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1. Introduction

Tt has been recently shown by two of us that a cylindrical D 2-brane can be supported
against collapse by the angular m om entum generated by electric and m agnetic B om-
Infeld eds [1]. These elds can be Interpreted as som e num ber gy of dissolved TTA
superstrings and som e num ber per unit length oy of dissolved D O-branes. T he angular
mom entum J is proportional to gy and the energy ism inin ized for a cylinder radius
proportional to P % - Som ew hat surprisingly, this con guration preserves 1/4 of the
supersym m etry of the TTA M inkow skivacuum , hence the nam e supertule. A sdiscussed
in [1], and extended here to the case of N > 1 D 2-branes', one can also consider a
com bined system consisting of a supertube and D O<harged strings w ith given total
string and D 0 charges Q ; and Q (, respectively. Tn this case supersym m etry does not
x the angularm om entum but instead in plies the upperbound ¥ R 00072, w ith
the radius of an N —tin eswound supertube given by R? = 7 H .
T he gravitational back—+eaction was not considered in [1], but when this is taken
Into account a supertube becom es a source for the TIA supergravity elds that govem
the low-energy lim it of the closed string sector of TTA superstring theory. A lthough

10 rto a single N -wound D 2-brane; for the purposes of this paper both situations are equivalent.



this source is a distributional one (in the lm it of weak string coupling), onem ight still
expect it to generate a solution of TTA supergravity that isnon-singular everyw here aw ay
from the source. Such a solution should carry the sam e string and D O-drane charges
as the D 2-brane supertube, as well as the sam e angular m om entum , and preserve the
sam e 1/4 of the supersym m etry of the TTA vacuum . The ain of this paper is to exhibit
this solution, which we call the supergravity supertube, and to study its properties.

A s we shall see, the supergravity solution accurately reproduces the features of
the D 2-brane supertube described above. In particular, the bound on the angular
mom entum arises from the requirem ent of causality: if J exceeds the bound then
the K illing vector eld associated with the angular m om entum becom es tin elke in
a region near the supertube; since its orbits are closed this i plies the existence of
closad tim elike curves (CTCs). This isa glalviolation of causality that cannot cause
unphysical behaviour of any local probe (as we verify for a D Odrane probe) but it can
and does cause unphysical behaviour for D 2-brane probes, due to the appearance of a
ghost—excitation on the D 2-brane worlkdvolum e.

Since the D 2-brane supertube is a supersym m etric solition one m ight expect the
foroe betw een parallel or concentric? supertubes to vanish, allow ing them to be super-
posad. Thisiscertainly the case for the D O-charged superstrings to w hich the supertube
reduces In the lin it of zero angularm om entum , and it has been argued in the context
of m atrix theory [2] that it is also true of supertubes. A s any force between parallel
supertubes is tranan itted by the TTA supergravity elds, it would seem necessary to
consider the supergravity supertube solution to verify this, and this is one m otivation
for the present work. In fact, we shall exhibit fultiube’ solutions representing a
num ber of parallel supertubes w ith arbitrary locations and radii, which in plies the
existence of a ‘ho-force’ condition between parallel supertuibes. By considering D 0 and
TT1A string probes in this background we also establish a ‘ho-force condition’ between
supertubes and strings and D O-Jbranes.

A snoted in [1], the D 2-orane supertube is T -dualto a helical rotating TIR D -string
(the S-dualofwhich isT dualto a helical rotating TTA string). T hese (1/4)-supersym m etric
rotating helical strings have since been studied in two recent papers [3, 4]. A super—
gravity solution representing the asym ptotic eldsofa IIB rotating helical D string was
also presented In [4]. In fact, this solution is T dual to a six-din ensional version of the
supertube; we shall com m ent further on lowerdin ensional supertubes in a concluding
section. W e should also m ention that a TTA supergravity solution for a D 2-brane tube
w ith D Odbranesand TIA string chargesw as constructed previously by one of the authors
[5]; however, as already noted in [5]this solution does not describe a supertube because

2T here is no topologicaldistinction betw een these cases in a space of din ension 4.



it has no angularm om entum °.

2.W orldvolum e Supertubes

In this section we will review the results of [1] that are relevant to this paper, with
a slight extension to allow form ultipl/-wound D 2-branes. T he conventions used here
di er slightly from those of [1].

T he starting point is a D 2-brane in the ten-dim ensionalM inkow skivacuum of TTA
superstring theory. W e w rite the M inkow skim etric as

ds?y = df+ dx®+ drf+ r*d’?+ ds([E°); (2.1)

where ’ " + 2 . The induced m etric g on a cylindrical D 2-brane of constant ra—
diusR ,at a xed position in ]E6,a]jgned w ith the x-direction and w ith cross-section
param etrized by ' , is

ds’(g)= dt+ dx®+ R%d’'?; (22)

where we have denti ed the worldvolime tine with t. We will allow for a tinme-
Independent electric eld E in the x-direction, and a tin e<independent m agnetic eld
B, s0 the Bom-Infeld 2-fom is

F=Edt"dx+Bdx"d": (2.3)

T he num ber of supersym m etries preserved by any brane con guration in a given
Spacetin e is the num ber of independent K illing spinors of the background for which

= (24)

where isthem atrix appearing in the  sym m etry’ transform ation of the w orldvolum e
Spoinors, its particular form depending on the background and on the type ofbrane. The
Spacetin e M Inkow skim etrdic (2.1) m ay be written as

ds?, = &+ &+ e+ e e + & (2.5)
for orthonom all-fom s
e" = dt; e = dx; e =dr; e =rd’; f=d?2; (26)

where £ g are Cartesian coordinates on E°. Let t; xs5 r;  and £ ,g be the ten
constant tangent—space D irac m atrices associated to the above basis of 1-form s, and let

3The results we present here suggest that the solution of [5] should be interpreted as a sinple
superposition of an unstable D 2-brane tube w ith D O<charged strings.



\ be the constantm atrix ofunit square w hich anticom m utesw ith allthem . TheK illing

spinors in this basis take the form = M, o,where 4 is a constant 32-com ponent
Spoinor and
1
M S o 2.7)

For the D 2-brane con guration of interest here we have

1
=P Tt E  \+tB ¢\ ; (2.8)
det(g+ F)
w here o D
det(g+ F)= 1 E°+ B?: (2.9)
T he condition for supersymm etry (2.4) thus becom es
h P i
M, B £\ det(g+F)0+M ’\[tx \+E]0=O: (2.10)

Since this equation m ust be satis ed for allvalies of ’ , both term s m ust vanish inde-
pendently. The vanishing of the second tem requiresthatE = land  \ o= 0-
W ithout loss of generality we choose E = 1 and

= \ 0~ 0: (211)

Now the rstterm in (2.10) vanishes dentically ifB = 0, in which case we have 1/2
supersymm etry. W e shall therefore assum e that B 6 0. In this case vanishing of the
rst term requires  \ ¢ = o and sign(B ) = 1. Again without loss of generality
we shallassum e that B > 0 and

t\No0= o0° (212)

The two conditions (2.11) and (2.12) on o are com patble and In ply preservation of
1/4 supersymm etry. They are respectively associated with string charge along the
x-direction and w ith D OJorane charge.

U nder the conditions above, the D 2dorane Lagrangian (for unit surface tension) is

P
L = R2 (1 E2)+ B?: (2.13)
Themom entum conjugate to E takes the form

QL R°E
—— - ; (2.14)
QE R2(1 E?)+ B?

and the corresponding H am iltonian density is

p
H E L=R%Y (2+R2)B2+R2?): (215)



T he integrals I I
1 1
s 2— d’ and do 2— d’ B (2.106)

are (foran appropriate choice ofunits) the ITA string conserved charge and the D O-dbrane
conserved charge per unit length carried by the tube. For a supersym m etric con gura-—
tion E = 1 and B is constant, so from (2.14) and (2.16) we deduce that

o
R= 3pj: (2.17)

T he tension or energy per unit length of the tube is In tum
I
1
= — d’H: (2.18)
2
T his is of course m inim ized at the supersym m etric radius (2.17), forwhich we nd
= $J+ InJ: (219)

T his result show s that the positive energies associated to D 2-brane tension and rotation
are exactly cancelled by the negative binding energy of the strings and D Obranes w ith
the D 2-brane, and hence that the supertube is a genuine bound state. Aswe shall see
later, this has som e counter-intuitive conssquences.

T he crossed electric and m agnetic elds generate a Poynting 2-vectordensity w ith

J, = B (2.20)

as its only non-zero com ponent. The IntegralofJ » over ’ yields an angularm om entum
per unit length
J = g% (2.21)

along the axis of the cylinder. It is this angular m om entum that supports the tube
against collapse at the constant radius (2.17). In ten dim ensions, the angular m om en—
tum 2-form L m ay have rank atm ost 8. This rank is 2 for the supertube, J being the
only non—zero skew eigenvalie of L. Note also that the angular m om entum selects a
2-plane in the 8-din ensional space transverse to the strings, w here the cross-section of
the cylinder lies.

At this point we wish to consider a slight generalization of the results of [1] to
allow for the possibilty of N coincident D 2Jorane tubes, or a single D 2-brane supertube
wound N tin es around the ’ <ircle, or com binations of coincident and m ultipky-w ound
D 2-brane tubes. In any of these cases the local eld theory on the D 2-branes w ill be



a U (N ) gauge theory *. The results obtained in this paper will depend only on the
total num ber N of D 2-branes, so we need not distinguish between these possibilities;
for convenience we shall consider the con guration of N D 2-branesasa single N -tim es-
wound D 2-brane. In thiscase and B m ust be prom oted tom atrices in the Lie algebra

of U (N ), and their relationship to the string and D Odbrane charges becom es
I I

1 1
s 2— da" Tr ; do 2— d’” TrB : (2.22)
Since only their com ponents along the identity contribute, we shall assum e that only
these com ponents are non—zero and we shall still denote them by and B . W e then
have

E=N ; qo=NB : (223)

In the case that a single D 2-brane winds N tin es around the ’ <circle these relations
are sin ply understood asdue to the e ective length of the D 2-brane now being 2 RN .
T he Ham iltonian density is now

P
H=NR ' (2+R?)(B2+R2?); (224)

P
which isstillm inIn ized by R = j B j. However, In temm s of the chargeswe now nd

b —
R = :ﬂquj; (225)
N
and sim ilarly for the angularm om entum :
J = E;—q()j: (2.26)

N ote how ever that the tension is still given by (2.19).

Asdiscussed In [1]fortheN = 1 case, the quantity D ;Q 3N isactually an upper
lound on the angular m om entum of a supersymm etric state with given string and
D O-brane charges Qs and Q. For

:QSQOj
N

E| 227)

there exist fn ixed’ con gurations consisting of an N -tin es-wound D 2-brane supertube
w ith charges gy and qy such that J = g,p=N , together w ith parallel TTA strings and

4provided that the radius of the tube ismuch larger than the string scale. A round the string scale
a com plex eld coupling to the U (1) factor arising from strings connecting opposite points on the '
circle m ay becom e tachyonic, In which case the tube would decay to the vacuum w ith the em ission of
strings, D O-branes and m assless closed string m odes carrying the angularm om entum ; this is possible
because the circle param eterized by ’ is topologically trivial in spacetin e.



D O-branes (and possbly D O-charged ITIA strings) with charges ¢ and ¢ such that
Qs= g+ qg and Qs = ¢ + qg Since the D O-branes and strings carry no angular m o—
m entum , the com bined systam possesses totalangularm om entum gsp=N ,which is less
than them axin alvalue allowed by the bound. By transferring charge from the strings
and D O-branes to the supertube one can increase the angularm om entum at xed Q g
and xed Q 4,whilkem aintaining the 1/4 supersym m etry. H ow ever, this process can only
be continued untilg, = Q¢ and ¢y = Q. If one were to continue beyond this point,
obtaining a con guration with T3> 07, then g and qg would have di erent signs,
and their associated supersym m etry pro fctors would have no com m on elgenspinors.
T hus we conclide that the angular m cm entum of a supersym m etric state of TIA
string theory w ith charges Q s and Q ¢ is bounded from above as in (2.27). Since the
supersym m etric radius of the supertube is always
rR?= 23, (2.28)
N

the bound on the angularm om entum m ay be rew ritten as

J? R*PQo3: (229)

3. Supergravity Supertubes

O ur starting point w illbe a solution of D = 11 supergravity found in [6] that describes
the intersection of two rotating M 5Jranes and an M 2-brane, w ith an M -wave along
the string intersection. A Ithough the generic solution of this type preserves only 1/8 of
the 32 supersym m etries of the M —theory vacuum , the special case in which we set to
zero the M 5-dorane charges presarves 1/4 supersymm etry. Them etric and 4-form  eld
strength of this solution are (in our conventions)
h i
dsf, = u = dt + dz” + K (dt+ dz)* + 2 (dt+ dz)A + dx* + U dy dy;

F, =dt*"du '~dx"dz dt+ dz)*dx~d (U 'a): (3.1)

Here y = fy'g are Cartesian coordinates on E®. The m em brane extends along the x—
and z-directions, and the wave propagates along the z-direction. T he fiinctions U and
K and thel-form A depend only on y¥. U and K are harm onic on E® and are associated
w ith the m em brane and the wave, respectively. A determ ines the angular m om entum

of the solution, and its eld strength dA satis es the sourcefree M axw ell-like equation

d gdA = 0; (32)



where g is the Hodge dual operator on E®. The reduction to ten din ensions of this
solution along the z-direction yiedsa (1/4)-supersym m etric TIA supergravity solition:

ds?, = U W Y@t Af+U Wax*+ viPdy dy;

B,= U'dt A)"dx+dt"dx;

C,= V'@t A)+dt; (3.3)
Cy= UMt rdx"A;

e =U 1:2V3:4;

where V. = 1+ K, and B, and C, are the Neveu-Schwarz and Ram ond-R am ond
potentials, respectively, w ith gauge-nvariant eld strengths

H3=dB2; F2=dC1; G4=dC3 dBZ/\Cll (3.4)

W e have chosen a gauge for the potentials B,, C; and C; such that they all vanish at
In nity ifU and V are chosen such that them etric at in nity isthe D =10 M inkow ski
m etric In canonical C artesian coordinates. W e note here for future use that

G,=U v '@dt 2A)"dx"dA: (35)

The K illing spinors of the solution (3.3) follow from those In eleven dim ensions
given In [6], but we have also veri ed them directly in D =10 w ith the conventions of
[7]. They take a sin ple form when the m etric is w ritten as

ds?, = &'+ et + et (36)
w ith the orthonom all-fom s
ef=vu v ¥ dt a); &=U "vHiax; e =viiayt: (3.7)
In this basis, the K illing spinors becom e
-y v (3.8)

where ( isa constant 32-com ponent spinor sub fct to the constraints (2.11) and (2.12).
A sm entioned before, these two constraints preserve 1/4 supersymm etry and are those
associated with a TTA string charge aligned with the x-axis and D Odorane charge, as
required for a supertube, although we stillm ust specify the functionsU and V and the
1-form A before we can m ake this denti cation.



To m otivate the choice for these functions, consider rst the solution describing
D O-charged fundam ental strings located at a point y = ¥y 1n E® and aligned w ith the
x-axis. This solution is given by (3.3) with

U=1+ &6 ; V=1+ % ;

6 ¥ v 3 6 ¥ v 73

where is the volum e of the unit 7-sohere. The constant Q ¢ is the string charge,
while Q ¢ is the D Odborane charge per unit length; this can be seen from their asym ptotic
contrbutions to their respective eld strengthsH ; and F, . (T he signs of these charges

are JIpped by taking t'! tand/orx ! X.)

A=20; (3.9)

pr~—--

Supertube
(with x-direction suppressed)

Figure 1: Coordinates on E°.

Now consider distributing the charged strings hom ogeneously on a circle of radius
R i a 2-plkne n E®. Let r;’ be polar coordiates on this plne, and  the radial
coordinate on the orthogonal 6-plane (see gure 1). Them etric then takes the fom

ds?E%)= dr* + r’d’?+d ?+ *d Z; (310)

where d é is the SO (6)=nvariant m etric on the unit 5-sphere. The solution for this
con guration isstillas n (3.3) with A = 0,but with the ham onic functions obtained
by linear superposition on the circle of those in (3.9), that is,

D1 22 1
U )= 1+ —9— 4 g
6 2 2 ¥ ooy3
i1 2 1
1+ :Qsj_ d = (311)
6 2 (r’+ 2+ R? 2Rrcos )



and sim ilarly forV with Q ¢ replaced by Q o. Thus

D.J2+ 2+ R2)+ R

U=1+ ;
6 5
2+ 24+ R2)Y 4+ 2R2?
Voo 1+ %Oj( 5) ; (312)
w here q
(r; )=  (2+ 2+ R2)y 4R’r?: (313)

N ote that (by construction) these functions satisfy Laplace’s equation on E® w ith D rac
delta-like sources w ith support on ther = R; = 0 circle. In addition, they have the
sam e asym ptotic behaviour as those in (39) In thelmit ! 1 ,where = Fjisthe
radial coordnate n E®. Hence the constants Q sand Qy In (312) are again the string
and D 0 charges.

Thesolution (33)withA = Oand U andV asin (3.12) displays a tubular structure
but possesses no angular m om entum , and the eld strength G, sourced by D 2-branes
vanishes. To describe the supertube we m ust incorporate the angularm om entum , w ith
the source of rotation being located at the tube. W e know that the asym ptotic form
m ust be

1L ij yj i
2 5 dy ; (3.14)
w here the constants L j; = L;; are the com ponents of the angularm om entum 2-form

L. Asexplained above, L m ust have rank 2 for the supertube, in which case wem ay
w rite the asym ptotic form as

A r’d’ ; (3.15)

where J isa constant angularm om entum , the one non—zero skew -eigenvalue of .. The
calculation for the exact form of A sourced by the supertube is essentially the sam e
as that giving the vector potential created by a circular electric current of intensity
proportional to J=R ?, that is,

Z
1 J 2 cos
A= ——urd’ d 5 (3106)
6 2R 0 (r’+ 2+ R2%2 2Rrcos )
The result is
(r+ ?+RYC
A=J da’ ; (317)

P E
w hich has the correct asym ptotic behaviour (3.15). A swe shall see In the next section,
this choice of A autom atically generates the correct D 2— elds.

T he supertube solution is thusgiven by (33)with U and V asn (3.12) and A as
In (317);we shallanalyze its properties in detailbelow . H owever, we w ish to note here

10



that evaluation of the ADM integral for brane tension [8] (in the sam e conventions as
for the angularm om entum ) yields the tube tension

= DI+ PoJs (3.18)

exactly as for the D 2-dorane supertube (no factors of the string coupling constant appear
In this form ula because the asym ptotic value of the dilaton vanishes for our chosen
solution).

H aving com pleted our construction of the supertube solution, we close this section
by presenting its generalization to a fm ultiztube’ solution representing N parallel tubes
w ith arbitrary locations, radiiand charges. T hese are easily constructed because of the
Iinearity of the hamm onicity conditionson U and V and of the M axwell equation forA .
T he general expression is

(n) . 7 2 .
U21+XN Qs (¥ »F+RI + RiF x7

5 T . 5 . I, /7
n=1 (¥ w»F+RZ)Y 4R2F =x7F
X g ' + R2)"+ 2R27 j
V=14 Q6O p wF R o F 1%1:2 ; (319)
n-1 (¥ w#+RZ)Y 4RZ¥F z7
X gm (3 3 22
¥ %I+ R;7)
A = S h - [0 w)dv (v y)dul:
n-1 (¥ wmF+R2Y 4RZF =x7

Here u and v are C artesian coordinates on the 2-plane selected by the angularm om en—
tum . A1l the tubes are aligned along the x-direction and all their cross—sections are
parallel to each other. The n—th tube has radiusR,, and is centred at

¥ = (fn ;Nn): (un 1Vn ;Nn) (3.20)

in E®. It carries string and D 0 charges Q " and 0 én), respectively, and angular m o—
mentum J®). T he total charges and angularm om entum are the sum s of those carried
by each tube. C learly, by setting som e of the radii and angular m om enta to zero, we
obtain a solution representing a superposition of D O-charged strings and supertubes.

T he existence of this m ultitube solution show s that there is no force between sta-
tionary parallel supertubes® . N ote that, as faras the supergravity solution is concemed,
wo (orm ore) tubes can intersect each other, as described by the solution above when
the radii and centres are chosen appropriately.

SNor between supertubes and strings or D O-branes. W e shall con m and elaborate on this in
section 5.

11



4.D 2-D ipole Structure and C losed T Im elike C urves

W ehave now found a (1/4)-supersym m etric solution of ITA supergravity that carriesall
the charges required for its interpretation as the solution sourced by a supertube source.
A Ithough it also digplays the appropriate tubular structure, we have not yet denti ed
clearly the presence of a D 2-brane. Even though there cannot be any D 2-brane charge,
wewould stillexpect the eldsoftheD 2-dorane supertube to carry a non-zero D 2-brane
dipole m om ent determ ined by the size of the tube. T here is certainly a local D 2-brane
charge distridbution because the electric com ponents of G4 are non—zero. Speci cally,
for A given by (3.17),we have, asym ptotically,

Gy=d I dterdx~d! 4+ iir; (41)
47 2 (r2+ 2y T
where the dots stand for subleading term s In an expansion in 1= for ! 1 . The

Integralof @G overany 6-sphere at in nity vanishes, show ing that there isno D 2-brane
net charge. H owever, the expression (4.1) has the correct form to be interpreted as the
dipole eld sourced by a cylindrical D 2-orane aligned w ith the x-axis; the scale of the
dipole m om ent is set by the angular m om entum ,

2 J: (42)
In tum, the dipole m om ent m ust be related to the size of the source as
j.j NR*; (43)

where R is the radius of the D 2-tube and N the number of D 2-branes. This can
be sen as follows. The dipole m om ent of N gpherical D 2-doranes of radius R scales
as jj NR® [9]. For a cylindrical D 2-brane of length a this must be replaced by
i3 N aR?.In the present situation a is in nite, so , in equations (4.2) and (4.3) is
actually a dipole m om ent per unit length. T hus, we conclude that

R? fj—j ; (4.4)
in agreem entw ith the w orldvolum e analysis of section 2. T his agreem ent could bem ade
m ore precise by xing the proportionality factors in the relations above. Instead, we
now tum to analyzing the solition near the tube, which will yied the sam e result and
provide additional inform ation on the detailed structure of the supertube, in particular
conceming the presence and the num ber of D 2-branes.

12



To thise ect,we perform a change of coordinates which is convenient to focus on
the region close to the tube:

gq
r= (fcos"+R)2 £

= tsin " (4.5)
T his has been designed so that, in the new coordinates, = 2Rf. In the lin it
=R 1 (4.6)

one approaches the tube at r = R, = 0. Note that this can be achieved by either

xing R and m aking £ an all, or by xing £ and m aking R large. In the rst case one
focuses, for a given solution, on the region near the tube. In the second, the radius of
the tube grow s very large while we ram ain at a nite distance from it. In both cases
the tube looks planar. In this Iim it the m etric becom es

ds*= U 'v (@t kdz2j+ U 'v'Pdx?
+ VR a2+ drf+ 22dP e +Psin®d 2 (4.7)

where we have de ned 2= R’ , s0 2 is a coordinate denti ed with period 2 R . The
three functions in the m etric above are

=2 R
U=l+pi+ ;
5 ¢
=2 R
V=l+pL+ ;
5 ¢f°

. J=2 R?
= - 4 .
5 415 ’

w here the dots stand for subleading f-dependent term s In the lim it (46). Here ¢ is
the volum e of the unit 6-sphere. The gauge potentials are as in (3.3) with U and V
given above and A = kd2.

The solution in the form (4.7) clearly exhibits the properties expected from the
planar lim it close to the supertube. The angular m om entum becom es linear m om en—
tum along the tangent direction to the circle, that is, along 2. The SO (6)-symm etry
associated to rotations in E° is enhanced to SO (7): the "~coordinate in the near-tube
m etric com bines w ith the coordinates on the 5—sphere to yield the m etric on a round
6-sohere. The functions U and V are sourced by delta-functions at £ = 0, hence the
gauge potentials B, and C; correspond to charge densitiesQ ;=2 R and Q (=2 R along
the 2-direction. T he fourfom eld strength

G,= UMW 'dtrdx”dz2” dk (4.9)
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corresponds to the chargedensity of N = 7 #R? D 2-branesatf = 0, in agream entw ith
(228). To see this, consider a 7-disc that is an all enough to intersect the D 2—circle at
only onepoint (see gure2) and com pute the uxof G through its 6-gphere boundary.

T he result is precisely 7

V3

N 2 = —: 410
. G RZ ( )
A s the radius of the 6-sphere increases, the 7-disc w ill eventually intersect the D 2—circle

at a second point and the above integral then vanishes, as happens for any 6-sphere at
. . 6
n niy °.

Supertube

SG

F igure 2: T he little 7-disc intersects the supertube (suppressing the x-direction ) at one point,
hence the ux of G4 through its boundary (the little S°) is non—zero. O n the contrary, the
large disc intersects the supertube at two points which correspond to local D 2-brane charge
densities of opposite sign, hence the ux through the large S ¢ vanishes; the sam e happens for
any 6-sphere at In nity.

W e have now identi ed all the elam ents present in the supertube solution. T here
are four independent param eters, say Q5, Qo9, R and N (or J). So far, the solution
displays all the features of the worldvolum e supertube except for the bound (229). W e
shallnow show that this arises by dem anding that there be no causality violations in
the supertube spacetin e.

5Tt ollow s from the considerationsabove thatthelin itR ! 1 with xed chargedensities results in
a planar con guration ofD 2-branesw ith stringsand D O-branesdistrbbuted on it, and w ith m om entum
in the direction transverse to the strings. T his preserves the sam e am ount of supersym m etries as the
supertube. To our know ledge, this con guration has not been previously considered.
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Consider the K illing vector eld * @=@Q’ ,which is associated to rotations on the
2-plane selected by the angularm om entum . Tts norm sjuared is

¥f=qg.=U v ¥ uv £=? ; (411)

w here

(+ 2+R)r
2 ° ’

The nom of ‘ is always positive for Jarge enough , regardless of the value of J , and if

f=J

(4.12)

thebound (2.29) issatis ed then ‘ ram ains spacelike everyw here. H owever, if J exceeds
the bound then ‘ becom es tim elike su ciently close to the tube. To see this, we write
out (4.11) as

U ly 17242

I3 = 36 2 10 36 2 P+ 6 C(Rojt RIJ ©+ T+ R+ R

Do0F @ R+ rRP+RYH+ 22+ R?) 2(2 R*)P*+ 3rR?

+

+ Y e@r® R+ 1R +4°@?+ R+ B

IR*P Qo] F)E+R*+ 2)yr* (413)

+

A Il the term s in this expression are non-negative except for the Jast one, which becom es
negative precisely when the bound (2.29) isviolated. In addition, in the near-tube lim it

r! R; 10 (4.14)

we nd
2 h
7f= - R’DQo] & + ::: (4.15)
- _ . N _ e o e 4
T Y S
w here the dots represent termm s which vanish in the lin it (4.14). T hus the supergravity
supertube has CTCs if and only if it is overxotating’. These CTCs are nhaked’ in

the sense that there is no event horizon to prevent them from being deform ed to pass

through any point of the spacetin e. Neither can they be rem oved by a change of
fram e, since the causal structure is unchanged by any non-singular conform al rescaling
of the m etric. It should be appreciated that the surface de ned by 77 = 0 (present
when J exceeds the bound) is not singular; it is not even a coordinate singularity. Tn
particular, the m etric signature does not change on this surface despite the fact that
r #F < 0 there are two comm uting tin elike K illing vector elds. In fact, the only
physical sihqularity of the solution (3.3) isatr= R; = 0, where both 77 and the
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dilaton diverge. T hus, the overxotating supertube spacetim e is locally as physical as
the underyotating one, w ith a m etric that is sihgular only at the location of the tube.
The CTCs of the overyotating supertube m etric have a very sinple origin in
eleven din ensions. The TTA supergravity supertube lifts to the solution (3.1) of eleven-—
din ensional supergravity from which we started, with U and V asn (312) and A as
n (317). If the eleventh coordinate z is not periodically denti ed then this eleven—
din ensional spacetin ehasno CTC s,butC T C sare created by the denti cationsneeded
for com pacti cation on a circle if J exceeds the bound (2.29). To see this, consider
an orbit of the vector ed = @, + @,, orrealconstant . W hen z is periodically
denti ed this curve will be closad for som e dense set of values of . Tt will also be

tin elike if § ¥ < 0, which will happen if
‘y2v f +UV r*<0: (4.16)

This inequality can be satis ed orreal only ifr? < U v !f?,but this is precisely
the condition that ‘ be tim elke. T hus, there w ill be closed tin elke orbits of in the
D =11 spacetin e precisely when the closed orbits of / becom e tim elike In the D =10
Spacetin e. However, from the eleven-dim ensional pergpective, these CT C s arise from
periodic denti cation and can therefore be rem oved by passing to the universalcovering
space. An analogous phenom enon was described in [10], where it was shown that the
CTCs of overrotating supersymm etriic  ve-dim ensional black holes are rem oved by
lifting the solution to ten din ensions and passing to the universal covering space.

5. Brane Probes: Supersym m etry

W e shall now exam Ine the behaviour of brane probes in the supertube spacetin e.
Speci cally, we shall consider D OJbranes, strings and D 2-branes. W e shall rst show
that the 1/4 supersymm etry of the background is preserved by stationary D O-brane,
TTA —string and D 2-supertube probes (when suitably aligned).
The D =10 spacetin e m etric (3.3) can be written as
ds?y = e+ &+ g+ ee + £ (51)
for orthonom al 1-fom s

oy P2y 1 d  A);
&= Uy P2yl gy .
- 14

& =viidr; (52)
e = viird’ ;
ea= V1=4d a .
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Here f %g are C artesian coordinates on the E° space orthogonal to the 2-plane selected
by the angularm om entum . The K illing soinors In this basis take the form

=U "'v M, o; (5.3)

where  isa constant 32-com ponent spinor sub Fct to the constraints (2.11) and (2.12).
Recall that we Introduced the matrices +; x; 7 ;L 29; vand M in section 2.
R ecall too that the num ber of supersym m etries pressrved by any brane con guration
n a given spacetin e is the num ber of independent K illing spinors of the background
verifying (24).

For a stationary D Odbrane in the gauge In which worldline tim e is denti ed with t
we have

DO= t \=* (54)

Fora ITA string in the sam e tem poralgauge and , additionally, w ith the string coordinate
denti ed with x, we have

string = =\ ¢ (55)

These o -m atrices comm ute and the K illing spinors of the background are simul-
taneous elgenstates of o and gping With unit egenvalue, so the inclusion of these
D OJbrane and ITA string probes does not break any supersymm etries that are pre-
served by the background. In particular, this m eans that a D O-brane or a string can
be placed arbitrarily close to the supertube w ithout experiencing any force. This re—
sult is counter-intuitive because one would expect the D 2—cylinder in this situation to
behave approxim ately lke a planar D 2-brane, and hence to exert an attractive force
on D Obranes and strings. The explanation is presum ably that the supertube is In
fact a true bound state of strings, D O-branes and cylindrical D 2-branes, in which the
D 2-branes behave genuinely di erently as com pared to their free counterparts’.

Now we consider a probe consisting of a supertube itself, that is, a D 2-orane of
cylindrical topology w ith string and D O-dbrane charges. T he analysis is very sin ilar to
that of section 2 except that the Bom-Tnfeld eld strength F must now be replaced by
the background-covariant eld strength F = F B, . As before we choose F to have
the form

F=Edt"dx+Bdx"d": (56)

T his yields
F=Edt"dx+ Bdx"d’; (5.7)

"T he neutron considered as a bound state of quarks is analogous since the attractive froe betw een
neutrons ism uch weaker than the force between its constitutive quarks.
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where
E=E+U ' 1; B=B +U 'f: (5.8)

In the orthonom albasis (5.3) we have
F=FEe"&+Be&e ; (59)

w here
E=UE; B=Uuv ¥r 1@ fE): (5.10)

In tem s of these vardiables, p, takes the sam e form asin at space:

1
p2= P————"— w tE + \+B ¢\ ; (511)
det(g+ F )
where o D
det+ F)= 1 E?+ B?: (5.12)

T he condition for supersymm etry (2.4) thus becom es

h P 1
M, B £\ det(g+F)O+M o b(\-l‘E O=O! (5.13)

Both term sm ust vanish independently. G iven the constraints (2.11) and (2.12) satis ed
by ¢, the vanishing of the second termm requires that E = 1. Equivalently,

E=U ': (5.14)

The rsttem In (5.13) then vanishes dentically if B 0, which using (5.14) is equiv—
alent to B 0. In the B = 0 case we have 1/2 supersymm etry, o we chall assum e
that

B>0: (515)

6. Brane P robes: Energetics

W e now tum to the energetics of probes in the supertube spacetine. Our ain is to
uncover any e ects of the presence of CTC s on brane probes, so in this section we
shall assum e that the bound (2.29) is violated. W e shall see that the gblal causality
violation due to the CTC s causes a ocal nstability on the worldvolum e of extended
probes such as a D 2-brane tube, the reason for thisbeing of course that the probe itself
is non-local. On the contrary, we would not expect any unphysical e ect on a local
probe such as a D O-brane, and we shall begin by verifying this.
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T he action for a D 0-brane of unit m ass is
Z Z
p
Spo = e detg Cq: (6.1)

Tn the gaugew here the worldline tin e is denti ed w ith twe nd the Lagrangian density

q
L= v 1 267 UW2(g.,"2+v))+V '@ £7) 1; 62)

w here the overdot indicates di erentiation w ith respect to t, £ isgiven by (4.12), and

vV g% X = fxiry g (6.3)
Note thatv* 0.

The Lagrangian (6.2) appears to lead to unphysical behaviour if g » becom es neg-
ative. However, an expansion in pow ers of the velocities yields

1 1
L = 1+§Ur2'_2+ EUv =252 4 : (6.4)

The rst term ism nus the (unit) positive m ass of the D Obrane. A s expected from
the supersymm etry of a stationary D O-brane, all the velocity—independent potential
term s cancel. In addition, the kinetic energy is positive-de nite regardless of the sign
of g+ (and this ram ains true to all orders in the velocity). T here is therefore nothing
to prevent a D O-brane from entering the region where 7 < 0, and its dynam ics in
this region is perfectly physical, at least locally. The sam e applies to x-aligned TTA
superstrings; again this is not surprising because this is a probe that is localin ' .

W e now tum to the supertube itself. T his is a m ore signi cant test of the geom e-
try because one could In agine buiding up the source of the supergravity solution by
accretion of concentric D 2-brane supertubes. W e begin by considering a general tubu-
lar D 2-brane aligned w ith the background. For our purposes we m ay assum e that the
wordvolim e scalar eldsr and @ areuniform in x,but we shall also assum e, initially,
that they are tin e=independent (as will be the case for a supertube, since this is a
D 2-brane tube at am Inimum of the potential energy).

T he action

R
Spo = e det(g+ F ) C3+C1"F) (65)
in the physical gauge (as used above) yields the Lagrangian density

P
L= U Y v 2 B)+U !B fE¥+V !B fE) B : (6.6)
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The variable conjugate to E  is

QL QL UYr’E+ U 72v B fE)f

— = ——=p VAR (6.7)
QE  @E Vri2U 2 E)+U !B fEf
T he Ham iltonian density isde ned as
H E L= E L+ (1 UY: (638)

BandE=U',x?

For supersym m etric con gurations we have L
H= +8B (69)

fora supertube. Neither norB is invariant under background gauge transform ations.

However, their worldspace integrals are gauge-invariant °. G iven the assum ption of
x-independence, we can dentify the TTA string charge g; and the D 0Jbrane charge per
unit length gy carried by the supertube probe w ith the integralsof and B over ’ , as

In (2.16). Forconstant and B we therefore have

=qgs; B=gq: (6.10)
T he probe supertube tension is then seen to be
probe = I T P ¢ (6.11)
Setting E= U ! in (6.7) we deduce that
B=r" (6.12)
at the supertube radius, and hence that
r= P (6.13)

T he tension and the radius of a supertube probe in the supertube spacetin e are there—
fore exactly as in a M Inkow skibackground (with N = 1). Note that this result holds
regardless of whether or not CT C s are present.

T hus, supersymm etry places no restriction on the possble radius of a probe su-
pertube In a supergravity supertube background. H owever, the supertube m inin izes

SN ote that both B (see equation (5.15)) and (from its de nition (6.7)) are positive for super-
symm etric con gurations.

W e should consider only tin e-ndependent gauge transform ations because the Ham iltonian is not
expected to be Invariant under tin e-dependent gauge transform ations. W e should also consider only
x-independent gauge transform ations to be consistent w ith our assum ption of x—-independence.
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the energy for given g5 and ¢y (and hence is stable) only if there are no ghost exci-
tations of the D 2-brane, that is, excitations corresponding in the quantum theory to
negative nom states. T hese states are present for som e choice of gy and ¢y whenever
g+ < 0. To establish this, we now allow for tin edependent r and ¢, and we expand
the Lagrangian density in powers of

V=r+ P (6.14)

We nd '’
1
L=Lo+ oM v+ ; (6.15)

where L is the Lagrangian density of (6.6), and

B?+ 20 fB + U vr?
r/ _—
U =2y 14 det(g+ F )

M = ; (6.16)

w hich reduces to
B?+ 20 B + U 'vr
- U 1V 1=2B (6.17)
for a supertube. In both of these expressions for M , the denom nator is positive, and
0 is the num erator as Iong asg-» > 0, but the factor

B%2+ 20 fB +U vl (6.18)

becom es negative for som e choices of B and r (and hence ¢ and g for a supertube)
whenever g.» < 0.

Note that the supertube does not becom e tachyonic; its tension continues to be
given by (6.11). A tachyon instability leads to runaway behaviour in which the kinetic
energy increases at the expense of potentialenergy. T he instability here is instead due to
the possibility of negative kinetic energy, characteristic of a ghost . This instability
indicates that it is not physically possible to construct a supertube spacetin e w ith
naked CTCs starting from M inkow ski space. One m ight in agine assam bling such a
Spacetin e by accretion from in nity of ‘supertube shells’ carrying in nitesim al fractions
of charges and angularm cm entum . W hen a nite m acroscopic fraction of charges and

19T he calculation here is sin ilar to the one perform ed in [11]but the interpretation is di erent.

1A s representations of the Poincaregroup, a “achyon’ isa particle w ith spacelike energy-m om entum
vector, and hence negative m ass-squared (corresponding in the quantum theory to an excitation about
a vacuum that is a local maxinum of the energy rather than a localm ininum ). A “host’ is a
particle w ith non-spacelike energy-m om entum vector but negative energy; at the level of the particle
Lagrangian (or, m ore generally, brane Lagrangian, as discussed here) this corresponds to negative
m ass.
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angular m om entum have been accum ulated, it is fully justi ed to treat the next shell
asa probe In the background generated by the rest. T he instability on this probe when
the bound (2.29) is violated signals that this procedure m ust be physically forbidden
beyond the bound (2.29).

7. D iscussion

W e have found the exact TIA supergravity solution corresponding to a source provided
by the D 2-borane supertube found in [1]. W e have also found m ultitube solutions,
which show s that parallel supertubes exert no force on each other, and we have con—

m ed this by show ing that when (suitably aligned) stationary D O-dorane, TTA —string
and D 2-supertube probes are introduced into the background, they preserve all super-
symm etries of the background. This provides con m ation from supergravity of the
m atrix m odel results of [2] for m ultisupertubes.

T he supertube spacetin e reproduces w ith rem arkable accuracy the worldvolum e
analysis of [1]. It carries the appropriate charges as m easured by surface integrals at
In nity: string charge Q , D 0 charge per unit length Q y and angularm om entum J . Tts
tension is = Pj+ Pojasin [1], and it also preserves the sam e eight supercharges
(1/4 of those of the TIA M inkow ski vacuum ). It is shgular exactly on a cylindrical
surface of radius R (but is regular everyw here else). The only m odi cation relative to
the analysis in [1] com es from considering the possibility that the D 2orane w inds N
tin es around the tube. Taking this into account, all the form ulas for the supertube are
precisely reproduced. The radius is related to the angularm om entum as ¥ j= NR?2.
Finally, the requirem ent that there are no closad tim elke curves In the supertube
Spacetin e In poses the bound T3 PO 3N on the angularm om entum , which is the
sam e as in [1], once m ultiw inding is allowed for.

If J jexceads the bound above then theK illing vector eld /, associated to rotations
in the plane of the angularm om entum , becom es tim elike su ciently close to the tube
region, which leads to a globalviolation of causality. A though thishasno e ect on the
Jocalphysics of D Odorane or TIA string probes, it causes an instability of D 2-supertube
probes due to the fact that the supertube tension no longer m inin izes the energy for

xed D0 and string charges. This is m ade possible by the appearance of a negative-
nom state (a ghost) on a supertube in the region where * becom es tim elikke. The
global violation of causality that this produces (due to the occurrence of C T C s) is thus
m anifested by a local pathology on supertube probes (which is possible because these
probes are them selves non-local). T his constitutes evidence that a globally causality—
violating supertube spacetin e cannot be physically assembled by starting with at

22



space and continuously bringing In from in nity ‘supertube shells’ with in nitesim al
fractions of charge and angularm om entum .

It is sraightforw ard to m odify the TTIA supergravity supertube solution to one that
provides the elds for a supertube in a K aluzaXK lein vacuum spacetin e of the form
E™ Mg .,n 4,withM, , a compactR icci atm aniold. Them etric then takes
the form

dsf, = U 'v Fdt Af+ U 'viTPdx?
+VIPErt+ At d Y+ 2d 2+ dSTM oo )]t (71)

n

For even n the solutions involve elliptic functions, and therefore are som ew hat aw kward
to work with. For odd n, instead, they take sin ple form s. Forn = 7 (a supertube in
eight din ensions),

U=1+ ;
4 ¢ 3
Jg
whilke forn = 5,
U=1+ 23 ;
2 3
J r?
A = d’ : (7.3)

2 3 (r?+ 2+ R?+ )

V isasU with Q¢ replaced by Qp,and is again given by (3.13). In all cases it is
possible to verify that the absence of CT C s im plies the bound (2.29).

The m axin ally rotating six-dim ensional (n = 5) solution is in fact dual to the
solution for a helical D string constructed in [4]. One of the two m ethods applied
In [4] to the construction of this solution (the one bassd on the chiral nullm odel) is
essentially equivalent to the one em ployed in this paper. The other approach, which
starts from the neutral rotating black hole and sub fcts it to several transform ations,
does not lead to supertubes in din ensions higher than six. Tnstead, it can be seen to
result in lled-in cylinders, that is, continuous distributions of concentrical tubes inside
a cylinder. T hese solutionsdo not possess C T C s either provided that J does not exceed
the bound.

T his six-din ensional supertube is particularly interesting when the com pact four-
din ensional space is K 3. A Ithough at weak string coupling the supertube source is
distrdbutional, and hence singular, one m ight expect it to be non-singular at strong
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coupling. To exam ine this possibility we should look for solutions of the six-dim ensional
supergravity/Y angM ills theory that govems the low -energy lin it ofthe T *~com pacti ed
S-dual heterotic string theory. T he distrbbutional D 2-brane of the TTA theory now ap-—
pearsasa non-singular 2-branew ith a m agneticm onopole core. C onceivably, a tubelike
con guration of this m onopole 2-brane can be supported against collapse by angular
mom entum in just such a way that its e ective worldvolum e description isasa D =6
supertube (that is, a d2-brane supertube of ia “little’ string theory). In this case, one
m Ight hope to nd a “full’ non-singular supergravity/SYM solution that reproduces the
elds of the dualized TIA supergravity tube (after the rede nition of elds required by

the TTIA /heterotic duality) but com pleted in the interior by a solution w ith the ‘SYM —
supertube’ source. The case of the heterotic dyonic instanton [12] provides a m odel
for this kind of non-singular com pletion of a rotating brane solution of supergravity,
although in that case the angularm om entum is xed by the charges rather than jast
being bounded by them .

In view of these connections, it appears that the supergravity supertube spacetim e
studied here will eventually take its place In a m ore general theory of supergravity
solutions for supersym m etric sources supported by angular m om entum .

A cknow ledgm ents

W e thank Jerom e G auntlett and C arlos H erdeiro for discussions. R E . acknow ledges
partial support from UPV grant 063.310-EB187/98and CICYT AEN99-0315.D M .is
supported by a PPARC fellow ship.

R eferences

[l1D. Mateos and P. K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) ,
hep-th/0103030.

[2]1 D .Bak and K . Lee, Noncom m utative Supersym m etric Tubes, Phys. Lett. B 509 (2001)
168.

[3] JH .Choand P.0Oh, Super D -H elix, hep—th/0105095.

[4] 0. Lunin and S. D. M athur, Metric of the Multiply W ound Rotating String,
hep-th/0105136.

[5] R .Em paran, Tubular Branes in F luxbranes, hep—th/0105062.

[6] J.P.Gauntlett,R.C .M yersand P.K . Townsend, Supersym m etry of R otating B ranes,
Phys.Rev.D 59 (1999) 025001.

24



[7] E.Bergshoe ,R .Kallosh,T.T.Ort n,D.Roestand A .Van Proeyen,New Form ulations
of D =10 Supersymm etry and D 8-0 8 Dom ain W alls, hep-th/0103233.

[B] S.Deserand M .Soldate, G ravitational Energy in Spacesw ith C om pacti ed D in ensions,
Nucl. Phys.B 311 (1989) 739;
K .S.Stelle, BPS Branes In Supergravity, hep—th/9803116.

O] R.C .M yers, D electricBranes, J. H igh Energy Phys. 12 (1999) 022.

[10] C.A .R.Herdeiro, Special Properties of F ivedin ensional BPS Rotating B lack Hols,
Nucl Phys. B 582 (2000) 363.

[11] C .V .Johnson,A .W .Peetand J.Polchinski, G auge T heory and the E xcision ofR epulson
Singularities, Phys. Rev.D 61 (2000) 086001.

[l12] E.Eyras, P.K .Townsend and M . Zam aklar, T he H eterotic D yonic Instanton, J. H igh
Energy Phys. 05 (2001) 046.

25



