. The index i serves as a reminder
that the resolution parameter σi

η, used during the smearing, is different for different event
classes i. Note that the functions Ψi

k(η) also implicitly depend on the acoplanarity cut ξ0.
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The factor εξ(|z|) stands for the selection probability of an event with a true acopla-
narity ξtrue < ξ0 when the cut is applied on the measured acoplanarity ξ of the event.
It was determined using the MC1 sample, and is within ∼ 10−3 of unity when σξ ≪ ξ0

(which is the case for the barrel region |z| < 0.7), decreasing slightly for larger z, where
the ξ resolution is worse.

Similarly, the factor εt(|z|) takes into account the variation of efficiency with |cos θ•|
due to the cut on the missing transverse energy, eq. (24). It also was determined using
the MC1 sample, and decreases from ∼ 96% in the barrel region to ∼ 80% at the edge of
the acceptance.

εi(z) is the class-specific selection efficiency relative to the total efficiency for all classes,
including those not used in present analysis, and is determined directly from the data
(Fig. 7). So are the functions ρi(s, η) which, for a particular class i at each initial energy
point

√
s, are essentially equal to the measured η-distributions, dominated by the j = 1

term in eq. (44), with small and calculable corrections from other terms in the sum.

Finally, the normalisation constant N is determined from the condition that the total
probability is equal to 1.
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Figure 1: Distribution of selected class 1 muon pair events (as defined in subsection 5.2)
vs missing transverse momentum (data points), compared to the Monte Carlo simulation
of muon pair production (light histogram) and tau pair background (dark histogram). A
cut xT < 0.1 accepts 96% of class 1 muon pair events and removes about 75 % of the
background, which is further reduced by the tight acoplanarity cut.
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Figure 2: Distribution of class 1 events from the central region |cos θ•| < 0.2 with respect
to the variables log(1/ξ) (a) and log(1/η) (b). The positions of the peaks, shown by the
arrows, determine the experimental resolutions in ξ and η.
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Figure 3: Distribution of class 1 events in the log(1/ξ) − log(1/η) plane. Events from
the lightly shaded triangular area above the diagonal have a high ISR probability, while
the densely shaded area along the diagonal contains events with a high probability of
significant FSR and/or IFI. The horizontal dashed line represents the cut on acoplanarity
angle ξ0 = 0.004, while the vertical dashed line corresponds to η = 0.008.

26



OPAL

cosθ•

dN
/d

co
sθ

•

(a) ξ<0.004
η>0.008

d = 0.01 ± 0.07

cosθ•
dN

/d
co

sθ
•

(b) ξ<0.004
η<0.008

d = 0.09 ± 0.03

cosθ•

dN
/d

co
sθ

•

(c) ξ>0.004
η>0.008

d = − 0.18 ± 0.05

cosθ•

dN
/d

co
sθ

•

(d) all ξ
all η

d = 0.03 ± 0.03

0

200

400

600

800

1000

-1 -0.5 0 0.5 1
0

2000

4000

6000

8000

10000

12000

-1 -0.5 0 0.5 1

0

200

400

600

800

1000

1200

1400

-1 -0.5 0 0.5 1
0

2000

4000

6000

8000

10000

12000

14000

-1 -0.5 0 0.5 1

Figure 4: cos θ•-distributions for the class 1 and class 2 events at Z peak, integrated over
separate areas of the log(1/ξ)− log(1/η) plane from fig. 3, together with fit results using
the function (25): a) upper left quadrant, where the asymmetry is dominated by the linear
term (d ≃ 0); b) upper right quadrant, where the IFI-induced asymmetry is significant
and positive (d > 0); c) lower left quadrant, where the IFI-induced asymmetry is large
and negative (d < 0); d) the whole plane, where the IFI contribution is compatible with
zero as a result of the cancellation.
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Figure 5: Differential asymmetry defined in eq. (26) for the class 1 and class 2 events at
Z peak, corresponding to four different areas of the log(1/ξ)− log(1/η) plane from fig. 3:
upper left quadrant (a), where the asymmetry is dominated by the linear term; upper right
quadrant (b), where the positive IFI-induced asymmetry is dominant; lower left quadrant
(c), where the IFI-induced asymmetry is large and negative; and the whole plane (d),
with no significant asymmetry of any kind. Data points with error bars represent OPAL
data, the solid histogram shows the MC1 sample without the IFI contribution, while the
dashed histogram shows the MC2 sample which contains IFI.
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Figure 6: Typical dependence of the ratios Ψ1(η) = f−(η)/f+(η) (a), Ψ2(η) =
ηf−(η)/f+(η) (b) and Ψ3(η) = ηf+(η)/f+(η) (c) on η before (dashed lines) and after
(solid lines) convoluting each of the functions with the η resolution. In this example, the
acoplanarity cut is ξ0 = 0.004, while the η resolution parameter is ση = 0.002.
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