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Abstract

Nuclear binding energies and two-neutron separation energies are analysed

starting from the liquid-drop model and the nuclear shell model in order to

describe the global trends of the above observables. We subsequently concen-

trate on the Interacting Boson Model (IBM) and discuss a new method in

order to provide a consistent description of both, ground-state and excited-

state properties. We address the artefacts that appear when crossing mid-

shell using the IBM formulation and perform detailed numerical calculations

for nuclei situated in the 50−82 shell. We also concentrate on local deviations

from the above global trends in binding energy and two-neutron separation

energies that appear in the neutron-deficient Pb region. We address possi-

ble effects on the binding energy, caused by mixing of low-lying 0+ intruder

states into the ground state, using configuration mixing in the IBM frame-

work. We also study ground-state properties using a macroscopic-microscopic
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model. Detailed comparisons with recent experimental data in the Pb region

are amply discussed.

PACS: 21.10.Dr, 21.60.-n, 21.60.Cs, 21.60.Fw, 27.60.+j, 27.70.+q, 27.80.+w

Keywords: Binding energies, two-neutron separation energies,

liquid-drop model, shell model, interacting boson model,

intruder states, macroscopic-microscopic model.
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I. INTRODUCTION

In the study of nuclear structure properties, nuclear masses or binding energies (BE)

and, more in particular, two-neutron separation energies (S2n), are interesting probes to find

out about specific nuclear structure correlations that are present in the nuclear ground state.

These correlations, to a large extent, express the global behavior that is most easily seen in a

global way and as such, the liquid drop model (LDM) serves as a first guide to match to the

observed trends concerning nuclear ground-state masses [1,2]. There have been extensive

global mass studies carried out which aim, in particular, at reproducing the overall trends:

from pure liquid-drop model studies (LDM) [3–6], over macroscopic-microscopic methods

[7–12], over the semi-classical ETFSI (Extended Thomas-Fermi plus Strutinsky integral)

[13], towards, more recently, relativistic mean-field [14], and Skyrme Hartree-Fock studies

[15].

It is our aim to concentrate on local correlations that are rather small on the absolute

energy scale used to describe binding energies (or two-neutron separation energies) but

nevertheless point out to a number of interesting extra nuclear structure effects. These can

come from various origins such as (i) the presence of closed-shell discontinuities, (ii) the

appearance of local zones of deformation, and (iii) configuration mixing or shape mixing

that shows up in the nuclear ground state itself. Except for the closed-shell discontinuities,

the other effects give rise to small energy changes, about 200−300 keV or less, that were not

observed in experiments until recently. However, in the last few years a dramatic increase

in the experimental sensitivity, using trap devices or specific mass-measurement set-ups

(ISOLTRAP, MISTRAL, . . .) [16,17], has shifted the level of accuracy down to a few tens

of keV (typically 30 − 40 keV for nuclei in the Pb region) such that mass measurements

are now of the level to indicate local correlation energies that allow to test nuclear models

(shell-model studies) [18–20]. Therefore, interest has been growing considerably and we aim

at discussing and analysing, from this point of view, recent mass measurements.

In the first part of the present paper, we discuss the collective (or global) features of the
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nuclear binding energy (or the S2n observable) using a simple liquid-drop model (section II)

and some general properties of the shell model (section III). In section IV we concentrate on a

description of binding energies within the framework of the Interacting Boson Model (IBM),

where, besides a study of the global aspects of S2n, the specific nuclear structure correlations

(local part) are studied in, and close to, the symmetry limits U(5), SU(3), and O(6). Special

attention is given to obtain a consistent description of BE (S2n) values when crossing the

mid-shell point. Applications for the 50 − 82 shell are presented in some detail. In the

second part of the paper (section V) we concentrate on local modifications of the otherwise

smooth BE (S2n) behavior that come from the presence of low-lying intruder states at and

near closed shells. We discuss the effect in both, an approximate IBM configuration mixing

approach, as well as by studying, in some detail, the macroscopic-microscopic model giving

rise to the potential energy surfaces (PES). We apply and discuss both calculations for nuclei

in the neutron-deficient Pb region. Finally, in section VI we present a number of conclusions.

II. LIQUID DROP MODEL BEHAVIOR

Nuclear masses and the derived quantity, the two-neutron separation energy, S2n, form

important indicators that may show the presence of extra correlations on top of a smooth

liquid-drop behavior. S2n is defined as

S2n(A, Z) = BE(A, Z) − BE(A − 2, Z), (1)

where BE(A, Z) is the binding energy defined as positive, (i.e. it is the positive of the energy

of the ground state of the atomic nucleus) for a nucleus with A nucleons and Z protons.

The simplest LDM [3,4] will be used as a reference point throughout this paper because

it allows the overall description of the BE along the whole table of masses, or for long series

of isotopes. More sophisticated macroscopic-microscopic finite-range droplet models, using

a folded-Yukawa single-particle potential have been developed [7,8] and extensive mass ta-

bles published [9–12]. Here, the global trends, even passing through regions of deformed
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nuclei, have been well described. Deviations that result, usually point towards new lo-

cal nuclear structure effects. The present computing possibilities have resulted in modern

state-of-the-art mass tables spanning semi-classical EFTSI methods [13], over self-consistent

relativistic mean-field models [14], towards a recent Skyrme Hartree-Fock study [15]. Those

mass calculations serve as benchmarks for the whole nuclear mass region but local nuclear

structure correlations, as well as the exact location of the onset of deformation stay outside

the “philosophy” and scope of these important studies.

A. The global trend of S2n along the valley of stability

To see how the values of S2n evolve globally, through the complete mass chart, we start

from can the semi-empirical mass formula [21,22],

BE(A, Z) = aV A − aSA
2

3 − aCZ(Z − 1)A− 1

3 − aA(A − 2Z)2A−1. (2)

Even though there exist much refined macroscopic models (see references given before), the

present simple liquid-drop model (2) is a suitable starting point for our purpose in analysing

the physics behind the S2n systematics. The S2n value can be written as,

S2n ≈ 2(aV − aA) − 4

3
aSA− 1

3 +
2

3
aCZ(Z − 1)A− 4

3 + 8aA
Z2

A(A − 2)
, (3)

where the surface and Coulomb terms are only approximated expressions. If one inserts the

particular value of Z, Z0, that maximises the binding energy for each given A (this is the

definition for the valley of stability),

Z0 =
A/2

1 + 0.0077A2/3
, (4)

we obtain, for large values of A, the result (see [19]),

S2n = 2(aV − aA) − 4

3
aSA− 1

3 + (8aA +
2

3
aCA

2

3 )
1

4 + 0.06A
2

3

. (5)

In the present form, we use the following values for the LDM parameters: aV = 15.85

MeV, aC = 0.71 MeV, aS = 18.34 MeV and aA = 23.22 MeV [3,4]. In Fig. 1, we illustrate
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the behavior of S2n along the valley of stability (5) for even-even nuclei, together with the

experimental data. The experimental data correspond to a range of Z between Z0 + 1

and Z0 − 2. It appears that the overall decrease and the specific mass dependence is well

contained within the liquid-drop model.

B. The global trend of S2n through a chain of isotopes

We can also see how well the experimental two-neutron separation energy, through a

chain of isotopes, is reproduced using the LDM. From Fig. 1, it is clear that, besides the

sudden variations near mass number A = 90 (presence of shell closure at N = 50) and

near mass number A = 140 (presence of the shell closure at N = 82), the specific mass

dependence for series of isotopes comes closer to specific sets of straight lines.

Next, we observe that the mass formula (2) is able to describe the observed almost linear

behavior of S2n for series of isotopes. The more appropriate way of carrying out this analysis

is to make an expansion of the different terms in (2) around a particular value of A (or N ,

because Z is fixed), A0 = Z + N0, and to keep the main orders. Therefore, we define

X = A − A0 and ε = X/A0. Let us start with the volume term,

BEV (A) − BEV (A0) = aV X. (6)

The surface term gives rise to,

BES(A) − BES(A0) ≈ −aSA
2

3

0

(

2

3
ε − 1

9
ε2
)

= −aS
2

3

X

A
1

3

0

+ aS
1

9

X2

A
4

3

0

, (7)

and the contribution of the Coulomb term is,

BEC(A) − BEC(A0) ≈ −aCZ(Z − 1)A
1

3

0

(

−1

3
ε +

2

9
ε2
)

=
aC

3
Z(Z − 1)

X

A
4

3

0

− 2aC

9
Z(Z − 1)

X2

A
7

3

0

. (8)

Finally, the asymmetry contribution is,

BEA(A) − BEA(A0) ≈ −aA

(

A0 −
4Z2

A0

)

ε − aA
4Z2

A0

ε = −aA

(

1 − 4Z2

A2
0

)

X − aA
4Z2

A3
0

X2.

(9)
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First, it is clear that the coefficients of the linear part are (for A0 ≈ 100 and Z ≈ 50 and

taking for aV , aC aS, and aA the values given in previous section) about two orders of

magnitude larger than the coefficients of the quadratic contribution. With respect to the

second order terms it is interesting to see the value of each of them: the surface term gives

0.0044 MeV, the Coulomb term −0.0083 MeV, and the asymmetry term −0.23 MeV. As a

consequence, in this case, the leading term is the asymmetry one and it is essentially the

main source of non-linearities in the BE and therefore, the source of the slope of the S2n. In

order to illustrate these results, we present in Fig. 2 the different contributions of the LDM

(volume, volume plus surface, volume plus surface plus Coulomb and volume plus surface

plus Coulomb plus asymmetry term) to the BE and S2n for different families of isotopes. It

thus appears that only the asymmetry term induces the quadratic behavior in BE and the

linear one in S2n.

In eq. (5) we make use of the classical values as discussed in the early papers of Wapstra

[3,4]. This fit, of course, was constrained to a relatively small set of experimental data points.

More recent fits, including (i) higher-order terms in the LDM, e.g. the surface symmetry

correction, a finite-range surface term, droplet correction, etc. and (ii) the much extended

range of experimental data points, seem to give rise to an increased asymmetry energy

coefficient aA with values of the order of ≈ 30 MeV [23]. We show, in Fig. 2, the results

obtained using an increased aA coefficient, which gives rise to an increased in the absolute

value of the S2n slope.

In the present analysis, we have left out the effect of the pairing energy, with a dependence

BEpairing = −11.46A−1/2 [3,4], because the net result is an overall shift in the binding

energy, but the relative variation in the S2n values, over a mass span of ∆A = 20 units, is

of the order of ≈ 100 keV and, as such, is not essential for the plot of Fig. 2.

Finally it should be stressed that, far from stability and for very neutron-rich nuclei,

the asymmetry term can be at the origin of a decreasing trend in the BE when A further

increases. This actually corresponds to the well known drip-line phenomenon, but here

within a pure LDM approach.
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III. SHELL-MODEL DESCRIPTION OF BINDING ENERGIES

Within the liquid drop model (LDM) description of the binding energy of atomic nuclei,

the volume term, the surface and Coulomb energy contributions give rise to an essentially

flat behavior in the S2n values. It is the asymmetry term that accounts for an almost

linear drop in the quantity S2n within a given isotopic series as a function of the nucleon

(or neutron) number A (or N). This expresses the progressively decreasing binding energy

needed to remove a pair of nucleons out of a given nucleus.

The asymmetry term shows up already when treating the nucleus as a Fermi gas of

independent particles, as a consequence of the Pauli principle. The linear drop in S2n also

shows up in a more realistic shell-model description of nucleons moving in an average field,

characterised by the single-particle spectrum ǫj , that are subsequently coupled to Jπ = 0+

pairs because of the major attractive binding-energy correlation on top of the monopole

binding-energy term. To fix the idea, one should start from a doubly-closed shell nucleus as a

reference nucleus in order to describe binding energies (or separation energies) and then treat

the interactions amongst nucleons filling a given single-j shell. Talmi has shown [24,25] that,

for a zero-range force (δ-function interaction) using a pair-coupled wave function that has

seniority v as a good quantum number, the contribution to the ground-state configuration

can be expressed as

BE(j, n) = 〈jn, v = 0, J = 0|
∑

V (i, k)|jn, v = 0, J = 0〉, (10)

or

BE(j, n) = nǫj +
n

2
V0, (11)

where V0 = 〈j2, v = 0, J = 0|V |j2, v = 0, J = 0〉 is the attractive 0+ two-body matrix

element. This binding energy contribution is essentially equal to the volume part of the

liquid-drop model formulation (which scales like A), and scales with the number of inter-

acting valence nucleons moving in the single-j shell-model orbital and contributes with a

constant value to the S2n two-neutron separation energy.
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More general interactions (finite range forces, the standard pairing force, . . . ) contribute

with extra terms in the expression of the binding energy [24]. Coupling of the ground-state

seniority v = 0 with higher-lying seniority v = 2, 4, . . . configurations also modifies this

most simple expression given in (11). This then leads to a general diagonal energy that also

contains a term quadratic in the number of nucleons n (the specific coefficients depend on

the specific forces and coupling) and is given as [26]

BE(j, n) = C + αn + β
n(n − 1)

2
+ [

n

2
]P, (12)

provided the seniority v is a good quantum number. Here, [n/2] stands for the largest

integer not bigger than n/2. Further, α is in general large and attractive (α = ǫj + V0

2

with ǫ ≈ −8 MeV and V0

2
≈ −(j + 1

2
) G, with G the pairing force strength), β is much

smaller and repulsive (in agreement with the sign of the asymmetry term in the liquid-drop

energy expression) and P describes the odd-even pairing staggering to the binding-energy

expression (see Fig. 3). Thus, it is the β contribution that causes a linear drop in the S2n

value as a function of the nucleon number. This expression has been used to fit S2n values in

various mass regions [25–27]. This shell-model behavior actually describes the long stretches

of linear behavior in the S2n curve over a large region of the nuclear mass table, indicating

that the above simple structure contains the correct physics and saturation properties of the

nucleon-nucleon two-body interactions. From the above discussion, it becomes clear that,

in order to correctly reproduce the experimental S2n behavior over a large series of isotopes,

one needs a good description of the single-particle energies ǫj and their variation over a

given mass region. The monopole term [28,29] is essential in order to correctly reproduce

saturation in the nuclear binding starting from a pure shell-model approach, i.e. if one

starts out, e.g. with the single-particle energies in the sd shell-model space around 16O and

considers the variation in these single-particle energies through the monopole proton-neutron

contribution

ǫ̃jρ
= ǫjρ

+
∑

v2
j
ρ′
〈jρjρ′ |V |jρjρ′〉, (13)
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one should reproduce the observed relative energy spacing in the sd shell when reaching the

end of the shell near 40Ca.

We shall not start to discuss detailed shell-model calculations here but we like to refer

to the very good reproduction of the overall behavior in the S2n value when crossing the full

sd shell-model region [30], except near N = 20 and for the Ne, Na, and Mg nuclei [31,32].

In the next section, we shall carry out a more detailed study of S2n properties with a shell-

model space that is truncated to that part which mainly determines the low-lying collective

properties, i.e. we will perform the IBM symmetry truncation. We expect essentially to

recover the shell-model features as described here. The IBM will allow, however, a more

detailed study covering large sets of isotopes in the nuclear mass table.

IV. IBM DESCRIPTION OF BINDING ENERGIES

The Interacting Boson Model [33] takes advantage of the group theory for describing

low-lying states of even-even nuclei. Such states present a clear quadrupole collectivity. The

building blocks of the model are bosons with angular momentum L = 0 (s bosons) and

angular momentum L = 2 (d bosons). The number of interacting bosons that are present in

the system corresponds to half the number of valence nucleons, N = n/2, and they interact

through a Hamiltonian containing, in the simplest case, up to two-body interactions, being

number conserving and rotationally invariant. The original version of the model is called

IBM-1 and in this approach no difference is considered between protons and neutrons [33,34].

In this section we use the IBM-1 version of the model.

In the last few decades the IBM has provided a satisfactory description of spectra and

transitions rates of medium-mass and heavy nuclei [35]. However in most of the cases the

binding energy has not been considered in the analysis. In a recent paper [36] it was pointed

out that it is extremely important to include the BE, or equivalently the S2n values, in an

IBM study because its value is very sensitive to the Hamiltonian that it is used. Therefore,

it is very useful for choosing the most appropriate Hamiltonian in the description of a given
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nucleus. As was shown by Garćıa-Ramos et al. in Ref. [36] and will be recapitulated here,

in order to study the binding-energy properties, it is necessary to analyse a complete chain

of isotopes and not a single nucleus, which makes the study more complicated.

At this point it is convenient to write the definition of S2n. In case we use nucleon

particles outside of a closed shell, we define (remind, N denotes the number of nucleon pairs

outside of closed shells, not to be confused with the neutron number):

S2n = BE(N) − BE(N − 1). (14)

When using a description in terms of holes inside a closed shell, the definition of S2n becomes,

S2n = BE(N) − BE(N + 1). (15)

Later (section IVD), we shall present a prescription that contains only a single definition.

For later use (section IVF) we present here a very compact IBM Hamiltonian that will

be used throughout this section. This Hamiltonian is not the most general one but is ideal

for the purpose of studying binding energies and allows to describe many realistic situations

[37]. It can be written as follows,

Ĥ = ǫdn̂d − κQ̂ · Q̂ + κ′L̂ · L̂, (16)

where n̂d is the d boson number operator and

L̂ =
√

10(d† × d̃)(1), (17)

Q̂ = s†d̃ + d†s̃ + χ(d† × d̃)(2). (18)

The symbol · represents the scalar product. Here the scalar product of two operators with

angular momentum L is defined as T̂L · T̂L =
∑

M(−1)M T̂LM T̂L−M where T̂LM corresponds

to the M component of the operator T̂L. The operator γ̃ℓm = (−1)mγℓ−m (where γ refers

to s and d bosons) is introduced to ensure the tensorial character under spatial rotations.

Note that in realistic calculations ǫd > 0 and κ > 0 [35]. It is common in this approach to

use for the E2 transition operator the form
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T̂ (E2) = qeffQ̂, (19)

in which qeff denotes the effective charge and Q̂ has the same structure as in the Hamiltonian

(18). This approximation is the basis of the so-called consistent-Q formalism (CQF) [38].

The Hamiltonian (16) generates the spectrum of the nucleus and in the following will be

called “local Hamiltonian”. An extra part can be added to this Hamiltonian (16) without

affecting the spectrum, that will be called “global Hamiltonian”.

In the description of BE using the IBM one has to distinguish between two contributions:

a global (rather big) part that corresponds to the bulk energy of the atomic nucleus, should

change slowly (BEgl) and comes from the “global Hamiltonian”, and a local (rather small)

part coming from the specific structure of the given nuclei (BElo), i.e. coming from the “local

Hamiltonian”. However, the global part has to be added ad hoc using a given prescription

that will be presented in this section. The simplest interpretation of the IBM global part

comes from the LDM, and somehow, both contributions must be related. For the different

series of isotopes they result into a quadratic behavior in BE and a linear one in S2n. This

IBM description resembles the Strutinsky method [39,40] in the sense that a part (global

part) takes care of the main part of the BE, while a second part (local part) modifies this

bulk BE and generates the spectrum of the nucleus.

A. The global part of the BE (S2n) in the IBM

The global part of the BE in the IBM (BEgl) comes from that part of the Hamiltonian

that does not affect the internal excitation energies. Those terms are related with the

Casimir operators of U(6), i.e. Ĉ1[U(6)] and Ĉ2[U(6)] and can be written in terms of the

total number of bosons, N̂ ,

Ĥgl = −E0 −A− B
2

N̂(N̂ − 1). (20)

Its contribution to the binding energy reads as,

BEgl(N) = E0 + AN +
B
2

N(N − 1). (21)
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The corresponding contribution to S2n is linear in the number of bosons:

Sgl
2n(N) = (A−B/2) + BN. (22)

In order to avoid ambiguities it is assumed in these expressions that N always corresponds

to the number of nucleons pairs, considered as particles and is never considered as holes.

We come back to this delicate aspect in section IVD.

In the latter expressions, it is implicit that the coefficients A, B and E0 are constant

for chains of isotopes (fixed Z) when the value of N changes, except when crossing the

mid-shell or passing between major shells, i.e. it provides a linear contribution. However,

this assumption is not clear a priori. To find a mathematical proof of the constancy of A

and B is a difficult task. However, one can find a number of arguments based on LDM,

shell-model, and IBM itself, that imply such a constancy.

• A LDM argument: In section II we noticed that the LDM gives a satisfactory global

description of the BE throughout the whole mass table. This description cannot

reproduce fine details, but it is able to explain the observed linear behavior of S2n for

series of isotopes. This behavior is the same as the one obtained from (22), using A

and B constants, and therefore supports our hypothesis.

• A shell-model argument: Another justification is based on the shell-model, in particular

in the use of the modified surface-delta-interaction (MSDI). It is well known that the

surface delta interaction (SDI) gives a good description of energy spectra although it

also results in a number of systematic discrepancies with respect to the reproduction

of the experimental levels. This discrepancy is especially notable for nuclear binding

energies. It was shown that this description could be largely improved when changing

the position of the energy centroids for the multiplets with different isospin. The

modification of the interaction gave rise to the MSDI [41]. The most important point

for our present discussion is that this new element in the two-body interaction, if one

keeps the parameters constant, gives rise to a quadratic dependence in the nuclear

binding energy, equivalent to the one we obtain in eq. (21).
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• An IBM argument: A third justification comes from an IBM analysis. It will be shown

in sections IVE and IVF that our ansatz provides an extremely good description of

S2n for chains of isotopes in the region from Z = 50 to Z = 82.

B. The local part of the BE (S2n) in the IBM: the symmetry limits

The local contribution to the BE (BElo) comes from the IBM Hamiltonian that gives

rise to the nuclear spectrum. This local contribution should be added to the fully linear

part presented in previous subsection. A first approximation to this Hamiltonian comes from

studying the symmetry limits of the model. Such limiting Hamiltonians do not correspond

to realistic Hamiltonians but can be used as a good starting point. In the present discussion,

the parameters of the different local Hamiltonians are kept constant, which is not a realistic

hypothesis for long chains of isotopes. Note that the global Hamiltonian remains unchanged

for the whole chain. Therefore, the following results will be applicable if we cut the chain

of isotopes into smaller intervals and if we change the value of the parameters of the local

Hamiltonian only between intervals.

The symmetry limits, called dynamical symmetries of the IBM, correspond to particular

choices of the Hamiltonian that give rise to analytic expressions for the energy spectra

(which is the reason of its usefulness). At the same time the eigenstates exhibit certain

symmetries that allow to classify them in a simple way. The symmetry limits appear when

the Hamiltonian is written in terms of a particular combination of Casimir operators. Next

we succinctly review the three cases that were discussed before [33].

• U(5) limit.

The local Hamiltonian that gives rise to the U(5) symmetry limit can be written as,

ĤU(5) = ε Ĉ1[U(5)] + α Ĉ2[U(5)] + β Ĉ2[O(5)] + γ Ĉ2[O(3)], (23)

where Ĉn[G] stands for the Casimir operator of order n of the group G. The ground

state of this Hamiltonian can be written as
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|0+
gs〉 = |[N ], nd = 0, v = 0, L = 0〉, (24)

where [N ], nd, v, and L are the appropriate labels that completely specify an eigenstate

of the Hamiltonian (23) (see e.g. [33,34]). The eigenvalue of (23) for a general state is

obtained as,

EU(5) = ε nd + α nd(nd + 4) + β v(v + 3) + γ L(L + 1). (25)

As a consequence BEU(5)=0 and S
U(5)
2n =0. It is clear that there is no local contribution

to the BE in the case of the U(5) limit.

• SU(3) limit.

In the case of the SU(3) dynamical symmetry, the local Hamiltonian reads as,

ĤSU(3) = δ Ĉ2[SU(3)] + γ Ĉ2[O(3)]. (26)

The ground state for this Hamiltonian corresponds to,

|0+
gs〉 = |[N ], (λ = 2N, µ = 0), κ = 0, L = 0〉, (27)

where [N ], (λ, µ), κ, and L are the appropriate labels for completely specifying an

eigenstate of the Hamiltonian (26) (see e.g. [33,34]). The eigenvalues corresponding to

the Hamiltonian (26), for a general state, can be written as,

ESU(3) = δ (λ2 + µ2 + λµ + 3λ + 3µ) + γ L(L + 1). (28)

In this case the binding energy results into the expression,

BESU(3) = −δ(4N2 + 6N). (29)

The value of S2n for particles becomes,

S
SU(3)
2n = −δ(8N + 2), (30)
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while for holes this becomes

S
SU(3)
2n = δ(8N + 10), (31)

where δ < 0 in realistic calculations. It should be noted that the local contribution to

S2n is also linear in the number of bosons. This contribution should be added to the

global part of the Hamiltonian.

• O(6) limit.

The O(6) symmetry limit corresponds to the following Hamiltonian,

ĤO(6) = ζ Ĉ2[O(6)] + β Ĉ2[O(5)] + γ Ĉ2[O(3)]. (32)

The ground state for this Hamiltonian reads as,

|0+
gs〉 = |[N ], σ = N, τ = 0, L = 0〉, (33)

where [N ], σ, τ , and L completely characterise an eigenstate of (32) (see e.g. [33,34]).

The energy eigenvalues of the Hamiltonian (32) can be written as,

EO(6) = ζ σ(σ + 4) + β τ(τ + 3) + γ L(L + 1). (34)

In this case the binding energy results into the expression,

BEO(6) = −ζ(N2 + 4N). (35)

The value of S2n for particles becomes,

S
O(6)
2n = ζ(2N + 3), (36)

while for holes it reads,

S
O(6)
2n = −ζ(2N + 5). (37)

In the more realistic calculations ζ < 0. It should be noted that the local contribution

to S2n is again linear in the number of bosons. This contribution should be added to

the global part of the Hamiltonian.
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At this point, it should become clear that the local IBM Hamiltonian, corresponding to

the three dynamical symmetries, does not change the linear behavior of S2n (coming from

the global part). In the case of the U(5) limit there is no extra contribution to S2n, while for

the SU(3) and O(6) limits only a change in the values of the slope and the intercept of S2n

is introduced. The analysis should only be valid within the smaller intervals and thus non-

linear behavior in S2n could appear if the character of the nuclei, along a series of isotopes,

is changing from one symmetry limit into another one. An extra source for deviations of a

linear behavior arises when the parameters of the local Hamiltonian themselves do change

from one nucleus to another nucleus, even preserving the dynamical symmetry. Note that

the global contribution remains linear.

C. The local part of the BE (S2n) in the IBM: near the symmetry limits

In this subsection we complete the previous analysis, but now we study more complex

situations albeit still in an analytical approximation. This will form a good starting point

in order to carry out a complete numerical analysis of S2n using the IBM.

Here, we consider the Hamiltonian (16), which will prove to be extremely useful for our

purpose. This Hamiltonian encompasses the three symmetry limits for particular choices of

the parameters and the so called transitional regions. The transitional regions are interme-

diate situations between the symmetry limits, where one observes rapid structural changes

in the nuclei. One can identify three different transitional regions: (a) structural changes

between spherical (U(5)) and well deformed nuclei (SU(3)); (b) structural changes from

spherical (U(5)) to γ-unstable nuclei (O(6)) and (c) structural changes from well-deformed

(SU(3)) to γ-unstable nuclei (O(6)). One observes that the borders of the transitional

regions correspond to the dynamical symmetries (indicated between parenthesis).

The idea here is to consider the main part of the local Hamiltonian corresponding to a

given symmetry limit plus a small correction term that allows us to explore the transitional

region and that can be treated using perturbation theory. Next, we discuss three different
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situations depending on the main part of the local Hamiltonian.

• Near the U(5) limit.

The vibrational limit appears when κ = 0 in Hamiltonian (16). If κ 6= 0 the wave

function (24) is only an approximate solution to the problem if |ǫd| >> |κ|. The result

is in principle independent of χ, but performing a simple analysis, one notices that the

range of applicability of the results depends on χ. So, if one numerically diagonalizes

the Hamiltonian (16) for N = 8 and for different values of κ/ǫd, one obtains that, even

for a ratio equal to 0.03 and with χ = 0, the overlap 〈gs|[N ], nd = 0, v = 0, L = 0〉 is

equal to 0.913. For χ = −1 this overlap equals 0.876, and for χ = −
√

7/2 it equals

0.833. So it becomes clear that the range of applicability is quite narrow and even

diminishes when |χ| increases.

In the following discussion we assume κ′ = 0 because its contribution to the BE always

vanishes. If one calculates the mean value of (16), using the eigenstates (24), the result

becomes,

BE = −〈0+
gs−U(5)|ǫdn̂d − κQ̂ · Q̂|0+

gs−U(5)〉

= κ〈0+
gs−U(5)|Q̂ · Q̂|0+

gs−U(5)〉. (38)

The first term vanishes because nd = 0 in the U(5) ground state (see eqs. (24) and

(25)). In order to calculate the remaining part, we consider the expression of the

quadrupole operator (18) and we take into account that every d̃ operator acting directly

on the ket state, or every d† operator acting directly on the bra state, gives a vanishing

contribution. The BE result then becomes,

BE = 5κN. (39)

The two-neutron separation energy for particles can be written as,

S2n = 5κ, (40)
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while for holes it becomes,

S2n = −5κ. (41)

As a consequence, near the vibrational limit, the local Hamiltonian only gives a con-

stant contribution to S2n.

• Near the SU(3) limit.

A particular case of a rotational nucleus corresponds to the SU(3) limit. In this case

ǫd = 0 and χ = −
√

7/2 are the parameters that show up in the Hamiltonian (16). If

we include ǫd 6= 0 such that |κ| >> |ǫd|, the wave function (27) will still be a good

approximation to the exact solution. In order to explore up to which values of ǫd one

can use perturbation theory, we calculate the overlap between the state (27) and the

exact solution for a system with N = 8 bosons. The result we obtain is that, even for

a ratio |ǫd|/|κ| = 10 ,the overlap is larger than 0.9 (in particular equal to 0.942). So

we can use the present approximation in regions quite far from the SU(3) symmetry

limit.

By calculating the expectation value of (16), using the state (27), the binding energy

becomes,

BE = −〈0+
gs−SU(3)|ǫdn̂d − κQ̂χ=−

√
7/2 · Q̂χ=−

√
7/2|0+

gs−SU(3)〉

= −ǫd〈0+
gs−SU(3)|n̂d|0+

gs−SU(3)〉

+κ〈0+
gs−SU(3)|Q̂χ=−

√
7/2 · Q̂χ=−

√
7/2|0+

gs−SU(3)〉. (42)

The expectation value of n̂d in the SU(3) limit is known [33], with as a result,

〈0+
gs−SU(3)|n̂d|0+

gs−SU(3)〉 =
4N(N − 1)

3(2N − 1)
. (43)

On the other hand Q̂χ=−
√

7/2 · Q̂χ=−
√

7/2 is directly related with the SU(3) Casimir

operator appearing in eq. (26),
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Q̂χ=−
√

7/2 · Q̂χ=−
√

7/2 =
1

2
Ĉ2[SU(3)] − 3

8
L̂ · L̂. (44)

Finally, one obtains the result,

BE = −ǫd
4N(N − 1)

3(2N − 1)
+ κ(2N2 + 3N). (45)

The final expression for S2n in the case of particles becomes,

S2n = −ǫd
8(N − 1)2

3(4N2 − 8N + 3)
+ κ(4N + 1), (46)

while in the case of holes it reads,

S2n = ǫd
8N2

3 − 12N2
− κ(4N + 5). (47)

The first term in both eqs. (46) and (47), formally introduces a quadratic N depen-

dence. However, studying the expression for S2 in more detail, one observes that the

final result is almost N independent. In the case of N → ∞, the asymptotic value is

0.667. Already for N = 8 one obtains the value 0.670 in the case of particles and 0.669

in the case of holes. As a conclusion, the situation close to the SU(3) limit also gives

rise to a linear behavior in S2n.

• Near the O(6) limit.

The γ-unstable nuclei are well described using the O(6) limit. In this case one should

make the choice ǫd = 0 and χ = 0 in the Hamiltonian (16). If we include ǫd 6= 0 such

that |κ| >> |ǫd|, the wave function (33) becomes a good approximation to the exact

solution. In order to find out how far can one proceed in the choice of the value of ǫd,

we calculate the overlap between the state (33) and the exact solution for a system

with N = 8 bosons. The result is such that, even for a ratio |ǫd|/|κ| = 10, the overlap

is larger than 0.9 (in particular equal to 0.916).

The calculation of the expectation value of (16), using the eigenstate (33), results in

the expression,
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BE = −〈0+
gs−O(6)|ǫdn̂d − κQ̂χ=0 · Q̂χ=0|0+

gs−O(6)〉

= −ǫd〈0+
gs−O(6)|n̂d|0+

gs−O(6)〉

+κ〈0+
gs−O(6)|Q̂χ=0 · Q̂χ=0|0+

gs−O(6)〉. (48)

The expectation value of n̂d in the O(6) limit is known [33], with as a result,

〈0+
gs−O(6)|n̂d|0+

gs−O(6)〉 =
N(N − 1)

2(N + 1)
. (49)

On the other hand Q̂χ=0 · Q̂χ=0 is directly related with the O(6) and O(5) Casimir

operators appearing in eq. (32),

Q̂χ=0 · Q̂χ=0 = Ĉ2[O(6)] − Ĉ2[O(5)]. (50)

Finally, the binding energy becomes,

BE = −ǫd
N(N − 1)

2(N + 1)
+ κ(N2 + 4N). (51)

The value of S2n for particles results in the expression,

S2n = −ǫd
N2 + N − 2

2(N2 + N)
+ κ(2N + 3), (52)

and for holes it reads

S2n = ǫd
N(N + 3)

2(N + 1)(N + 2)
− κ(2N + 5). (53)

Again, the first term introduces a formal quadratic N dependence. However, studying

the expressions (52) and (53) in more detail, one observes that the N dependence

almost cancels. In the case of N → ∞ the asymptotic value is 0.5. Already for N = 8

one reaches the value 0.486 in the case of particles and 0.489 in the case of holes. As

a conclusion, the situations close to the O(6)) limit also give rise to a linear behavior

in S2n.
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Note that the transitional region SU(3) − O(6) cannot be treated using the Hamiltonian

(16); a treatment based on perturbation theory does not result into a closed expression for

the binding energy.

The results obtained in this subsection exhibit the same characteristic as the ones ob-

tained in section IVB, in the sense that all situations that have been analysed always give rise

to a linear contribution in S2n. The only way of obtaining deviations from a linear behavior

is through the presence of systematic changes of the parameters in the local Hamiltonian.

This approach has been explored in detail in [36] and gives rise, indeed, to non-linearities in

S2n for the transitional U(5) − SU(3) and U(5) − O(6) regions.

Now that we have carried out the various schematic analyses of S2n in the IBM, we present

a more realistic description of binding energies and S2n values in the next subsection.

D. Crossing the mid-shell

In the previous subsection we have derived closed expressions of S2n for the case of

particles and for the case of holes, independently. However, the counting of particles/holes

produces some inconsistencies and problems: using the expressions (21) and (22), the sign

of B should be changed when crossing the mid-shell. On the other hand, when plotting

the binding energies (or S2n) in terms of N (particles or holes) we obtain a “function”

that is double valued and can lead to some errors of interpretation. Moreover, we need

two definitions of S2n, one for particles and one for holes. A possible outcome of these

inconsistencies is to introduce a new variable Ñ that represents the number of valence

particle pairs and that is related with the number of bosons N (particles or holes) through

the definition,

N =















Ñ for Ñ ≤ Ω
2

Ω − Ñ for Ñ > Ω
2

, (54)

where Ω =
∑

(j + 1/2) represents the size of the shell, that is the total number of bosons

that can be put into that shell. The value of the BE then becomes,
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BE(Ñ) = E0 + AÑ +
B
2

Ñ(Ñ − 1) + BElo
IBM (N(Ñ)). (55)

Using the variable Ñ we have a single definition of S2n for both, particles and holes, that

reads,

S2n(Ñ) = BE(Ñ) − BE(Ñ − 1), (56)

or, equivalently,

S2n(Ñ) = (A−B/2) + BÑ + BElo
IBM (Ñ) − BElo

IBM (Ñ − 1). (57)

Note that the expressions (31), (37), (47), and (53) can be used directly taking into account

the relation (54). The introduction of Ñ is just a formal trick, but it will simplify all further

analysis.

Sometimes it might be useful to represent BE or S2n as a function of the atomic number

A. In those cases it is trivial to rewrite the equations (55-56) using A.

Although with the introduction of Ñ we eliminate one ambiguity of the IBM, there still

appears a second problem that is intrinsic to the model. In order to illustrate it, we consider

a shell-model calculation. It is well known that, making the appropriate changes in the

shell-model Hamiltonian, it does not matter if one is using particles or holes. Of course,

changing from particles to holes when crossing the mid-shell reduces considerably the size

of the model space. This freedom is intrinsic to the shell-model because the Pauli principle

avoids the over-counting of states within any shell. In the case of the IBM, the situation is

completely different. Working in a boson space, one can put an unlimited number of bosons

in a shell that has only room for Nmax = Ω “bosons”. This means that in the boson model

space, the Pauli principle, or equivalently the size of the “boson shell”, is introduced by hand

and, as a consequence, it is obligatory to change from particles to holes when crossing the

mid-shell. The relevant point here is that this change induces a discontinuity in the value

of S2n when crossing mid-shell. This jump cannot represent a physical effect and is not

observed experimentally either. In order to clarify this point, we compare calculations using
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a pairing Hamiltonian in a single-j shell in the fermion space, with the SU(3) Hamiltonian

(26) [1,42]. In the case of pairing, the binding energy and S2n result as

BE = GÑ(Ω − Ñ + 1), (58)

and

S2n = G(Ω − 2Ñ + 2), (59)

respectively, where G denotes the interaction strength and Ω describes the size of the shell.

In Fig. 4, we plot the expressions (58) and (59) for G = 1 (in arbitrary units) and Ω = 10.

One notices a smooth behavior even when crossing the mid-shell. In the case of the SU(3)

Hamiltonian one has to use the equations (29), (30), and (31). In Fig. 5 we plot these

expressions for δ = −1 (in arbitrary units) and Ω = 10. When comparing Fig. 5 with Fig. 4,

one observes clear differences with the pairing Hamiltonian, in particular in the case of S2n

(It should be noted that both cases correspond to quite different physical situations. They

are only used here in order to see the different behavior when crossing the mid-shell). There

is a clear-cut unphysical behavior when crossing the mid-shell. A solution to cope with this

inconsistency is obtained when we add the global part of S2n to the local S2n term. Thus, we

keep an almost continuous variation in S2n by changing the value of A and B when crossing

the mid-shell. In the particular case of the SU(3) limit we have just to change the value

of A when crossing the mid-shell in 8Ω + 12, for δ = −1 (in arbitrary units). In section

IVF we shall see that, even in realistic calculations, the solution to eliminate the spurious

discontinuity in S2n is to change the parameters of the global part (BEgl). It should be noted

that in the case of odd Ω, the equations (29) and (35) become invalid for N = Ω/2 + 1/2.

For this value of N , the correct value is zero, while the expressions (29) and (35) give a value

different from zero.
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E. Deriving the global part: calculation of A and B

Up to now we have carried out a schematic analysis of the S2n observable, coming from the

“local Hamiltonian” in the framework of the IBM. We were able though to derive important

conclusions. In this subsection we present a new approach for studying S2n values, spectra

and transitions rates in a consistent way. In the next section, we apply the method to nuclei

belonging to the shell Z = 50 − 82. The method that will be used here was first discussed

in [36].

The key point of the method is the assumption that a linear global part (Sgl
2n), already

presented in section IVA needs to be added to the local contribution. Of course, the

coefficients in this global contribution, A and B, are taken as constant along the chain

of isotopes under study, except if crossing mid-shell or moving between major shells (see

previous subsection).

In the previous subsections, the local Hamiltonian was taken to correspond to a symmetry

limit or to a situation close to this. In the following discussion we consider more realistic

Hamiltonians. In principle, one has many possibilities for choosing a realistic Hamiltonian.

The parameters of such a Hamiltonian should give rise to a reasonable description of low-

lying states of even-even nuclei (energies and transition probabilities). However, in Ref. [36]

it was shown that a correct description of spectroscopic properties does not always lead to

a corresponding correct description of the nuclear ground state properties, such as S2n. A

particular class of Hamiltonian that seems to provide good results for the excited states as

well as for the ground state, is described in Ref. [37]. The Hamiltonian used corresponds to

(16) with κ′ = 0. The main characteristic is that the value of κ is fixed for all even-even

medium-mass and heavy nuclei to κ = 0.030 MeV. The values of ǫd and χ are adjusted to

obtain the best possible description of energy spectra and electromagnetic transition rates

(the values of the parameters are given in Ref. [37]). In this framework the main observables

that we intend to reproduce are E(2+
1 ), E(4+

1 )/E(2+
1 ), E(2+

γ ), E(0+
2 )/(E(2+

γ ) − E(2+
1 )),

B(E2; 2+
γ → 0+

1 )/B(E2; 2+
γ → 2+

1 ), and B(E2; 2+
γ → 0+

1 )/B(E2; 2+
1 → 0+

1 ) (where the label
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γ refers to the γ band, quasi-γ band or even two-phonon-like band). In the present paper

we take as a guide the values of χ and ǫd given in figures 10 and 11 of [37], but the value of

ǫd will be fine-tuned in order to obtain the best possible description for the energy spectra,

but in all cases the differences with respect to the values given in Ref. [37] are smaller than a

10%. It should be noted that the parametrisation of the local Hamiltonian is fixed without

considering the S2n values.

Once we have fixed the local IBM Hamiltonian (from Ref. [37]), it is a trivial task to

deduce the linear part of S2n (Sgl
2n), i.e.

Sgl
2n ≡ A + BÑ = Sexp

2n − Slo
2n. (60)

(Note that for simplification we have made the substitution of A− B/2 by A). In practice

the right hand side of eq. (60) is not an exact relation but gives approximately a straight

line. As a consequence the linear part is derived from a best fit to the data points, obtained

when plotting the right hand side in (60).

It should be stressed that the values of A and B thus obtained depend on the specific

choice of the IBM local Hamiltonian and as a consequence, for the best description of S2n,

one cannot mix local and global parts corresponding to different Hamiltonians. That comes

from the fact that different local Hamiltonians can give an equally reasonable description of

nuclear spectra, but their contribution to the BE value will be probably different, therefore,

in order to describe S2n correctly the global contribution (A and B) will be different. As a

consequence the values of A and B depend on the local Hamiltonian.

Although we already have a detailed prescription for extracting the values of A and B,

we have to point out how to “operate” when changing between major shells or when crossing

the mid-shell point. In principle the values of A and B will change when passing between

different shells or crossing the mid-shell. That means that we have to consider different

separate regions in our analysis.

• Moving between major shells: In this case the values of A and B change, especially

the value of A (the intercept). In our calculations the nucleus corresponding to the
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closed shell is excluded because the prescription that provides the Hamiltonian (16)

is not applicable and intruder states become important in the description. Therefore,

S2n values corresponding to a closed shell and to a closed shell plus two nucleons (of

particles) will be excluded from the fit.

• Crossing the mid-shell: As was explained previously, the IBM contains a clear de-

ficiency when crossing mid-shell because the Pauli principle is only included in an

approximate way. One of the main manifestation of this fact appears when crossing

mid-shell. We already pointed out that a simple way to solve this artefact is to change

the global (linear) part of S2n for the second part of the shell. In all practical cases we

notice that no data points should be excluded from the calculations as in the previous

case. The mid-shell point should be included in the calculation of Slo
2n before and after

the mid-shell.

F. Realistic calculations in the shell 50 − 82

In the present section, we study the value of S2n for the following chains of iso-

topes: 114−144
54Xe, 120−148

56Ba, 124−152
58Ce, 128−154

60Nd, 132−160
62Sm, 138−162

64Gd, 148−166
66Dy, 150−168

68Er,

152−178
70Yb, 158−184

72Hf, 166−188
74W, 170−196

76Os, and 176−200
78Pt, which are precisely the isotopes

analysed in Ref. [37]. The superscripts refer to the range of A that we analyse in each series

of isotopes.

The main aim of this section is not only to obtain a good description of the experimental

S2n [43–45], but also to show that the hypothesis of constancy for A and B, i.e. the global

part of the Hamiltonian gives a linear contribution, is fulfilled along a wide region of nuclei.

Somehow both ends are related.

Following the prescription given in subsection IVE, we choose a realistic Hamiltonian

for each series of isotopes and we subtract the local contribution of S2n, Slo
2n, from the

experimental values, Sexp
2n . With these data we calculate the straight lines that give the

best fits. We need to distinguish four regions: (a) 50 < N ≤ 66, (b) 66 < N < 82, (c)
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84 < N ≤ 104, and (d) 104 < N < 126 (where N represents the total number of neutrons).

As can be observed, the points corresponding to the closed shell and to the closed shell plus

two neutrons are excluded, while the mid-shell point is taken into account in the calculations.

To illustrate the procedure in more detail, we carefully explain the case of the Xe nuclei. In

Fig. 6 we show the differences Sexp
2n −Slo

2n together with the regression line. One observes three

different regions: before mid-shell in the shell 50− 82, after mid-shell for the same shell and

before mid-shell in the shell 82− 126. One notices the correctness of the present description

using a straight line for each region, separately. The parameters of the Hamiltonian are

given in table I; they correspond to the ones given in [37]. The coefficients of the straight

line in each region, from the left to the right are, A = 75.5 ± 9.9 and B = −0.464 ± 0.084;

A = 67.4 ± 2.1 and B = −0.392 ± 0.016; and A = 39.90 ± 0.04 and B = −0.2225 ± 0.0003,

respectively (all the coefficients are given in MeV). Note that the intercepts and slopes

correspond to a representation where we use the atomic number A instead of the number

of bosons N or Ñ . This criterion will be used along this whole subsection. The error bar

derives from the standard deviation in obtaining the best fit and represents a measure of

the goodness of the ansatz.

We have carried out similar analyses for all the chains of isotopes indicated in the be-

ginning of this subsection, obtaining analogous results. The parameters of the Hamiltonian

that has been used are given in reference [37]. In Fig. 7 we plot the values of A and B for

all the isotopes we studied. The panels (a)-(a’), (b)-(b’), (c)-(c’), and (d)-(d’) correspond

to the four regions defined previously. The error bars correspond to the standard deviation

in deriving A and B. We also present results from calculations using two different values of

κ. This is done in order to show the sensitivity of A and B with respect to small variations

in the value of κ. In both sets of calculations, the values of χ and ǫd are identical (strictly

speaking, due to the fine-tuning, ǫd is slightly different in both calculations). We can safely

conclude that the values of A and B are not very sensitive to the choice of κ, and the stan-

dard deviations are small enough to justify our ansatz that A and B are constant within the

different mass regions. Note that the values of A and B change with Z but remain constant
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for the whole chain of isotopes (fixed Z), except when crossing the mid-shell or changing of

major shell.

In figures 8, 9, 10, and 11 we compared the experimental S2n values, Sexp
2n , with the values

predicted by the IBM, combining the linear and the local part. In general, one obtains a

rather good description, even in the regions where the nuclear structure character is changing

quite rapidly and important deviations from the overall linear behavior appear. We stress

that we do reproduce S2n values and, at the same time, the properties of the low-lying states

in these nuclei. The IBM results correspond (figures 8-11) to κ = 0.030 MeV.

This analysis presented here, together with the results obtained in Ref. [36], points to-

wards an intimate relation between the correct reproduction of the nuclear excited states

and nuclear ground-state properties. A simultaneous description guarantees that the Hamil-

tonian that is used, is appropriate for the nuclei studied over a large mass region.

V. THE EFFECT OF INTRUDER STATES: SHAPE COEXISTENCE AND

SHAPE MIXING

In the former sections, we have studied within various approaches to nuclear struc-

ture: the liquid-drop approach (section II), the nuclear shell-model (section III) and the

symmetry-truncated Interacting Boson Model (section IV). We have studied the behavior

of an important quantity, i.e. S2n, and we have tried to understand its variation over large

regions of isotopes, in various mass regions. A consistent set of conclusions follows from the

above analyses.

It turns out, however, that if one starts looking to nuclear masses with the highest possible

precision [16–20,46] one becomes sensitive to localised correlations within the nuclear many-

body system. Such high-precision results in the lighter sd-shell region, at and very near

to neutron number N = 20 for the Na, Mg nuclei, have brought evidence for a new zone

of deformation, albeit very localised in (Z, N) values [31,32]. Very recently, Bollen’s group

has succeeded in performing mass measurements with the Penning trap mass spectrometer
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ISOLTRAP at ISOLDE/CERN in the neutron deficient region of the Hg, Pt, Pb, Po, Rn,

and Ra nuclei [18–20]. The results are discussed by Schwarz et al. [20] and are given in

Fig. 12 and Figs. 17, 18, 20, and 22. Very particular effects in approaching the neutron

mid-shell region near N = 104 show up.

A possible explanation might originate from the presence of shape coexisting configura-

tions in this particular mass region, which has been discussed in much detail in [32,47], and

a mixing between the intruding configuration and the ground-state, causing local deviations

from a smooth linear trend. This is particularly striking in the Hg and Pt nuclei.

Because model spaces within the shell-model quickly become prohibitively large if also

particle-hole excitations across the Z = 82 closed proton shell are included, standard large-

scale shell-model calculations cannot be carried out in a consistent way. Therefore, we discuss

two approaches that might allow for such effects to be treated in a consistent approximation:

we start from the IBM but now taking into account 2p−2h excitations as the addition of two

extra bosons (subsection VA). We also study the modification of the nuclear ground-state

binding energy as derived from a macroscopic-microscopic study, in which potential energy

surfaces (PES) are calculated taking into account competing shapes (spherical, prolate and

oblate configurations) (subsection VB).

A. Local nuclear structure effects: intruder excitations near closed shells within the

Interacting Boson Model

The effect of low-lying 0+ intruder excitations, which seems to be related to mp − nh

excitations of nucleons across the adjacent closed shells, on energy spectra, electromagnetic

properties, nuclear transfer data, etc., has been amply illustrated all through the nuclear

mass table in the vicinity of closed shells [32,47]. This holds in particular for heavy nuclei

with the most explicit examples in (and near to) the Z = 50 (Sn) region near mid-shell at

N = 66 and in the Z = 82 (Pb) region when approaching the mid-shell at N = 104. A full

study has been carried out by J.Wood et al. [32] which concentrates on the full mass table.
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The inclusion of low-lying intruder states in even-even nuclei has been modelled along the

IBM by including an extra configuration with two more bosons (N + 2), that may interact

with the regular configurations containing N bosons [48–53]; many calculations along these

lines have been performed. Even though detailed calculations may well turn out to have a

serious sensitivity to the choice of parameters describing the Hamiltonians corresponding to

the two subspaces [54–56], the general outcome remains very stable and gives the possibility

to obtain (i) low-lying 0+ intruder states that exhibit a very specific mass dependence,

approximately described by the expression [57]

∆EQ ≃ 2κ∆NπNν , (61)

which expresses the extra binding energy that results from the interaction of the extra

proton pairs, ∆Nπ, with the valence neutron pairs, Nν , using a quadrupole-quadrupole

proton-neutron interaction with κ as the force strength (see Fig. 13 left), or, (ii) to come to

a “crossing” between the intruder configuration and the regular ground-state configuration

(see Fig. 13 right). The latter effect causes a more deformed state to become the ground state

and will subsequently show up in increased binding energy and, depending on the specific

nature of the intruder configuration, possibly gives rise to the appearance of a very localised

zone of deformation (island of inversion as called in the N = 20 mass region [31,32,58–61]).

In both cases, local effects can cause the ground-state to exhibit very specific deviations from

the otherwise mainly linear variation of S2n. The former situation (i) will mainly appear

when we are sitting in a big shell like in the case in the Sn and Pb mass regions. The second

situation (ii), is more likely to show up near sub-shell closure (Z = 40, N = 58, Z = 64,

N = 90). This effect is depicted schematically in Fig. 13 [57].

In the present discussion, we shall mainly concentrate on the Pb region where an exten-

sive data set has become available very recently ( [32,62] and references therein). We have

carried out studies within the Interacting Boson Model approach (IBM configuration mixing)

in which low-lying intruder configurations are allowed to mix with the regular ground-state

configuration. Calculations have been carried out for the Po isotopes with the aim of un-
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derstanding the rapid lowering of an excited 0+ state and the band on top of that [52,53].

Using a U(5) − SU(3) dynamical symmetry coupling (ds) (using two different sets of cou-

pling matrices) and also a more general IBM-1 Hamiltonian for the intruder excitations (g)

[63], we have studied the influence of mixing on the ground-state binding energy and thus

on the S2n values. One can see in Fig. 14 that the overall trend is rather well reproduced

and that in the lightest Po nucleus, where data are obtained, albeit with a large error bar,

a local drop of about 400 keV to 150 keV results, depending on how states are mixing (for

more details see [53]).

In the Pb nuclei, no specific structure effects outside of a linear variation in S2n show

up except at the lowest neutron number observed at present. This is consistent with the

excitation energy of the lowest 0+ intruder state not dropping much below 0.8 MeV [62].

The measured very slow E0 decay rates in the Pb nuclei [64] are consistent with a very weak

mixing into the ground state and thus without local binding energy increase.

Calculations in the Pt nuclei [51], using similar methods, in the region where the two

different families of states come close and interact with typical mixing matrix elements for

the 0+ states of 100 − 200 keV, result in a specific variation in the mass dependence of

S2n values consistent with the observed data. Independent studies that have attempted to

extract the mixing matrix element between the ground-state and intruder-band members,

all come close to this value of 100 − 200 keV as mixing matrix element giving a consistent

explanation [52,53,65].

Even though it is not possible to derive every single detail of the local S2n variations,

all studies and the various results on ground-to-intruder band state mixing point towards

the interpretation that it is a localised interaction between the ground state and the specific

low-lying intruder 0+ states which is at the origin of the observed effects. Moreover, there

is a clear correlation between the energy where the ground-state and intruder states have a

closest approach and the maximal deviation in S2n from a linear variation.
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B. Macroscopic-microscopic calculations

Instead of describing binding energies from a shell-model approach (standard large-scale

shell-model calculations or the IBM approximation in which the interactions amongst pairs

form the central ingredients), one can use a different method. Here, we start from a model

that combines the macroscopic part of the total energy, with a microscopic part. This latter

part contains the nuclear shell and pairing correlations near to the Fermi level [1,2,39,40,66].

In shorthand notation, the total binding energy can be written as

BE = ELDM + Eshell + Epair. (62)

The latter method is called the Strutinsky renormalization method and has been applied in

many mass regions (see e.g. [7–12]).

The macroscopic part of the total energy was assumed to be given by a Yukawa-plus-

exponential mass formula of Möller and Nix [9,10]. The shell correction was calculated

using the axially-deformed single-particle Woods-Saxon potential [67,68], with parameters

as outlined if Refs. [68–70]. This average potential has been used previously to determine

equilibrium shapes of coexisting configurations [32] in the Pt-Ra region [67,71–74]. The shell

correction was then calculated according to prescription as given by Brack et al. [66],

Eshell =
∑

ν

eν −
∫ λ̃

−∞
eg̃(e) de, (63)

(with eν the single particle energies, g̃(e) a smoothing function and λ̃ the upper integration

limit fixed by the number of nucleons present). For the residual particle-particle interaction

a standard seniority pairing force has been used. The pairing strengths (for protons and

neutrons) used here were those of Ref. [75]. To avoid the well-known problems associated

with the BCS treatment of pairing in the region of low level densities, approximate number

projection was performed by means of the Lipkin-Nogami (LN) method [76–78]. The energies

of the local minima in the potential energy surface (PES) were obtained by performing a

minimisation with respect to the β4 and β6 deformations for each value of the quadrupole

deformation β2
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Potential energy surface calculations (PES) for a series of isotopes in the Pb region (the

Po, Pt, Pb and Hg isotopes) have been carried out before [52,67,71–74] with the aim of

studying shape coexistence in the Pb region. Properties of the Pt, Hg, Pb, and Po nuclei

are also discussed in the mass tables of Möller et al. [8–12]. A similar study has been carried

out recently by R. Wyss [79]. This has been inspired, in particular, by the high-resolution

mass measurements carried out by Schwarz et al. [20].

In the calculation of the PES, an absolute and several local minima can occur, corre-

sponding to a regular state (ε = 0) and to deformed states (ε 6= 0). Since here, we are

interested in two-neutron separation energies, both the binding energies, i.e. the absolute

minimum, as well as the excitation energies of the local, deformed minima are important.

In going from nucleus (A, Z) to the adjacent nucleus, (A − 2, Z), in order to derive the S2n

value, one has to take differences between the lowest total energy values for the nuclei that

are considered (in absolute value). The method is illustrated in Fig 15.

We like to discuss in the next two paragraphs the precision with which S2n can be

calculated and this is important in the light of later applications to nuclei in the Pb region.

When searching for minima in the potential energy surface (PES), as a function of

deformation, a rather dense mesh was used: ∆β2 = 0.01. The behavior obtained was

smooth and differences between energy values for neighbouring deformation points were of

the order of a few keV, at least close to the minimum. Therefore, the computational error

of the minimum energy can be estimated as not exceeding 1 or 2 keV. Of course, the error

introduced by approximations of the method itself (e.g., by only approximate fulfilment

of the plateau condition or by use of simple Lipkin-Nogami method for pairing correlations

[76,77]) is much larger, closer to 1 MeV. However, one can expect that taking only differences

between energies and not their absolute values cancels these errors substantially.

Inaccuracies could also be introduced through the dependence of energy on Strutinsky’s

parameters γ (“smoothing range”) and p (order of polynomial expansion used in smoothing

procedure). As discussed in detail in, e.g., Ref. [80], even for not very exotic nuclei, the

plateau condition with respect to these parameters is never fulfilled exactly. A change in γ
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by ∆γ ≈ 0.2 can induce a change in shell energy of the order of 1 MeV in a rather irregular

way depending on the detailed structure of the single-particle spectrum. As a change in

nucleon number by 2 gives rise to a change of shell energy of the order of up to a few MeV,

the uncertainties caused by lack of ideal plateau condition can be quite substantial. Again,

they are mainly smoothed out by taking differences between adjacent even-even nuclei only.

Such irregularities are most likely to show up when deformation changes in passing from one

nucleus to the heavier or lighter by 2 nucleons, because the single particle-spectrum is then

different for the two nuclei. This latter effect might be partly responsible for the presence

of some irregularities (the smaller spikes as seen, e.g., in Fig. 20 for the Pt nuclei).

In the next subsection, we compare these results with the experimental values. One has

to stress from the beginning that PES calculations can, at best, give a qualitative description

of binding energy differences (S2n values). Dynamical effects obtained by solving a collective

Schrödinger equation are not taken care of (no mixing effects between close-lying 0+ are taken

into account when making differences of PES values, purely), in the present discussion.

Going beyond the standard method of calculating PES, one needs to account for mixing

of the non-degenerate mean-field solutions. This can be done using the generator coordinate

method (GCM), originally developed be Hill, Wheeler and Griffin [81,82]. Many-body states,

obtained from HF+BCS or HFB calculations, are used to construct a more general ground

state. At present, this can be done in a consistent way using the same effective interaction.

No systematic studies have been performed as yet. Calculations starting from a solution in

the collective variables, β and γ and Euler angles, Ω, have been carried out with applications

to the N = 20 and N = 28 shell closure by the group from Bruyères-le-Châtel [83]. Likewise,

calculations starting from mean-field wave functions projected on angular momentum and

particle number using Skyrme interactions, have been carried out by the Orsay-Saclay-

Brussels groups [84] . These calculations confirm specific extra binding energy contributions

like the ones discussed in section VA. So, GCM calculations are becoming within reach

for more extended studies in e.g. the Pb region because such an approach accounts for

the dynamics of the nuclear many-body problem. The shell-model, or, symmetry truncated
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IBM studies are formulated in the laboratory frame, conserving particle number and angular

momentum from the beginning. In this sense, the two approaches, though starting from a

different zero-order picture, essentially cover the same physics.

C. Applications to the Pb region

The Pb region has shown a number of most interesting features when moving into the

neutron-deficient mass region. In the Pb nuclei, low-lying 0+ excited states have been

observed [62]. In the Po nuclei, at the lowest mass numbers reached at present, clear

indications exist for a very low-lying 0+ state that even might become the ground-state

[52,53]. In the Hg and Pt nuclei, clear-cut evidence has accumulated for the presence of

shape coexistence [32]. In the Hg nuclei, the oblate shape is observed as being lowest in

energy, even for the most neutron-deficient nuclei, whereas for the Pt nuclei, a change from

oblate into prolate shapes sets in around mass A = 188 and the reverse path back from

prolate into oblate around mass A = 178. Similar results have been derived before and

discussed [71].

It is the aim of the present study to explore how well the mass dependence of the lowest

energy minimum in a series of isotopes correlates with the variations in the binding energy

(using the two-neutron separation energies S2n as indicator) resulting from the recent high-

resolution mass measurements.

On the scale of a S2n plot (MeV energy scale) (see Fig. 12), no details can be seen of the

“intruder” correlations (expected to be of the order of a few hundreds of keV). Therefore,

we split up a S2n curve in two parts: a linear part and a part that contains local correlations

(deformation effects, specific mixing of configurations with the ground state, . . . ). In order to

visualise deviations from a linear behavior of the S2n values around neutron number, 100 ≤

N ≤ 110 (the mid-shell region), where nuclear shape coexistence and shape mixing is known

to occur, the linear curve was fitted to available experimental data outside of this range (see

[18–20]). We shall concentrate on these differences S ′
2n(exp) ≡ S2n(exp)−S2n(lin−fit) (and
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similarly in defining S ′
2n(th) as the difference of the theoretical value with the linear fit). In

all following figures (unless stated explicitly), we use these reduced quantities. In Fig. 16,

we give an overview of the S ′
2n(th) values, obtained for the Pt, Hg, Pb and Po nuclei. We

shall give a more extensive discussion of these results in comparing them with the data in

the various subsections. Note the differences with IBM in obtaining S2n(lin − fit) (Sgl
2n).

1. The Pb (Z = 82) isotopes

The S ′
2n(exp) values are given in Fig. 17. It is clear that down to the value at N ≃ 110,

only a moderate lowering is observed (down to ≃ 50 keV). Beyond mid-shell neutron number

(N < 104), a rather important increase in S ′
2n(exp) results. The relative variation in this

quantity, moving out of the closed shell at N = 126 towards mid-shell and beyond, relative to

the linear fit (which is approximating the local liquid-drop variation very well) is a reflection

of the neutron shell-plus-pairing energy correction δE = Eshell + Epair. These latter energy

corrections causes the neutron closed shell at N = 126 to become more strongly bound

(compared to a linear variation) and the mid-shell region to become less strongly bound

(compared to the linear variation). The fact that for the Pb nuclei, one has, at the same

time, a closed proton shell at Z = 82, makes these variations relatively small on an absolute

scale and effects of deformation (occurrence of oblate and/or prolate shapes) cannot easily

be observed on the present energy scale used. The theoretical values S ′
2n(th), as plotted on

the same figure 17, are derived starting from a deformed Woods-Saxon in calculating the

PES curves. The theoretical curve takes a large jump down approaching the neutron closed

shell at N = 126 and then remains moderately flat down to N = 114. Then, a smooth

but steady increase is observed in passing through the mid-shell region (reflection of the

behavior of δE). The theoretical increase, though, advances the experimental increase by a

couple of mass units. It is clearly very interesting that masses for even lighter Pb isotopes

could be determined to test this behavior.
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2. The Hg (Z = 80) and Pt (Z = 78) nuclei

The experimental reduced S2n plots, S ′
2n, look rather similar (see figures 18 for Hg and 20

for Pt isotopes). Both show a systematic decrease in the separation energy for N decreasing

towards mid-shell at N = 104. The plot for Hg shows a smooth valley with a minimum

around −200 keV. Pt however, shows a sudden and steep minimum of −300 keV for 186
78Pt108.

Starting from mid-shell, the separation energies increase again for decreasing N .

One can check (see [32] for the specific energy spectra) that around mid-shell N = 104

two band structures are present. Apart from the first one, known from heavy nuclei, that

correspond to an oblate but weakly deformed structure, there appears another band that

can be interpreted as a rotational spectrum corresponding with a prolate shape of larger

deformation. In the Hg nuclei, this second band only approaches the ground state to ≃ 400

keV, whereas in the Pt nuclei, the prolate structure becomes the ground-state band. As a

conclusion, the even-even 178−186Pt100−108 nuclei will have deformed ground states [20].

For the Hg nuclei, we show in Fig. 18 a comparison between the reduced PES calculations,

resulting in the theoretical S ′
2n(th) values and the corresponding experimental S ′

2n(exp)

values. We observe a rather good overall agreement, except for the fact that in the theoretical

curve a more pronounced flat region is obtained for neutron numbers in the interval 110 ≤

N ≤ 120, and the fact that below mid-shell, the theoretical values become slightly positive.

The first region (110 ≤ N ≤ 120) can be understood by the fact that the oblate minimum

for these Hg nuclei starts to develop, giving rise to a relative increase in the binding energy

over a spherical liquid-drop behavior (the linear reference line at zero). The oblate minimum

deepens down to N = 112 − 114 and then moves out again in the region N = 98 − 100,

approaching the liquid-drop reference line (see Fig. 19).

For the Pt nuclei, the experimental and theoretical S ′
2n values are plotted in Fig. 20.

Concentrating on the theoretical curve, one can relate the general structure with the PES

curves and their variation with decreasing neutron number. At first, around neutron number

N = 122 − 124, the oblate minimum starts to develop, deepening in going from N = 124
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down to N = 118. At the same time, a prolate minimum takes shape and the minima for

the oblate and prolate shape are almost degenerate at N = 110. The prolate minimum

takes over and this minimum starts becoming less deep at neutron number N = 106. At

N ≃ 96, the prolate and oblate minima become degenerate again, but now as much less

pronounced and deep minima (see Fig. 21). This changing structure reflects the variation of

the theoretical S ′
2n values, a structure that is also observed quite clearly in the experimental

data.

3. The Po (Z = 84) isotopes

The Po nuclei have recently been described using particle-core coupling and IBM studies

[52,53] and there, it has been discussed extensively that an intruder 0+ excited state is

clearly dropping in energy with decreasing neutron number N (from N = 118 down to

N = 108) and might even become the ground-state itself for these very neutron-deficient

Po nuclei. Inspecting now the experimental S ′
2n(exp) values (see Fig. 22), it looks like the

on-setting drop (below the reference linear fit line) from N = 118 down to N = 108 is

strongly correlated with the above drop in energy of the intruder 0+ state.

In the results of the PES calculations (see also [52,79] and Fig. 23), the spherical minimum

stays particularly stable down to N = 118 but then an oblate minimum starts coming on and

deepens systematically, relative to the spherical minimum. In this respect, the comparison

between the experimental and theoretical S ′
2n values goes rather well, down to N = 118, in

view of the energy scale used on the Fig. 22. At neutron number N = 118, the theoretical

and experimental curves are going opposite ways. For the theoretical results, below N = 118

down to N = 108, the oblate minimum is developing relative to the spherical minimum with

a prolate minimum quickly entering the picture that already is the lowest one (compared

to the oblate minimum and the spherical point), see Fig. 23. The difference with the Hg

and Pt nuclei is, that in those cases (below Z = 82), very quickly, the oblate and prolate

minima appear much below the energy corresponding with the spherical point. In Po, on the
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contrary, this is not the case. Potential minima develop at oblate and prolate shapes, but

the spherical point dominates down to N = 106 (see Fig. 23). It is this difference that causes

the theoretical S ′
2n(theo) curve to move up (relative to the linear fit). The clear differences

then point out either, that the PES situation in the Po nuclei is not so well reproduced,

or, that dynamical effects, originating from mixing between the wave functions, localised at

the various collective minima and the spherical point, play an important role. The latter

effect, which is absent in any of the comparisons made in this section (the Pb, Hg, Pt and

Po nuclei) implies that in the present comparison we cannot expect detailed agreement:

only a qualitative correlation between trends in the theoretical and experimental S ′
2n can

be expected. Of course, the measurement of masses in the even more neutron-deficient

nuclei is extremely important. One might get access to the study of effects of (i) collective

(deformation versus spherical shape) correlations and (ii) specific local configuration mixing

inducing extra binding energy in the nuclear ground-state configurations.

D. A short conclusion

As a conclusion to section V, we can say that mixing between intruder and regular states

has an influence on both nuclear energy spectra and nuclear binding energies. However,

we are still far from a detailed description of the consequences of mixing on the separation

energies, as has become clear from the previous plots (see figures 17,18, 20, and 22).

Even though the many parameters appearing in the macroscopic-microscopic model to

evaluate nuclear masses and PES, those parameters are fitted to an enormous mount of data

in a complex fitting procedure; they remain untouched after that. Only a few of them (see

also section IIA) are really fitted to all masses; the other ones are fitted to selected data

sets. Therefore, the masses derived this way (and derived S2n values) cannot be used to

account for all localised nuclear structure correlations (at and near closed shells, the precise

onset of regions of deformation), which is also not the aim of the many mass studies [8–15].

Only after including dynamical effects (like e.g. the GCM approach) can one expect to cover
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both, the full global and local mass behavior.

It should be stressed that in the case of the IBM calculations, the parameters of the local

Hamiltonian have been chosen independently from the “S2n problem”. They were obtained

from an independent fit of the energy spectra in this mass region for both, the regular and

intruder states. As far as the two-neutron separation energies are concerned, the IBM results

can count as a prediction for the actual S ′
2n values.

VI. CONCLUSIONS

In the present paper, in which we have studied nuclear binding energies and their global

properties over a large region of the nuclear mass table, we also concentrated on local

deviations from a smooth behavior and made use of the two-neutron separation energy, S2n,

as an important property to explore the nuclear mass surface. The latter local variations

could stem from the presence of shell or sub-shell closure, the appearance of a localised

region of deformation or might originate in specific configuration mixing with the ground

state that causes local increased binding energies to show up.

The very recent high-resolution measurements that have been carried out, in particular

at the ISOLTRAP and MISTRAL set-ups at ISOLDE/CERN have allowed to study nuclear

masses with an unprecedented precision of 10−5 and as such brings the interest of mass

measurements from tests of global mass formulae or HF(B) studies into a realm that allows

tests of shell-model calculations.

Here, we have discussed up to what level calculations - making use of global macroscopic

models, macroscopic-microscopic calculations, the shell-model and the Interacting Boson

Model - can give a correct overall description of the nuclear mass surface (along the region

of the valley of stability as well as for series of isotopes). It has become clear that, if one

starts from a simple liquid-drop approach, the observed almost linear drop in the S2n value

is accounted essentially through the asymmetry term. This term causes nuclei to become

less bound when moving out of the region where Z ≈ A
2

in a systematic way and even turns

41



to a linear variation in (9) when the neutron excess is becoming really large. The liquid drop

approach is able to give the correct overall mass dependence in S2n along the stability line

as well as for long series of isotopes. It is observed though that the experimental slope is

somewhat less pronounced compared to the liquid drop behavior (see Fig. 2), but here, more

sophisticated macroscopic-microscopic calculations have resulted into impressive results.

The above features also result from a shell-model approach in which we treat a given

mass region approximately starting from a reference (doubly)-closed shell nucleus and have

the valence nucleons filling a single-j shell model orbital. Using a zero-range δ interaction,

a linear variation with the number of nucleons, n, in describing the binding energy BE(j, n)

results. For more general interactions, still keeping seniority, v, as a good quantum number,

a linear plus quadratic n dependence is obtained with the coefficient of the quadratic part

contributing with a repulsive component to the total binding energy of the shell. This term

is similar in nature and relative magnitude to the asymmetry term of the liquid-drop model

description. Finally, a linear drop in the value of S2n results.

There is a clear need to do better and try more detailed shell-model calculations. At

present, the limitations of standard large-scale diagonalization constrain the calculations to

the fp shell. Recent, new developments, starting from diagonalizations in a basis generated

from Monte-Carlo sampling of the essential nuclear degrees of freedom (Monte-Carlo shell

model diagonalization: MCSMD) have resulted in highly encouraging results that may open

new possibilities to cover both, global and local nuclear properties in a consistent and unified

way [85,86]).

There are remaining problems connected with deriving absolute binding energies since

one needs a good description for the variation with A or N of the single-particle energies

ǫj . Some prescriptions are in use [28,29], but there remains a difficulty for pure shell-model

studies.

In plotting the value of S2n versus the number of nucleon pairs, the shape is close to

linear. Deviations, however, show up that must be due to the subsequent filling of a number

of single-particle orbitals and to the correlation energy that results from the interactions in

42



which pairing and proton-neutron forces play a major role. A pair approximation, as used

within the Interacting Boson Model, can then be used to take into account both the global

and local components of nuclear binding energy. We have discussed a procedure which

starts from simultaneous treating binding energies and excitation energies in extracting

parameters for the linear and quadratic U(6) Casimir invariant operators. This approach

bases on the assumption that the added global part to the IBM result is the same for a chain

of isotopes. It should be stressed that the linear part will change when changing between

major shells and even when crossing the mid-shell region. This latter fact turns out to be an

intrinsic deficiency of the IBM due to the fact that the Pauli principle is included only in an

approximate way (there is no reference any more to the subsequent filling of a set of single-

particle orbitals with a maximal number of nucleons). In section IVE, we have reported a

detailed prescription in order to obtain a consistent description of binding energies, energy

spectra and transition rates in the framework of the IBM.

In a second part of the paper, we have concentrated particularly on local deviations

from the above global description. The possibility to study nuclear masses with the highest

possible precision has become available over the last years, in particular at the ISOLTRAP

and MISTRAL set-ups at ISOLDE/CERN. Here, precisions of the order of 30 keV on a

total mass of a heavy Pb nuclei (≈ 1600 MeV) is reached. This has given rise to a number

of unexpected features in the masses of neutron-deficient nuclei in the region of Pt, Hg, Pb,

Po, Rn, Ra [18–20]. Before, similar local deviations had been observed in the region of light

N = 20 nuclei for Na, Mg [31,32,58–61].

In the present paper, we have pointed out the necessity to incorporate configuration

mixing of the regular ground state with low-lying 0+ intruder states that approach the 0+

ground-state in the neutron mid-shell region (N ≈ 104) for nuclei near closed-shell config-

urations. We have carried out detailed calculations for the Po nuclei. Similar calculations

for the whole Pb region will be carried out elsewhere in a consistent way. At the same

time, calculations for the potential energy surfaces(PES) of the given nuclei in the Pb region

have been performed, using the macroscopic-microscopic model with the universal deformed
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Woods-Saxon parametrisation. Here, the various shapes: spherical configuration, oblate

and prolate deformed shapes and their relative ordering, as a function of neutron number,

is instrumental in understanding local ground-state energy deviations from the background

liquid-drop behavior. We observe a good correlation between the experimental values of S ′
2n

and the calculated ones on the 100 keV-scale. These results are encouraging in the light

of lack of dynamical effects: we just compare energy minima for different shapes without

taking into account mixing that will inevitably occur between such close-lying states.

Resuming, we have shown, in a first part, that both, a liquid-drop approach (macroscopic-

microscopic models in general) as well as the shell model and the IBM describe the global part

of the S2n value essentially identical. The linear drop is mainly connected to the asymmetry

term (in the LDM), the quadratic terms (in the shell model) and the quadratic U(6) Casimir

invariant (in the IBM), but all three contain the same physics. Both, the overall drop in S2n

for the whole mass region, as well as in specific long isotopic series are well accounted for.

The experimental drop is overall less steep. In particular, in the case of the IBM we have

shown that it is possible to give a consistent description of ground-state and excited-state

properties. This description is able to reproduce the experimental S2n values rather well.

Finally, in a third part, deviations in nuclear binding from the global trend are showing

up in various localised regions. In the Pb region, it is most probably the effect of mixing

of low-lying intruder configurations (oblate and/or prolate shape configurations) into the

ground-state that turns out to be responsible for increased binding energies in the neutron-

deficient region. Using configuration mixing in the IBM, detailed studies can be carried out

and a consistent study is planned for the Pb region and for other (sub)shell-closures. The

PES study of static properties on the other hand is able to give a good guidance to the

interpretation of the specific deviations that have been observed in the Pb region.

Thus nuclear mass measurements are becoming increasingly important since they have

progressed now to the level of testing microscopic studies (shell-model effects, localised zones

of nuclear deformation, . . . ). This will become clearly an important line of research in future

projects.
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[83] S. Pèru, M. Girod, and J.F. Berger, Eur. Phys. J. A 9, 35 (2000) and references therein.

50



[84] A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phys. A 671, 145 (2000) and references

therein.

[85] M. Honma, T. Mizusaki, and T. Otsuka, Phys. Rev. Lett. 75, 1284 (1995).

[86] N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. Lett. 86, 1171 (2001).

51



FIGURES

20 70 120 170 220
A

5

15

25
S

2n
(M

eV
)

FIG. 1. Comparison between the experimental S2n (diamonds) values and the LDM prediction

(thick full line) along the valley of stability. The experimental data correspond to even-even nuclei

around the line of maximum stability. Points connected with lines correspond to nuclei with equal

Z.
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FIG. 2. Contributions of the different terms of the mass formula to the BE (top row) and S2n

(bottom row) for Pb, Xe, and Pd. In the S2n panels are also shown the experimental data. Two

different asymmetry terms are considered aA = 23.22 MeV (A), full line, and aA = 30 MeV (A′),

dotted line.
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FIG. 3. Schematic representation of BE (left) and S2n (right) for a shell model Hamiltonian

that preserves the seniority v as a good quantum number. The two different contributions to BE

(S2n) are plotted separately.
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FIG. 4. BE (top) and S2n (bottom) for a pairing interaction in a single-j shell with Ω = 10

and G = 1 (in arbitrary units).
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FIG. 5. BE (top) and S2n (bottom) for a SU(3) IBM Hamiltonian, for Ω = 10 and δ = −1 (in

arbitrary units).
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isotopes.

59



130 140 150 160
A

5

10

15

20

25
S

2n
(M

eV
)

Nd

Exp.
IBM

140 150 160
A

Sm

140 150 160 170
A

Gd

FIG. 9. Comparison between the experimental S2n and the IBM prediction for Nd, Sm, and

Gd isotopes.
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FIG. 10. Comparison between the experimental S2n and the IBM prediction for Dy, Er, and

Yb isotopes.
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FIG. 11. Comparison between the experimental S2n and the IBM prediction for Hf, W, Os,
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TABLES

TABLE I. Parameters for an IBM Hamiltonian for Xe isotopes. With ǫd in keV, κ = 30 keV

and κ′ = 0.

A Nν ǫd A Nν ǫd

114 7 67 130 5 62

116 8 67 132 4 70

118 9 66 134 3 80

120 10 70 138 3 61

122 9 65 140 4 45

124 8 62 142 5 42

126 7 60 144 6 45

128 6 60
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