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1. Introduction

It has been recently shown by two of us that a cylindrical D2-brane can be supported

against collapse by the angular momentum generated by electric and magnetic Born-

Infeld fields [1]. These fields can be interpreted as some number qs of dissolved IIA

superstrings and some number per unit length q0 of dissolved D0-branes. The angular

momentum J is proportional to q0qs and the energy is minimized for a cylinder radius

proportional to
√

q0qs. Somewhat surprisingly, this configuration preserves 1/4 of the

supersymmetry of the IIA Minkowski vacuum, hence the name supertube. As discussed

in [1], and extended here to the case of N > 1 D2-branes1, one can also consider a

combined system consisting of a supertube and D0-charged strings with given total

string and D0 charges Qs and Q0, respectively. In this case supersymmetry does not

fix the angular momentum but instead implies the upper bound |J | ≤ R|QsQ0|1/2, with

the radius of an N -times-wound supertube given by R2 = |J |/N .

The gravitational back-reaction was not considered in [1], but when this is taken

into account a supertube becomes a source for the IIA supergravity fields that govern

the low-energy limit of the closed string sector of IIA superstring theory. Although

this source is a distributional one (in the limit of weak string coupling), one might still

expect it to generate a solution of IIA supergravity that is non-singular everywhere away

from the source. Such a solution should carry the same string and D0-brane charges

as the D2-brane supertube, as well as the same angular momentum, and preserve the

same 1/4 of the supersymmetry of the IIA vacuum. The aim of this paper is to exhibit

this solution, which we call the supergravity supertube, and to study its properties.

As we shall see, the supergravity solution accurately reproduces the features of

the D2-brane supertube described above. In particular, the bound on the angular

momentum arises from the requirement of causality: if J exceeds the bound then

the Killing vector field associated with the angular momentum becomes timelike in

a region near the supertube; since its orbits are closed this implies the existence of

1Or to a single N -wound D2-brane; for the purposes of this paper both situations are equivalent.
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closed timelike curves (CTCs). This is a global violation of causality that cannot cause

unphysical behaviour of any local probe (as we verify for a D0-brane probe) but it can

and does cause unphysical behaviour for D2-brane probes, due to the appearance of a

ghost-excitation on the D2-brane worldvolume.

Since the D2-brane supertube is a supersymmetric solution one might expect the

force between parallel or concentric2 supertubes to vanish, allowing them to be super-

posed. This is certainly the case for the D0-charged superstrings to which the supertube

reduces in the limit of zero angular momentum, and it has been argued in the context

of matrix theory [2] that it is also true of supertubes. As any force between parallel

supertubes is transmitted by the IIA supergravity fields, it would seem necessary to

consider the supergravity supertube solution to verify this, and this is one motivation

for the present work. In fact, we shall exhibit ‘multi-tube’ solutions representing a

number of parallel supertubes with arbitrary locations and radii, which implies the

existence of a ‘no-force’ condition between parallel supertubes. By considering D0 and

IIA string probes in this background we also establish a ‘no-force condition’ between

supertubes and strings and D0-branes.

As noted in [1], the D2-brane supertube is T-dual to a helical rotating IIB D-string

(the S-dual of which is T-dual to a helical rotating IIA string). These (1/4)-supersymmetric

rotating helical strings have since been studied in two recent papers [3, 4]. A super-

gravity solution representing the asymptotic fields of a IIB rotating helical D-string was

also presented in [4]. In fact, this solution is T-dual to a six-dimensional version of the

supertube; we shall comment further on lower-dimensional supertubes in a concluding

section. We should also mention that a IIA supergravity solution for a D2-brane tube

with D0-branes and IIA string charges was constructed previously by one of the authors

[5]; however, as already noted in [5] this solution does not describe a supertube because

it has no angular momentum3.

2. Worldvolume Supertubes

In this section we will review the results of [1] that are relevant to this paper, with

a slight extension to allow for multiply-wound D2-branes. The conventions used here

differ slightly from those of [1].

The starting point is a D2-brane in the ten-dimensional Minkowski vacuum of IIA

2There is no topological distinction between these cases in a space of dimension ≥ 4.
3The results we present here suggest that the solution of [5] should be interpreted as a simple

superposition of an unstable D2-brane tube with D0-charged strings.
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superstring theory. We write the Minkowski metric as

ds2
10 = −dt2 + dx2 + dr2 + r2 dϕ2 + ds2(6) , (2.1)

where ϕ ∼ ϕ+2π. The induced metric g on a cylindrical D2-brane of constant radius R,

at a fixed position in 6, aligned with the x-direction and with cross-section parametrized

by ϕ, is

ds2(g) = −dt2 + dx2 + R2 dϕ2 , (2.2)

where we have identified the worldvolume time with t. We will allow for a time-

independent electric field E in the x-direction, and a time-independent magnetic field

B, so the Born-Infeld 2-form is

F = E dt ∧ dx + B dx ∧ dϕ . (2.3)

The number of supersymmetries preserved by any brane configuration in a given

spacetime is the number of independent Killing spinors ε of the background for which

Γε = ε , (2.4)

where Γ is the matrix appearing in the ‘κ-symmetry’ transformation of the worldvolume

spinors, its particular form depending on the background and on the type of brane. The

spacetime Minkowski metric (2.1) may be written as

ds2
10 = −etet + exex + erer + eϕeϕ + eaea (2.5)

for orthonormal 1-forms

et = dt , ex = dx , er = dr , eϕ = r dϕ , ea = dρa , (2.6)

where {ρa} are Cartesian coordinates on 6. Let Γt, Γx, Γr, Γϕ and {Γa} be the ten

constant tangent-space Dirac matrices associated to the above basis of 1-forms, and let

Γ\ be the constant matrix of unit square which anticommutes with all them. The Killing

spinors in this basis take the form ε = M+ ε0, where ε0 is a constant 32-component

spinor and

M± ≡ exp

(
±1

2
ϕ Γrϕ

)
. (2.7)

For the D2-brane configuration of interest here we have

Γ =
1√− det(g + F )

(
Γtxϕ + E ΓϕΓ\ + B ΓtΓ\

)
, (2.8)
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where √
− det(g + F ) =

√
1− E2 + B2 . (2.9)

The condition for supersymmetry (2.4) thus becomes

M+

[
B ΓtΓ\ −

√
− det(g + F )

]
ε0 + M− ΓϕΓ\ [ΓtxΓ\ + E] ε0 = 0 . (2.10)

Since this equation must be satisfied for all values of ϕ, both terms must vanish inde-

pendently. The vanishing of the second term requires that E = ±1 and ΓtxΓ\ε0 = ∓ε0.

Without loss of generality we choose E = 1 and

ΓtxΓ\ε0 = −ε0 . (2.11)

Now the first term in (2.10) vanishes identically if B = 0, in which case we have 1/2

supersymmetry. We shall therefore assume that B 6= 0. In this case vanishing of the

first term requires ΓtΓ\ε0 = ±ε0 and sign(B) = ±1. Again without loss of generality

we shall assume that B > 0 and

ΓtΓ\ε0 = ε0 . (2.12)

The two conditions (2.11) and (2.12) on ε0 are compatible and imply preservation of

1/4 supersymmetry. They are respectively associated with string charge along the

x-direction and with D0-brane charge.

Under the conditions above, the D2-brane Lagrangian (for unit surface tension) is

L = −
√

R2 (1−E2) + B2 . (2.13)

The momentum conjugate to E takes the form

Π ≡ ∂L
∂E

=
R2 E√

R2 (1− E2) + B2
, (2.14)

and the corresponding Hamiltonian density is

H ≡ ΠE − L = R−1
√

(Π2 + R2) (B2 + R2) . (2.15)

The integrals

qs ≡ 1

2π

∮
dϕ Π and q0 ≡ 1

2π

∮
dϕ B (2.16)

are (for an appropriate choice of units) the IIA string conserved charge and the D0-brane

conserved charge per unit length carried by the tube. For a supersymmetric configura-

tion E = 1 and B is constant, so from (2.14) and (2.16) we deduce that

R =
√
|qsq0| . (2.17)
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The tension or energy per unit length of the tube is in turn

τ =
1

2π

∮
dϕH . (2.18)

This is of course minimized at the supersymmetric radius (2.17), for which we find

τ = |qs|+ |q0| . (2.19)

This result shows that the positive energies associated to D2-brane tension and rotation

are exactly cancelled by the negative binding energy of the strings and D0-branes with

the D2-brane, and hence that the supertube is a genuine bound state. As we shall see

later, this has some counter-intuitive consequences.

The crossed electric and magnetic fields generate a Poynting 2-vector-density with

Jϕ = ΠB (2.20)

as its only non-zero component. The integral of Jϕ over ϕ yields an angular momentum

per unit length

J = qsq0 (2.21)

along the axis of the cylinder. It is this angular momentum that supports the tube

against collapse at the constant radius (2.17). In ten dimensions, the angular momen-

tum 2-form L may have rank at most 8. This rank is 2 for the supertube, J being the

only non-zero skew-eigenvalue of L. Note also that the angular momentum selects a

2-plane in the 8-dimensional space transverse to the strings, where the cross-section of

the cylinder lies.

At this point we wish to consider a slight generalization of the results of [1] to

allow for the possibilty of N coincident D2-brane tubes, or a single D2-brane supertube

wound N times around the ϕ-circle, or combinations of coincident and multiply-wound

D2-brane tubes. In any of these cases the local field theory on the D2-branes will be

a U(N) gauge theory 4. The results obtained in this paper will depend only on the

total number N of D2-branes, so we need not distinguish between these possibilities;

for convenience we shall consider the configuration of N D2-branes as a single N -times-

wound D2-brane. In this case Π and B must be promoted to matrices in the Lie algebra

of U(N), and their relationship to the string and D0-brane charges becomes

qs ≡ 1

2π

∮
dϕ TrΠ , q0 ≡ 1

2π

∮
dϕ Tr B . (2.22)

4Provided that the radius of the tube is much larger than the string scale. Around the string scale
a complex field coupling to the U(1) factor arising from strings connecting opposite points on the ϕ

circle may become tachyonic, in which case the tube would decay to the vacuum with the emission of
strings, D0-branes and massless closed string modes carrying the angular momentum; this is possible
because the circle parameterized by ϕ is topologically trivial in spacetime.
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Since only their components along the identity contribute, we shall assume that only

these components are non-zero and we shall still denote them by Π and B. We then

have

qs = NΠ , q0 = NB . (2.23)

In the case that a single D2-brane winds N times around the ϕ-circle these relations

are simply understood as due to the effective length of the D2-brane now being 2πRN .

The Hamiltonian density is now

H = N R−1
√

(Π2 + R2) (B2 + R2) , (2.24)

which is still minimized by R =
√|ΠB|. However, in terms of the charges we now find

R =

√|qsq0|
N

, (2.25)

and similarly for the angular momentum:

J =
|qsq0|
N

. (2.26)

Note however that the tension is still given by (2.19).

As discussed in [1] for the N = 1 case, the quantity |QsQ0|/N is actually an upper

bound on the angular momentum of a supersymmetric state with given string and

D0-brane charges Qs and Q0. For

|J | ≤ |QsQ0|
N

(2.27)

there exist ‘mixed’ configurations consisting of an N -times-wound D2-brane supertube

with charges qs and q0 such that J = qsq0/N , together with parallel IIA strings and

D0-branes (and possibly D0-charged IIA strings) with charges q′s and q′0 such that

Qs = qs + q′s and Qs = q0 + q′0. Since the D0-branes and strings carry no angular mo-

mentum, the combined system possesses total angular momentum qsq0/N , which is less

than the maximal value allowed by the bound. By transferring charge from the strings

and D0-branes to the supertube one can increase the angular momentum at fixed Q0

and fixed Qs, while maintaining the 1/4 supersymmetry. However, this process can only

be continued until qs = Qs and q0 = Q0. If one were to continue beyond this point,

obtaining a configuration with |qs| > |Qs|, then qs and q′s would have different signs,

and their associated supersymmetry projectors would have no common eigenspinors.

Thus we conclude that the angular momentum of a supersymmetric state of IIA

string theory with charges Qs and Q0 is bounded from above as in (2.27). Since the

supersymmetric radius of the supertube is always

R2 =
|J |
N

, (2.28)
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the bound on the angular momentum may be rewritten as

J2 ≤ R2 |QsQ0| . (2.29)

3. Supergravity Supertubes

Our starting point will be a solution of D=11 supergravity found in [6] that describes

the intersection of two rotating M5-branes and an M2-brane, with an M-wave along

the string intersection. Although the generic solution of this type preserves only 1/8 of

the 32 supersymmetries of the M-theory vacuum, the special case in which we set to

zero the M5-brane charges preserves 1/4 supersymmetry. The metric and 4-form field

strength of this solution are (in our conventions)

ds2
11 = U−2/3

[
− dt2 + dz2 + K (dt + dz)2 + 2 (dt + dz) A + dx2

]
+ U1/3d~y · d~y ,

F4 = dt ∧ dU−1 ∧ dx ∧ dz − (dt + dz) ∧ dx ∧ d (U−1A) . (3.1)

Here ~y = {yi} are Cartesian coordinates on 8. The membrane extends along the x- and

z-directions, and the wave propagates along the z-direction. The functions U and K

and the 1-form A depend only on ~y. U and K are harmonic on 8 and are associated

with the membrane and the wave, respectively. A determines the angular momentum

of the solution, and its field strength dA satisfies the source-free Maxwell-like equation

d ∗8 dA = 0 , (3.2)

where ∗8 is the Hodge dual operator on 8. The reduction to ten dimensions of this

solution along the z-direction yields a (1/4)-supersymmetric IIA supergravity solution:

ds2
10 = −U−1V −1/2 (dt− A)2 + U−1V 1/2 dx2 + V 1/2 d~y · d~y ,

B2 = −U−1 (dt−A) ∧ dx + dt ∧ dx ,

C1 = −V −1 (dt−A) + dt , (3.3)

C3 = −U−1dt ∧ dx ∧A ,

eφ = U−1/2V 3/4 ,

where V = 1 + K, and B2 and Cp are the Neveu-Schwarz and Ramond-Ramond

potentials, respectively, with gauge-invariant field strengths

H3 = dB2 , F2 = dC1 , G4 = dC3 − dB2 ∧ C1 . (3.4)
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We have chosen a gauge for the potentials B2, C1 and C3 such that they all vanish at

infinity if U and V are chosen such that the metric at infinity is the D=10 Minkowski

metric in canonical Cartesian coordinates. We note here for future use that

G4 = U−1V −1 (dt− A) ∧ dx ∧ dA . (3.5)

The Killing spinors of the solution (3.3) follow from those in eleven dimensions

given in [6], but we have also verified them directly in D=10 with the conventions of

[7]. They take a simple form when the metric is written as

ds2
10 = −etet + exex + eiei , (3.6)

with the orthonormal 1-forms

et = U−1/2V −1/4 (dt−A) , ex = U−1/2V 1/4 dx , ei = V 1/4 dyi . (3.7)

In this basis, the Killing spinors become

ε = U−1/4V −1/8 ε0 , (3.8)

where ε0 is a constant 32-component spinor subject to the constraints (2.11) and (2.12).

As mentioned before, these two constraints preserve 1/4 supersymmetry and are those

associated with a IIA string charge aligned with the x-axis and D0-brane charge, as

required for a supertube, although we still must specify the functions U and V and the

1-form A before we can make this identification.

To motivate the choice for these functions, consider first the solution describing

D0-charged fundamental strings located at a point ~y = ~yα in 8 and aligned with the

x-axis. This solution is given by (3.3) with

U = 1 +
|Qs|

6Ω |~y − ~yα|6
, V = 1 +

|Q0|
6Ω |~y − ~yα|6

, A = 0 , (3.9)

where Ω is the volume of the unit 7-sphere. The constant Qs is the string charge,

while Q0 is the D0-brane charge per unit length; this can be seen from their asymptotic

contributions to their respective field strengths H3 and F2 . (The signs of these charges

are flipped by taking t → −t and/or x → −x.)

Now consider distributing the charged strings homogeneously on a circle of radius

R in a 2-plane in 8. Let r, ϕ be polar coordinates on this plane, and ρ the radial

coordinate on the orthogonal 6-plane (see figure 1). The metric then takes the form

ds2(8) = dr2 + r2dϕ2 + dρ2 + ρ2dΩ2
5 , (3.10)
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ϕ

ρ

r

R

Supertube
(with x-direction suppressed)

Figure 1: Coordinates on 8.

where dΩ2
5 is the SO(6)-invariant metric on the unit 5-sphere. The solution for this

configuration is still as in (3.3) with A = 0, but with the harmonic functions obtained

by linear superposition on the circle of those in (3.9), that is,

U(r, ρ) = 1 +
|Qs|
6Ω

1

2π

∫ 2π

0

dα
1

|~y − ~yα|6

= 1 +
|Qs|
6Ω

1

2π

∫ 2π

0

dα
1

(r2 + ρ2 + R2 − 2Rr cos α)3 , (3.11)

and similarly for V with Qs replaced by Q0. Thus

U = 1 +
|Qs|
6Ω

(r2 + ρ2 + R2)
2
+ 2R2r2

Σ5
,

V = 1 +
|Q0|
6Ω

(r2 + ρ2 + R2)
2
+ 2R2r2

Σ5
, (3.12)

where

Σ(r, ρ) =

√
(r2 + ρ2 + R2)2 − 4R2r2 . (3.13)

Note that (by construction) these functions satisfy Laplace’s equation on 8 with Dirac

delta-like sources with support on the r = R, ρ = 0 circle. In addition, they have the

same asymptotic behaviour as those in (3.9) in the limit λ →∞, where λ = |~y| is the

radial coordinate in 8. Hence the constants Qs and Q0 in (3.12) are again the string

and D0 charges.
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The solution (3.3) with A = 0 and U and V as in (3.12) displays a tubular structure

but possesses no angular momentum, and the field strength G4 sourced by D2-branes

vanishes. To describe the supertube we must incorporate the angular momentum, with

the source of rotation being located at the tube. We know that the asymptotic form

must be

A ∼ 1

2

Lij yj

Ω λ8
dyi , (3.14)

where the constants Lij = −Lji are the components of the angular momentum 2-form

L. As explained above, L must have rank 2 for the supertube, in which case we may

write the asymptotic form as

A ∼ J

2Ωλ8
r2dϕ , (3.15)

where J is a constant angular momentum, the one non-zero skew-eigenvalue of L. The

calculation for the exact form of A sourced by the supertube is essentially the same

as that giving the vector potential created by a circular electric current of intensity

proportional to J/R2, that is,

A =
1

6Ω

J

2πR
rdϕ

∫ 2π

0

dα
cos α

(r2 + ρ2 + R2 − 2Rr cos α)3 . (3.16)

The result is

A = J
(r2 + ρ2 + R2) r2

2Ω Σ5
dϕ , (3.17)

which has the correct asymptotic behaviour (3.15). As we shall see in the next section,

this choice of A automatically generates the correct D2-fields.

The supertube solution is thus given by (3.3) with U and V as in (3.12) and A as

in (3.17); we shall analyze its properties in detail below. However, we wish to note here

that evaluation of the ADM integral for brane tension [8] (in the same conventions as

for the angular momentum) yields the tube tension

τ = |Qs|+ |Q0| , (3.18)

exactly as for the D2-brane supertube (no factors of the string coupling constant appear

in this formula because the asymptotic value of the dilaton vanishes for our chosen

solution).

Having completed our construction of the supertube solution, we close this section

by presenting its generalization to a ‘multi-tube’ solution representing N parallel tubes

with arbitrary locations, radii and charges. These are easily constructed because of the

linearity of the harmonicity conditions on U and V and of the Maxwell equation for A.
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The general expression is

U = 1 +

N∑
n=1

Q
(n)
s

6Ω

(|~y − ~yn|2 + R2
n)

2
+ 2R2

n|~r − ~rn|2[
(|~y − ~yn|2 + R2

n)2 − 4R2
n|~r − ~rn|2

]5/2
,

V = 1 +

N∑
n=1

Q
(n)
0

6Ω

(|~y − ~yn|2 + R2
n)

2
+ 2R2

n|~r − ~rn|2[
(|~y − ~yn|2 + R2

n)2 − 4R2
n|~r − ~rn|2

]5/2
, (3.19)

A =

N∑
n=1

J (n)

2Ω

(|~y − ~yn|2 + R2
n)

2

[
(|~y − ~yn|2 + R2

n)2 − 4R2
n|~r − ~rn|2

]5/2
[(u− un)dv − (v − vn)du] .

Here u and v are Cartesian coordinates on the 2-plane selected by the angular momen-

tum. All the tubes are aligned along the x-direction and all their cross-sections are

parallel to each other. The n-th tube has radius Rn and is centred at

~y = (~rn, ~ρn) = (un, vn, ~ρn) (3.20)

in 8. It carries string and D0 charges Q
(n)
s and Q

(n)
0 , respectively, and angular mo-

mentum J (n). The total charges and angular momentum are the sums of those carried

by each tube. Clearly, by setting some of the radii and angular momenta to zero, we

obtain a solution representing a superposition of D0-charged strings and supertubes.

The existence of this multitube solution shows that there is no force between sta-

tionary parallel supertubes 5. Note that, as far as the supergravity solution is concerned,

two (or more) tubes can intersect each other, as described by the solution above when

the radii and centres are chosen appropriately.

4. D2-Dipole Structure and Closed Timelike Curves

We have now found a (1/4)-supersymmetric solution of IIA supergravity that carries all

the charges required for its interpretation as the solution sourced by a supertube source.

Although it also displays the appropriate tubular structure, we have not yet identified

clearly the presence of a D2-brane. Even though there cannot be any D2-brane charge,

we would still expect the fields of the D2-brane supertube to carry a non-zero D2-brane

dipole moment determined by the size of the tube. There is certainly a local D2-brane

charge distribution because the electric components of G4 are non-zero. Specifically,

5Nor between supertubes and strings or D0-branes. We shall confirm and elaborate on this in
section 5.
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for A given by (3.17), we have, asymptotically,

G4 = d

[
Jr2

2Ω(r2 + ρ2)4
dt ∧ dx ∧ dϕ

]
+ . . . , (4.1)

where the dots stand for subleading terms in an expansion in 1/λ for λ → ∞. The

integral of ∗G4 over any 6-sphere at infinity vanishes, showing that there is no D2-brane

net charge. However, the expression (4.1) has the correct form to be interpreted as the

dipole field sourced by a cylindrical D2-brane aligned with the x-axis; the scale of the

dipole moment is set by the angular momentum,

µ2 ∼ J . (4.2)

In turn, the dipole moment must be related to the size of the source as

|µ2 | ∼ NR2 , (4.3)

where R is the radius of the D2-tube and N the number of D2-branes. This can

be seen as follows. The dipole moment of N spherical D2-branes of radius R scales

as |µ| ∼ NR3 [9]. For a cylindrical D2-brane of length a this must be replaced by

|µ| ∼ NaR2. In the present situation a is infinite, so µ2 in equations (4.2) and (4.3) is

actually a dipole moment per unit length. Thus, we conclude that

R2 ∼ |J |
N

, (4.4)

in agreement with the worldvolume analysis of section 2. This agreement could be made

more precise by fixing the proportionality factors in the relations above. Instead, we

now turn to analyzing the solution near the tube, which will yield the same result and

provide additional information on the detailed structure of the supertube, in particular

concerning the presence and the number of D2-branes.

To this effect, we perform a change of coordinates which is convenient to focus on

the region close to the tube:

r =

√
(r̂ cos θ̂ + R)2 − r̂2 ,

ρ = r̂ sin θ̂ . (4.5)

This has been designed so that, in the new coordinates, Σ = 2Rr̂. In the limit

r̂/R � 1 (4.6)

one approaches the tube at r = R, ρ = 0. Note that this can be achieved by either

fixing R and making r̂ small, or by fixing r̂ and making R large. In the first case one
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focuses, for a given solution, on the region near the tube. In the second, the radius of

the tube grows very large while we remain at a finite distance from it. In both cases

the tube looks planar. In this limit the metric becomes

ds2 = −U−1V −1/2 (dt− k dẑ)2 + U−1V 1/2 dx2

+V 1/2
(
dẑ2 + dr̂2 + r̂2dθ̂2 + +r̂2 sin2 θ̂dΩ2

5

)
, (4.7)

where we have defined ẑ = Rϕ, so ẑ is a coordinate identified with period 2πR. The

three functions in the metric above are

U = 1 +
|Qs|/2πR

5Ω6 r̂5
+ · · · ,

V = 1 +
|Q0|/2πR

5Ω6 r̂5
+ · · · , (4.8)

k =
J/2πR2

5Ω6 r̂5
+ · · · ,

where the dots stand for subleading r̂-dependent terms in the limit (4.6). Here Ω6 is

the volume of the unit 6-sphere. The gauge potentials are as in (3.3) with U and V

given above and A = kdẑ.

The solution in the form (4.7) clearly exhibits the properties expected from the

planar limit close to the supertube. The angular momentum becomes linear momen-

tum along the tangent direction to the circle, that is, along ẑ. The SO(6)-symmetry

associated to rotations in 6 is enhanced to SO(7): the θ̂-coordinate in the near-tube

metric combines with the coordinates on the 5-sphere to yield the metric on a round

6-sphere. The functions U and V are sourced by delta-functions at r̂ = 0, hence the

gauge potentials B2 and C1 correspond to charge densities Qs/2πR and Q0/2πR along

the ẑ-direction. The four-form field strength

G4 = −U−1V −1 dt ∧ dx ∧ dẑ ∧ dk (4.9)

corresponds to the charge density of N = |J |/R2 D2-branes at r̂ = 0, in agreement with

(2.28). To see this, consider a 7-disc that is small enough to intersect the D2-circle at

only one point (see figure 2) and compute the flux of ∗G4 through its 6-sphere boundary.

The result is precisely

N ≡
∣∣∣∣2π

∫
S6

∗G4

∣∣∣∣ =
|J |
R2

. (4.10)

As the radius of the 6-sphere increases, the 7-disc will eventually intersect the D2-circle

at a second point and the above integral then vanishes, as happens for any 6-sphere at

infinity 6.
6It follows from the considerations above that the limit R →∞ with fixed charge densities results in

13



S
6

S
6

Supertube

Figure 2: The little 7-disc intersects the supertube (suppressing the x-direction) at one point,
hence the flux of ∗G4 through its boundary (the little S6) is non-zero. On the contrary, the
large disc intersects the supertube at two points which correspond to local D2-brane charge
densities of opposite sign, hence the flux through the large S6 vanishes; the same happens for
any 6-sphere at infinity.

We have now identified all the elements present in the supertube solution. There

are four independent parameters, say Qs, Q0, R and N (or J). So far, the solution

displays all the features of the worldvolume supertube except for the bound (2.29). We

shall now show that this arises by demanding that there be no causality violations in

the supertube spacetime.

Consider the Killing vector field ` ≡ ∂/∂ϕ, which is associated to rotations on the

2-plane selected by the angular momentum. Its norm squared is

|`|2 = gϕϕ = U−1V −1/2r2
(
UV − f 2/r2

)
, (4.11)

where

f = J
(r2 + ρ2 + R2) r2

2Ω Σ5
. (4.12)

The norm of ` is always positive for large enough λ, regardless of the value of J , and if

the bound (2.29) is satisfied then ` remains spacelike everywhere. However, if J exceeds

the bound then ` becomes timelike sufficiently close to the tube. To see this, we write

a planar configuration of D2-branes with strings and D0-branes distributed on it, and with momentum
in the direction transverse to the strings. This preserves the same amount of supersymmetries as the
supertube. To our knowledge, this configuration has not been previously considered.
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out (4.11) as

|`|2 =
U−1V −1/2r2

36Ω2Σ10

{
36Ω2Σ10 + 6ΩΣ5(|Q0|+ |Qs|)

[
(r2 + ρ2 + R2)2 + 2R2r2

]

+ |Q0Qs|
[
(r2 − R2)2(r4 + r2R2 + R4) + 2ρ2(r2 + R2)

[
2(r2 − R2)2 + 3r2R2

]

+ ρ4
[
6(r2 − R2)2 + 19R2r2

]
+ 4ρ6(r2 + R2) + ρ8

]

+ 9(R2|QsQ0| − J2)(r2 + R2 + ρ2)2r2

}
. (4.13)

All the terms in this expression are non-negative except for the last one, which becomes

negative precisely when the bound (2.29) is violated. In addition, in the near-tube limit

r → R , ρ → 0 (4.14)

we find

|`|2 =
R2

Ω1/2Σ5/2|Qs||Q0|1/2

[ (
R2|QsQ0| − J2

)
+ . . .

]
, (4.15)

where the dots represent terms which vanish in the limit (4.14). Thus the supergravity

supertube has CTCs if and only if it is ‘over-rotating’. These CTCs are ‘naked’ in

the sense that there is no event horizon to prevent them from being deformed to pass

through any point of the spacetime. Neither can they be removed by a change of

frame, since the causal structure is unchanged by any non-singular conformal rescaling

of the metric. It should be appreciated that the surface defined by |`|2 = 0 (present

when J exceeds the bound) is not singular; it is not even a coordinate singularity. In

particular, the metric signature does not change on this surface despite the fact that

for |`|2 < 0 there are two commuting timelike Killing vector fields. In fact, the only

physical singularity of the solution (3.3) is at r = R, ρ = 0, where both |`|2 and the

dilaton diverge. Thus, the over-rotating supertube spacetime is locally as physical as

the under-rotating one, with a metric that is singular only at the location of the tube.

The CTCs of the over-rotating supertube metric have a very simple origin in

eleven dimensions. The IIA supergravity supertube lifts to the solution (3.1) of eleven-

dimensional supergravity from which we started, with U and V as in (3.12) and A as

in (3.17). If the eleventh coordinate z is not periodically identified then this eleven-

dimensional spacetime has no CTCs, but CTCs are created by the identifications needed

for compactification on a circle if J exceeds the bound (2.29). To see this, consider

an orbit of the vector field ξ = ∂ϕ + β∂z, for real constant β. When z is periodically

identified this curve will be closed for some dense set of values of β. It will also be
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timelike if |ξ|2 < 0, which will happen if

β2 + 2V −2f β + UV −2r2 < 0 . (4.16)

This inequality can be satisfied for real β only if r2 < U−1V −1f 2, but this is precisely

the condition that ` be timelike. Thus, there will be closed timelike orbits of ξ in the

D=11 spacetime precisely when the closed orbits of ` become timelike in the D=10

spacetime. However, from the eleven-dimensional perspective, these CTCs arise from

periodic identification and can therefore be removed by passing to the universal covering

space. An analogous phenomenon was described in [10], where it was shown that the

CTCs of over-rotating supersymmetric five-dimensional black holes are removed by

lifting the solution to ten dimensions and passing to the universal covering space.

5. Brane Probes: Supersymmetry

We shall now examine the behaviour of brane probes in the supertube spacetime.

Specifically, we shall consider D0-branes, strings and D2-branes. We shall first show

that the 1/4 supersymmetry of the background is preserved by stationary D0-brane,

IIA-string and D2-supertube probes (when suitably aligned).

The D=10 spacetime metric (3.3) can be written as

ds2
10 = −etet + exex + erer + eϕeϕ + eaea , (5.1)

for orthonormal 1-forms

et = U−1/2V −1/4 (dt− A) ,

ex = U−1/2V 1/4 dx ,

er = V 1/4 dr , (5.2)

eϕ = V 1/4 r dϕ ,

ea = V 1/4 dρa .

Here {ρa} are Cartesian coordinates on the 6 space orthogonal to the 2-plane selected

by the angular momentum. The Killing spinors in this basis take the form

ε = U−1/4V −1/8 M+ ε0 , (5.3)

where ε0 is a constant 32-component spinor subject to the constraints (2.11) and (2.12).

Recall that we introduced the matrices Γt, Γx, Γr, Γϕ, {Γa}, Γ\ and M± in section 2.

Recall too that the number of supersymmetries preserved by any brane configuration
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in a given spacetime is the number of independent Killing spinors of the background

verifying (2.4).

For a stationary D0-brane in the gauge in which worldline time is identified with t

we have

ΓD0 = ΓtΓ\ . (5.4)

For a IIA string in the same temporal gauge and, additionally, with the string coordinate

identified with x, we have

Γstring = −ΓtxΓ\ . (5.5)

These two Γ-matrices commute and the Killing spinors of the background are simul-

taneous eigenstates of ΓD0 and Γstring with unit eigenvalue, so the inclusion of these

D0-brane and IIA-string probes does not break any supersymmetries that are pre-

served by the background. In particular, this means that a D0-brane or a string can

be placed arbitrarily close to the supertube without experiencing any force. This re-

sult is counter-intuitive because one would expect the D2-cylinder in this situation to

behave approximately like a planar D2-brane, and hence to exert an attractive force

on D0-branes and strings. The explanation is presumably that the supertube is in

fact a true bound state of strings, D0-branes and cylindrical D2-branes, in which the

D2-branes behave genuinely differently as compared to their free counterparts7.

Now we consider a probe consisting of a supertube itself, that is, a D2-brane of

cylindrical topology with string and D0-brane charges. The analysis is very similar to

that of section 2 except that the Born-Infeld field strength F must now be replaced by

the background-covariant field strength F = F − B2 . As before we choose F to have

the form

F = E dt ∧ dx + B dx ∧ dϕ . (5.6)

This yields

F = E dt ∧ dx + B dx ∧ dϕ , (5.7)

where

E = E + U−1 − 1 , B = B + U−1f . (5.8)

In the orthonormal basis (5.3) we have

F = Ē et ∧ ex + B̄ ex ∧ eϕ , (5.9)

where

Ē = UE , B̄ = U1/2V −1/2r−1 (B − fE) . (5.10)

7The neutron considered as a bound state of quarks is analogous since the attractive force between
neutrons is much weaker than the force between its constitutive quarks.
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In terms of these variables, ΓD2 takes the same form as in flat space:

ΓD2 =
1√− det(g + F)

(
Γtxϕ + Ē ΓϕΓ\ + B̄ ΓtΓ\

)
, (5.11)

where √
− det(g + F) =

√
1− Ē2 + B̄2 . (5.12)

The condition for supersymmetry (2.4) thus becomes

M+

[
B̄ ΓtΓ\ −

√
− det(g + F)

]
ε0 + M− ΓϕΓ\

[
ΓtxΓ\ + Ē]

ε0 = 0 . (5.13)

Both terms must vanish independently. Given the constraints (2.11) and (2.12) satisfied

by ε0, the vanishing of the second term requires that Ē = 1. Equivalently,

E = U−1 . (5.14)

The first term in (5.13) then vanishes identically if B̄ ≥ 0, which using (5.14) is equiv-

alent to B ≥ 0. In the B = 0 case we have 1/2 supersymmetry, so we shall assume

that

B > 0 . (5.15)

6. Brane Probes: Energetics

We now turn to the energetics of probes in the supertube spacetime. Our aim is to

uncover any effects of the presence of CTCs on brane probes, so in this section we

shall assume that the bound (2.29) is violated. We shall see that the global causality

violation due to the CTCs causes a local instability on the worldvolume of extended

probes such as a D2-brane tube, the reason for this being of course that the probe itself

is non-local. On the contrary, we would not expect any unphysical effect on a local

probe such as a D0-brane, and we shall begin by verifying this.

The action for a D0-brane of unit mass is

SD0 = −
∫

e−φ
√
− det g −

∫
C1 . (6.1)

In the gauge where the worldline time is identified with t we find the Lagrangian density

L = −V −1
√

1− 2f ϕ̇− UV 1/2 (gϕϕ ϕ̇2 + v2) + V −1(1− fϕ̇)− 1 , (6.2)

where the overdot indicates differentiation with respect to t, f is given by (4.12), and

v2 ≡ gijẊ
iẊj , X i = {x, r, ρa} . (6.3)
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Note that v2 ≥ 0.

The Lagrangian (6.2) appears to lead to unphysical behaviour if gϕϕ becomes neg-

ative. However, an expansion in powers of the velocities yields

L = −1 +
1

2
Ur2 ϕ̇2 +

1

2
UV −1/2v2 + · · · . (6.4)

The first term is minus the (unit) positive mass of the D0-brane. As expected from

the supersymmetry of a stationary D0-brane, all the velocity-independent potential

terms cancel. In addition, the kinetic energy is positive-definite regardless of the sign

of gϕϕ (and this remains true to all orders in the velocity). There is therefore nothing

to prevent a D0-brane from entering the region where |`|2 < 0, and its dynamics in

this region is perfectly physical, at least locally. The same applies to x-aligned IIA

superstrings; again this is not surprising because this is a probe that is local in ϕ.

We now turn to the supertube itself. This is a more significant test of the geome-

try because one could imagine building up the source of the supergravity solution by

accretion of concentric D2-brane supertubes. We begin by considering a general tubu-

lar D2-brane aligned with the background. For our purposes we may assume that the

worldvolume scalar fields r and ρa are uniform in x, but we shall also assume, initially,

that they are time-independent (as will be the case for a supertube, since this is a

D2-brane tube at a minimum of the potential energy).

The action

SD2 = −
∫

e−φ
√
− det(g + F)−

∫
(C3 + C1 ∧ F) (6.5)

in the physical gauge (as used above) yields the Lagrangian density

L = −U1/2V −1
√

V r2(U−2 − E2) + U−1(B − fE)2 + V −1(B − fE)− B . (6.6)

The variable conjugate to E is

Π ≡ ∂L
∂E

=
∂L
∂E =

U1/2r2E + U−1/2V −1(B − fE)f√
V r2(U−2 − E2) + U−1(B − fE)2

− V −1f . (6.7)

The Hamiltonian density is defined as

H ≡ ΠE − L = ΠE − L+ Π(1− U−1) . (6.8)

For supersymmetric configurations we have L = −B and E = U−1, so 8

H = Π + B (6.9)
8Note that both B (see equation (5.15)) and Π (from its definition (6.7)) are positive for super-

symmetric configurations.
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for a supertube. Neither Π nor B is invariant under background gauge transformations.

However, their worldspace integrals are gauge-invariant 9. Given the assumption of

x-independence, we can identify the IIA string charge qs and the D0-brane charge per

unit length q0 carried by the supertube probe with the integrals of Π and B over ϕ, as

in (2.16). For constant Π and B we therefore have

Π = qs , B = q0 . (6.10)

The probe supertube tension is then seen to be

τprobe = qs + q0 . (6.11)

Setting E = U−1 in (6.7) we deduce that

ΠB = r2 (6.12)

at the supertube radius, and hence that

r =
√

qsq0 . (6.13)

The tension and the radius of a supertube probe in the supertube spacetime are there-

fore exactly as in a Minkowski background (with N = 1). Note that this result holds

regardless of whether or not CTCs are present.

Thus, supersymmetry places no restriction on the possible radius of a probe su-

pertube in a supergravity supertube background. However, the supertube minimizes

the energy for given qs and q0 (and hence is stable) only if there are no ghost exci-

tations of the D2-brane, that is, excitations corresponding in the quantum theory to

negative norm states. These states are present for some choice of qs and q0 whenever

gϕϕ < 0. To establish this, we now allow for time-dependent r and ρa, and we expand

the Lagrangian density in powers of

v2 = ṙ2 + δab ρ̇aρ̇b . (6.14)

We find 10

L = L0 +
1

2
Mv2 + · · · , (6.15)

where L0 is the Lagrangian density of (6.6), and

M =
B2 + 2U−1fB + U−1V r2

U−1/2V 1/4
√− det(g + F)

, (6.16)

9We should consider only time-independent gauge transformations because the Hamiltonian is not
expected to be invariant under time-dependent gauge transformations. We should also consider only
x-independent gauge transformations to be consistent with our assumption of x-independence.

10The calculation here is similar to the one performed in [11] but the interpretation is different.
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which reduces to

M =
B2 + 2U−1fB + U−1V r2

U−1V 1/2B
(6.17)

for a supertube. In both of these expressions for M , the denominator is positive, and

so is the numerator as long as gϕϕ > 0, but the factor

B2 + 2U−1fB + U−1V r2 (6.18)

becomes negative for some choices of B and r (and hence q0 and qs for a supertube)

whenever gϕϕ < 0.

Note that the supertube does not become tachyonic; its tension continues to be

given by (6.11). A tachyon instability leads to runaway behaviour in which the kinetic

energy increases at the expense of potential energy. The instability here is instead due to

the possibility of negative kinetic energy, characteristic of a ghost 11. This instability

indicates that it is not physically possible to construct a supertube spacetime with

naked CTCs starting from Minkowski space. One might imagine assembling such a

spacetime by accretion from infinity of ‘supertube shells’ carrying infinitesimal fractions

of charges and angular momentum. When a finite macroscopic fraction of charges and

angular momentum have been accumulated, it is fully justified to treat the next shell

as a probe in the background generated by the rest. The instability on this probe when

the bound (2.29) is violated signals that this procedure must be physically forbidden

beyond the bound (2.29).

7. Discussion

We have found the exact IIA supergravity solution corresponding to a source provided

by the D2-brane supertube found in [1]. We have also found multi-tube solutions,

which shows that parallel supertubes exert no force on each other, and we have con-

firmed this by showing that when (suitably aligned) stationary D0-brane, IIA-string

and D2-supertube probes are introduced into the background, they preserve all super-

symmetries of the background. This provides confirmation from supergravity of the

matrix model results of [2] for multi-supertubes.

The supertube spacetime reproduces with remarkable accuracy the worldvolume

analysis of [1]. It carries the appropriate charges as measured by surface integrals at
11As representations of the Poincaré group, a ‘tachyon’ is a particle with spacelike energy-momentum

vector, and hence negative mass-squared (corresponding in the quantum theory to an excitation about
a vacuum that is a local maximum of the energy rather than a local minimum). A ‘ghost’ is a
particle with non-spacelike energy-momentum vector but negative energy; at the level of the particle
Lagrangian (or, more generally, brane Lagrangian, as discussed here) this corresponds to negative
mass.
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infinity: string charge Qs, D0 charge per unit length Q0 and angular momentum J . Its

tension is τ = |Qs| + |Q0|, as in [1], and it also preserves the same eight supercharges

(1/4 of those of the IIA Minkowski vacuum). It is singular exactly on a cylindrical

surface of radius R (but is regular everywhere else). The only modification relative to

the analysis in [1] comes from considering the possibility that the D2-brane winds N

times around the tube. Taking this into account, all the formulas for the supertube are

precisely reproduced. The radius is related to the angular momentum as |J | = NR2.

Finally, the requirement that there are no closed timelike curves in the supertube

spacetime imposes the bound |J | ≤ |QsQ0|/N on the angular momentum, which is the

same as in [1], once multiwinding is allowed for.

If |J | exceeds the bound above then the Killing vector field `, associated to rotations

in the plane of the angular momentum, becomes timelike sufficiently close to the tube

region, which leads to a global violation of causality. Although this has no effect on the

local physics of D0-brane or IIA string probes, it causes an instability of D2-supertube

probes due to the fact that the supertube tension no longer minimizes the energy for

fixed D0 and string charges. This is made possible by the appearance of a negative-

norm state (a ghost) on a supertube in the region where ` becomes timelike. The

global violation of causality that this produces (due to the occurrence of CTCs) is thus

manifested by a local pathology on supertube probes (which is possible because these

probes are themselves non-local). This constitutes evidence that a globally causality-

violating supertube spacetime cannot be physically assembled by starting with flat

space and continuously bringing in from infinity ‘supertube shells’ with infinitesimal

fractions of charge and angular momentum.

It is straightforward to modify the IIA supergravity supertube solution to one that

provides the fields for a supertube in a Kaluza-Klein vacuum spacetime of the form
(1,n) ×M9−n, n ≥ 4, with M9−n a compact Ricci-flat manifold. The metric then takes

the form

ds2
10 = −U−1V −1/2(dt−A)2 + U−1V 1/2dx2

+V 1/2[dr2 + r2dϕ2 + dρ2 + ρ2dΩ2
n−4 + ds2(M9−n)] . (7.1)

For even n the solutions involve elliptic functions, and therefore are somewhat awkward

to work with. For odd n, instead, they take simple forms. For n = 7 (a supertube in

eight dimensions),

U = 1 +
|Qs|
4Ω5

r2 + ρ2 + R2

Σ3
,

A =
J

2Ω5

r2

Σ3
dϕ , (7.2)
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while for n = 5,

U = 1 +
|Qs|

2Ω3Σ
,

A =
J

2Ω3

r2

Σ(r2 + ρ2 + R2 + Σ)
dϕ . (7.3)

V is as U with Qs replaced by Q0, and Σ is again given by (3.13). In all cases it is

possible to verify that the absence of CTCs implies the bound (2.29).

The maximally rotating six-dimensional (n = 5) solution is in fact dual to the

solution for a helical D-string constructed in [4]. One of the two methods applied

in [4] to the construction of this solution (the one based on the chiral null model) is

essentially equivalent to the one employed in this paper. The other approach, which

starts from the neutral rotating black hole and subjects it to several transformations,

does not lead to supertubes in dimensions higher than six. Instead, it can be seen to

result in filled-in cylinders, that is, continuous distributions of concentrical tubes inside

a cylinder. These solutions do not possess CTCs either provided that J does not exceed

the bound.

This six-dimensional supertube is particularly interesting when the compact four-

dimensional space is K3. Although at weak string coupling the supertube source is

distributional, and hence singular, one might expect it to be non-singular at strong

coupling. To examine this possibility we should look for solutions of the six-dimensional

supergravity/Yang-Mills theory that governs the low-energy limit of the T 4-compactified

S-dual heterotic string theory. The distributional D2-brane of the IIA theory now ap-

pears as a non-singular 2-brane with a magnetic monopole core. Conceivably, a tubelike

configuration of this monopole 2-brane can be supported against collapse by angular

momentum in just such a way that its effective worldvolume description is as a D=6

supertube (that is, a d2-brane supertube of iia ‘little’ string theory). In this case, one

might hope to find a ‘full’ non-singular supergravity/SYM solution that reproduces the

fields of the dualized IIA supergravity tube (after the redefinition of fields required by

the IIA/heterotic duality) but completed in the interior by a solution with the ‘SYM-

supertube’ source. The case of the heterotic dyonic instanton [12] provides a model

for this kind of non-singular completion of a rotating brane solution of supergravity,

although in that case the angular momentum is fixed by the charges rather than just

being bounded by them.

In view of these connections, it appears that the supergravity supertube spacetime

studied here will eventually take its place in a more general theory of supergravity

solutions for supersymmetric sources supported by angular momentum.

23



Acknowledgments

We thank Jerome Gauntlett and Carlos Herdeiro for discussions. R.E. acknowledges

partial support from UPV grant 063.310-EB187/98 and CICYT AEN99-0315. D.M. is

supported by a PPARC fellowship.

References

[1] D. Mateos and P. K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) ,
hep-th/0103030.

[2] D. Bak and K. Lee, Noncommutative Supersymmetric Tubes, Phys. Lett. B 509 (2001)
168.

[3] J-H. Cho and P. Oh, Super D-Helix, hep-th/0105095.

[4] O. Lunin and S. D. Mathur, Metric of the Multiply Wound Rotating String,
hep-th/0105136.

[5] R. Emparan, Tubular Branes in Fluxbranes, hep-th/0105062.

[6] J. P. Gauntlett, R. C. Myers and P. K. Townsend, Supersymmetry of Rotating Branes,
Phys. Rev. D 59 (1999) 025001.

[7] E. Bergshoeff, R. Kallosh, T. T. Ort́ın, D. Roest and A. Van Proeyen, New Formulations

of D=10 Supersymmetry and D8-O8 Domain Walls, hep-th/0103233.

[8] S. Deser and M. Soldate, Gravitational Energy in Spaces with Compactified Dimensions,
Nucl. Phys. B 311 (1989) 739;
K. S. Stelle, BPS Branes in Supergravity, hep-th/9803116.

[9] R. C. Myers, Dielectric-Branes, J. High Energy Phys. 12 (1999) 022.

[10] C. A. R. Herdeiro, Special Properties of Five-dimensional BPS Rotating Black Holes,
Nucl. Phys. B 582 (2000) 363.

[11] C. V. Johnson, A. W. Peet and J. Polchinski, Gauge Theory and the Excision of Repulson

Singularities, Phys. Rev. D 61 (2000) 086001.

[12] E. Eyras, P. K. Townsend and M. Zamaklar, The Heterotic Dyonic Instanton, J. High
Energy Phys. 05 (2001) 046.

24


