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1. Introduction

Supersymmetric gauge theories can be embedded into string theory via intersecting

branes and branes ending on branes, following the pioneering work of [1]. This ap-

proach proved powerful in predicting moduli spaces, global symmetries and dualities

of the theories engineered that way. Even these days, now that with the advent

of AdS/CFT duality we have more refined tools to actually study dynamics, brane

setups are still quite popular to help getting intuitive pictures. This is facilitated

by the fact that many brane setups can be related by T-duality to branes moving

on a singular geometry. In particular, dualization into orbifold and orientifold back-

grounds proves useful, since this way one can employ perturbative string techniques

to calculate and derive the rules governing the brane setup. These T-dualities follow

from the duality between Kaluza-Klein monopoles and NS5 branes [2]. In [3, 4] it
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Figure 1: Examples of the two different phases in the type I’ setup. Tensor multiplets cor-

respond to motion on the compact 6 interval, hyper-multiplets to motion in the transverse

789 space. The m referred to the cosmological constant set up in the bulk.

was first used to relate 6d Hanany-Witten (HW) setups to D5 branes on orbifold

singularities. Similar relations were found for N = 2 theories in 4d [5, 6], D-brane
probes of the conifold [7, 8] and other CY singularities [9, 10].

In this paper we will study T-duality relations for NS5 branes in type I’ the-

ory. The building blocks are the NS5 branes along 012345, the defining orientifold

O8 planes and the corresponding D8 branes along 012345789. In addition one may

introduce D6 branes along 0123456, that is, stretching along the direction 6 which

is taken to be a compact interval. This is the background geometry and it pre-

serves 8 supercharges. On this background we are going to consider various probes

preserving 4 supercharges, in particular a D2 brane along 016 or a D4 brane along

01237.

The low energy dynamics of the background is described by an N = (1, 0) gauge
theory in 6 dimensions. There are two different phases, shown in figure 1: the NS5

branes can either be free to move in pairs in the bulk, their 6 position being the scalar

in a tensor multiplet, or they can be stuck on one of the O8 planes, with positions

encoded in the scalars of hypermultiplets. Taking the direction 6 compact, the former

setup is easily T-dualized along it into a type IIB orientifold on an ALE space.1

of the kind studied in [11]–[16]. In this T-dual orientifold picture the spectrum

and interactions on the branes can be reliably calculated. Due to the extra tensor

multiplets, it is well known that this setup does not correspond to a perturbative

compactification of ten-dimensional type I theory. In the S-dual heterotic SO(32)

theory, we are describing a non-perturbative phase with small instantons (T dual to

the D6 branes) on an ALE singularity (T dual to the NS5 branes). The requirement

that the NS5 branes are moving in pairs translates into the statement that some of

the singularities are frozen and cannot be blown up (for every NS5 brane pair we are

always left with at least an A1 singularity).

1More precisely, on a Taub-NUT (TN) space. The field theory data, however, depend only on

the geometry near the centers, which can be approximated by an ALE geometry.
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The other phase is when the NS5 branes are stuck on the orientifold, as studied

in [17]. This of course can still be T-dualized in the same way, however the T-dual is

no longer a free orbifold conformal field theory, so we no longer have a perturbative

description. In this phase all the tensors are frozen while all the NS5 branes can move

independently, hence it describes type I on the ALE space. However we are no longer

presented with a calculational tool to construct the spectrum on the probe branes.

We will present another T-duality, along the 7 direction, that transforms the

setup with the stuck NS5 branes into a perturbative orientifold of IIB with O7

planes and D7 branes intersecting at angles. This is a non-compact version of the

models introduced in [18]. As an application and check we will consider introduc-

ing D2 brane and D4 brane probes in this background. The D4 brane realizes a

new class of N = 1 theories in four dimensions, including several conformal ex-
amples. The D2 brane corresponds to a D1 brane probe in type I theory on an

ALE singularity, hence our construction provides some information on the so far

elusive (0,4) LSM [19] describing the heterotic string on an ALE space or, once we

include the D6 branes, on the ADHM constructions of SO(32) instantons on an ALE

space.

In the next section we will review the type I’ background, describe the T-duality

along the 6 direction and review the problems associated with stuck NS5 branes. In

section 3 we introduce the orientifold construction and give evidence that it is indeed

the T-dual after dualizing along 7. In the following two sections 4 and 5 we then

present as applications and checks the theory on the D4 brane probe and the D2

brane probe.

2. The type I’ background and T-duality to type I

2.1 T-duality along the interval direction

We start by reviewing the T-duality of type I’ theory with O8 planes (along

012345789), NS5 branes (along 012345), and D6 branes (spanning 0123456) along

the compact 6 interval, as described in the introduction. First let us discuss the case

that corresponds to a perturbative orientifold of type IIB on an ALE space, of the

kind discussed in [11]–[16]. In the type I’ dual the NS5 branes are out in the bulk,

half the hypers (corresponding to 789 positions) are frozen and we have extra tensors

from the 6 position of the NS5 branes [3, 4]. Turning on Wilson lines on the IIB side2

maps in type I’ to moving the D8 branes into the bulk. For a Zk singularity with

odd k on the IIB side, one NS5 brane is stuck on an O8 plane and the others move in

the bulk in pairs. For even k, we can have k/2 pairs or one NS5 brane stuck at each

2More accurately, turning on asymptotically flat self-dual gauge backgrounds in the Taub-NUT

geometry. We denote the asymptotic connections by ‘Wilson lines’, and point out that in the ALE

limit they correspond to choices of D brane Chan-Paton factors for the orbifold group.
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of the O8 planes and the rest moving in pairs. The stuck NS5 branes correspond

to monopoles living in the D8 gauge group [17]. In the literature, e.g. [16], latter

models are often referred to as ‘without vector structure’.

Of course this IIB orientifold is not type I on the ALE space. In order to obtain

type I we have to mod out by world-sheet parity Ω. The action Ω reverses the sign of

the NS-NS B-field, and hence is a symmetry of type IIB string theory only if all the

NS-NS B-fields are turned off. Since in the free world-sheet orbifold CFT of type IIB

on ALE space the twisted sector NS-NS B-fields are non-zero, in this theory Ω can

not be gauged. Instead we would have to orientifold the interacting ALE conformal

field theory at B = 0.

In the perturbative orientifolds with non-zero B-fields of [11, 12, 13, 16] Ω is

combined with a space-time action [20] exchanging oppositely twisted sectors. The

resulting models involve tensor multiplets and correspond to new phases of the het-

erotic string. The only example without extra tensors (the orientifold of C2/Z2
in [11, 12, 13]) corresponds to a bundle without vector structure [21], which hence

also describes a compactification of the SO(32) string with a non-trivial gauge back-

ground turned on. In type I’ the corresponding configuration has one NS5 brane

stuck at each O8 plane.

Unless we turn Wilson lines to the SO(16)×SO(16) point, additional D6 branes
are required in the bulk, due to charge conservation in the background of the non-

trivial cosmological constant [3, 4]. We are always free to add an arbitrary equal

number of D6-branes on each interval, corresponding to adding small instantons

(that is D5 branes) on the IIB side.

2.2 SO(32) strings on a smooth ALE

In order to study the heterotic string with a trivial bundle on an ALE, we have

to mod out IIB just by Ω (without geometric action) and study the D-string in

this background. As argued above, we would have to orientifold the theory at

B = 0. Let us once more analyze the T-dual type I’ language. Since in this

phase the twisted sector tensors are projected out, the NS5 branes must be stuck

on the orientifold planes, with their positions within the O8 plane parametrized by

scalars in the hypermultiplets. If we realize the SO(32) by putting all D8 branes

on (say) the right O8, in order to have a trivial bundle we should locate all the

NS5 branes at the left O8 plane. Having all the D8 branes on one side sets up

a cosmological constant in the bulk. A NS5 brane in such a background cosmo-

logical constant would have to be connected with 8 D6 branes to the right O8

plane. So without extra (fractional) small instantons present (D6 branes along

0123456), the bulk cosmological constant does not allow the NS5 branes to wan-

der off into the bulk. There is no phase transition trading hypermultiplets for

tensors [17]. For a generic choice of Wilson lines, the NS5 branes are stuck in a

similar fashion on the less occupied O8 plane. They can be interpreted as monopoles

4
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of the D8 brane world-volume gauge theory. Only at the SO(16) × SO(16) point
NS5 branes may move around freely, since the bulk cosmological constant van-

ishes.

We will show that in order to describe the phase with stuck NS branes, another T-

duality can be employed. In the type I’ language this is a duality along the direction

7. This duality can be established when we take the 6 direction to be non-compact,

that is we study a single O8 with the stuck NS5 branes, while compactifying the 7

direction. So this is not really the T-dual of the situation we want to study, with

7 non-compact and 6 compact. However when interested in the gauge theory on a

probe, all the interesting dynamics are determined locally by the interplay of probe

branes and orientifold and NS5 branes. The new T-duality gives us a calculational

tool to describe a single O8 plane with an arbitrary number of D8 branes and stuck

NS5 branes, and probes on this background.

3. A new T-duality into a orientifold with branes at angles

3.1 A non-compact orientifold with branes at angles

According to [2], k NS5 branes on a circle are T-dual to an ALF space with a C2/Zk
singularity at the origin. Positions of the NS5 brane in the transverse space map to

the 3 blowup parameters associated with each of the (k−1) homologically non-trivial
2-spheres, and positions along the compact direction map to the NSNS 2-form field

fluxes through the spheres. Note that having the NS5 branes stuck on the O8 freezes

one of the 3 blowup modes (the 6 position). Instead we have a 10 position on the

M-theory circle, which corresponds to a RR 2-form flux in the IIB orientifold.

In our configuration of figure 1, considering the direction 7 compact and T-

dualizing along it, the T-dual is an k-center Taub-NUT (TN) space, with the circle

fiber parametrized by 7′, the T-dual of the 7 direction, and the base parametrized
by 689. Our purpose is to identify the geometry of the T-dual of the type I’ O8/D8

system. The original O8 planes and D8 branes were wrapped in the 7 direction,

hence they should correspond to D7 branes not wrapped on the circle fiber of TN.

In a suitable complex structure, the TN can be described by the hypersurface in C3

UV = Zk , (3.1)

and the circle corresponds to the U(1) orbit (U, V ) → (eiλU, e−iλV ), with real λ
ranging from 0 to 2π. Near the core of the TN space, the geometry is locally that of

a C2/Zk singularity, with the generator Θ of Zk acting as

Θ :

{
z1 → e2πi/k z1
z2 → e−2πi/k z2,

, (3.2)

where one can take e.g. z1 := x
6 + ix8 and z2 := x7 + ix9. These coordinates are

related to the above ones by U = zk1 , V = z
k
2 , Z = z1z2.

5
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Figure 2: On the covering space the orbifold action acts on the branes/planes by rotation.

Including all the mirror images under the orbifold action, we are required to include branes

intersecting at angles.

So in order to T-dualize the O8 plane we are looking for an orientifold action

in the Taub-NUT geometry, with sets of fixed points (O planes) not wrapping the

S1 fiber. An action with the correct properties is given by ΩR(−)FL , where Ω is
world-sheet parity, and R is the spacetime action

R :

{
z1 → z1
z2 → z2 . (3.3)

The fixed set of R is z1 = z1, z2 = z2, which is a special lagrangian cycle. Hence the

corresponding O7 plane preserves the correct number of supersymmetries. Notice

that the full orientifold group contains different elements ΩRΘa, whose sets of fixed

points lead to a set of k O7 planes at angles, as shown in figure 2. Specifically, the

curves wrapped by the O7 planes are given by

z1 = e
−2πia

k z1 ; z2 = e
2πia

k z2. (3.4)

with a = 0, . . . , k − 1. These orbifold and orientifold actions have been considered
in [18], in the context of compact toroidal orbifolds.

Clearly, the T-duals of the D8 branes correspond to Zk invariant sets of D7

branes at angles wrapped on curves of the type described, see figure 2. To see this,

for example, if we start with a D7 brane wrapped on z1 = z1, z2 = z2, after the

action of Θb we get a D7 brane wrapped on ei
2πb
k z1 = e

−i 2πb
k z1 and e

−i 2πb
k z2 = e

i 2πb
k z1.

Rewriting this we have z1 = e
−i 4πb

k z1 and z2 = e
i 4πb
k z1, which is a curve of the kind

in (3.4) for a = 2b. Furthermore, this calculation shows that there is a difference

between the k odd case and k even case. For odd k a Zk invariant configuration of

D7 branes is given by k sets of D7 branes wrapped on the curves above. For even

k, however, Zk does not relate curves with even and odd a. Hence it is possible to

construct Zk invariant combinations of D7 branes with only P = k/2 sets, related

by ZP , and the orbifold action contains an additional Z2 acting within each stack.

Even though there is no inconsistency in such possibilities, we will be interested in

configurations with local charge cancellation (see section 3.4). Such configurations

6
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involve k sets of D7 branes on the k curves above, namely two Zk invariant sets of

D7 branes, wrapped on the even and odd a curves, respectively.

A similar construction can be made for orbifold CY 3-folds. In this case the

branes will wrap special lagrangian 3-cycles. Compact versions of such models have

appeared in [22, 23]. Non-compact orbifolds with branes at angles (in the absence of

orientifold projection) have been considered in [24].

3.2 The closed string spectrum and the worldvolume theory on the 7-

branes

3.2.1 The closed string spectrum

Besides the usual matter from the untwisted sector, the closed string twisted sectors

contain, before the orientifold projection, k − 1 hyper and tensor multiplets of 6d
(1, 0) susy. The orientifold projection above maps each twisted sector to itself, and

can be seen to project out the tensor multiplets, leading to k − 1 hypermultiplets,
in agreement with the result in the type I’ construction. This result generalizes to

arbitrary Zk the closed string spectrum for crystallographic twists in [18].

An alternative derivation is to follow the analysis of [25], which deals with the

related orientifold action ΩR′ with R′ : (z′1, z
′
2)→ (z′2,−z′1), and leads to k−1 tensor

multiplets and no hypermultiplets. This is similar to our action R if we rewrite R

by expressing the same ALE in a different preferred complex structure, by defining

z′1 = z1 + z̄2, z
′
2 = z2 + z̄1, where we have R : (z

′
1, z

′
2)→ (z′2, z′1). This differs from R′

in just one sign, which can be seen to flip the orientifold action in the twisted sectors

to yield k − 1 hypermultiplets and no tensors.

3.2.2 The worldvolume theory on the D7 branes

In order to calculate the worldvolume theory we have to specify the Zk action on

the D7 brane indices. Starting with the odd k case, and labeling the k stacks of n

D7-branes by a Chan-Paton index a = 1, . . . , k, the action of the generator Θ of Zk
is to map the ath to the (a+ 1)th stack. Hence we have

γΘ,7 =




1n
1n

. . .

1n
1n


 (3.5)

which we write as (γΘ,7)ab = δb,a+11n. Notice that upon diagonalization, this matrix

is equivalent to the more familiar

γΘ,7 = diag(1n, ω1n, . . . , ω
k−11n) , (3.6)

where ω = e2πi/k. However, working on the basis in (3.5) is more convenient.

7
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The orientifold projection is represented by the matrices

γΩR,7 = diag(An, . . . , An) (3.7)

with

An = 1N (3.8)

or

An =

(
0 1n/2

−1n/2 0

)
(3.9)

corresponding to the choice of O8+ or O8− plane on the T-dual side respectively.
For even k = 2P , we consider configurations with two Zk invariant set (a total

of k stacks), which we treat independently. Each contains P stacks of n D7-branes,

labeled by a = 1, . . . , P . The Zk action is represented by the P × P block matrix

γΘ,7 =




Mn
Mn

. . .

Mn
Mn


 with Mn = diag(e

πi/k1n/2, e
−πi/k1n/2)

(3.10)

namely (γΘ,7)ab = δb,a+1Mn. The orientifold action is given by

γΩR,7 = diag(An, . . . , An) (3.11)

with

An =

(
0 i1n/2
i1n/2 0

)
(3.12)

or

An =

(
0 1n/2

−1n/2 0

)
(3.13)

corresponding to the O8+ or O8− plane on the T-dual side.
Let us discuss the spectrum after the orbifold projection, but before the orien-

tifold projection. The results are shown in the first half of table 1. Recall that we

start with a Zk action and have to distinguish the case of even and odd k. For odd

k we have k sets of n branes, which we denote as D7a-branes. For even k = 2P we

have two Zk-unrelated families of P sets.

The matter content consists of an 8D piece and some matter localized at the

6D intersection. For the purposes of discussion, let us momentarily pretend that the

D7 branes are somehow ‘compactified’ and phrase the spectrum in terms of D = 6

N = 1 SUSY. Namely we discuss the structure of the zero modes of the 8d fields in
the bulk of the D7 branes. In the 7a7a sectors, we start with a gauge group U(n)

k

and adjoint superpartners. For odd k, the Zk simply maps one set of branes to the

next, and so reduces the group to just one U(n) and the matter to just one adjoint

8
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hypermultiplet. For even k = 2P , the Zk projection on the original U(n)
P × U(n)P

vector plus adjoint hypermultiplets can be regarded as acting in two steps. First,

the ZP projection reduces to U(n)×U(n). Next, the remaining Z2 maps each stack
to itself, and projects the vector multiplets to [U(n/2) × U(n/2)]2, and the adjoint
hypers to hypers in two copies of the (n/2, n/2; 1, 1)+ (1, 1;n/2, n/2). These spectra

are easily obtained using the projection by the matrices (3.5), (3.10) on the original

7a7a spectrum, namely 6d N = 2 vector multiplets of U(n)k.
Let us turn to the 7a7b sectors, for a 6= b. From each such sector we obtain one

half-hypermultiplet (the other half comes from the 7b7a sector, which we count as

a different one for the moment) in the bifundamental of U(n)a × U(n)b. For odd k
we get k(k − 1)/2 hypermultiplets in such representations, which are projected by
Zk to (k − 1)/2 hypermultiplets in the adjoint of the surviving U(n). For even k,
open strings within each Zk invariant set give P (P − 1)/2 hypers in bifundamental
representations. The ZP projection would leave (P−1)/2 full hypers in the adjoint of
each U(n), which are projected down to (P − 1) full hypers in the (n/2, n/2) of each
U(n/2) × U(n/2) by the additional Z2 projection. Open strings stretched between
the two Zk invariant sets give P

2 bifundamental hypers, which are projected down

to P hypers in the bifundamental of U(n)2 by the ZP projection. The additional

Z2 projection leaves P hypers in the (n/2, 1;n/2, 1) + (1, n/2; 1, n/2) of U(n/2)
2 ×

U(n/2)2.

Let us now consider introducing the orientifold projection, associated for example

to an O8− plane in the type I’ T-dual. The result is shown in the second half of
table 1. Let us again first look at the 7a7a sector. For odd k the orientifold projects

the single U(n) down to SO(n), and the matter to a hypermultiplet in the adjoint.

For even k, within each Zk invariant set the orientifold projection relates the two

U(n/2) factors. For each we obtain one U(n/2) gauge group, and two hypers in

two-index antisymmetric representation.

In the 7a7b sector for a 6= b, imposing the orientifold projections for odd k
projects the (k−1)/2 adjoint hypermultiplets of U(n) to adjoints of SO(n). For even
k = 2P , orientifolding of open strings within each Zk invariant set leads to (P − 1)
full hypers in the two-index antisymmetric representation of U(n/2). The projection

on the spectrum of open strings stretched between different invariant sets yields P

hypermultiplets in the bifundamental of U(n/2)2.

For a single brane the interpretation of the scalar moduli in these multiplets

is as follows: The scalars in the D7 brane bulk correspond to the motion of the

D7 brane away from the fixed points. Due to the orbifold symmetry all the mirror

images have to move as well, so that afterwards the branes form a regular k-gon,

as displayed for k = 3 in figure 3 and for k = 5 in figure 4. In this configura-

tion every brane still intersects every other brane. At each intersection there lives

one of the hypermultiplets. For instance, the case k = 5 in figure 4 contains two

kinds of intersections, associated to two hypermultiplets in the 7a7b sectors. Turn-
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6d (1,0) Vector 7a7a hyper 7a7b hyper

multiplet

Orbifold k odd U(n) Adj. k−1
2 Adj.

k even U(n/2)2 2( , ; 1, 1) (P − 1) [( , ; 1, 1) + (1, 1; , )]
×U(n/2)2 +2(1, 1; , ) P [( , 1; , 1) + (1, ; 1, )]

Orientifold k odd SO(n) k−1
2

k even U(n/2)2 2
(
; 1
)
+ 2
(
1;

)
(P − 1) [

(
; 1
)
+
(
1;
)
]

P ( ; )

Table 1: Spectrum on D7-branes at angles in orbifold and orientifold singularities.

8

6

Figure 3: The 8d modulus for k = 3.

6

8

Figure 4: The 8d modulus for k = 5. The two kinds of intersections lead to two hyper-

multiplets.

ing on the vevs for such hypermultiplets corresponds to deforming the intersecting

7-brane configuration into a smooth curve, as in [10]. All intersections that are

mapped into each other under the orbifold symmetry of course have to be turned

on simultaneously, giving a nice geometric interpretation of the above counting of

multiplets.

Let us conclude by mentioning that the six-dimensional chiral fermions localized

at the intersections lead to an anomaly, which is nevertheless canceled by an anomaly

inflow mechanism from the bulk of the D7 branes [26, 27, 28]

10



J
H
E
P
0
6
(
2
0
0
1
)
0
6
5

3.3 Closed string — open string duality

As already noted in early references [29, 30, 11, 12], an important restriction on

open string configurations is the requirement that open and closed strings couple

in a consistent fashion. By this we mean that the annulus, Möbius strip and Klein

bottle amplitudes, computed in the open channel as 1-loop, should admit a consistent

description in the closed channel as tree-level propagation between boundary and/or

crosscap states.

This requirement has been studied in setups with branes at angles in [18], where

strong consistency conditions were derived. The case addressed in [18] was on com-

pact orbifold models and the above requirements imposed non-trivial restrictions on

the choice of compactification lattices and orientifold actions on them. Our case is

non-compact, and there is no such freedom as choosing a compactification lattice,

hence one might worry about consistency of the models. In this section we show that

the resulting models satisfy the requirements of open-closed duality.

Let us briefly go through the general procedure for the cylinder amplitude, which

is enough to illustrate the point. We also restrict to odd k for simplicity. The

cylinder amplitude in the open string channel is obtained by tracing over the open

string spectrum and performing the orbifold and GSO projections. The result in our

present context, for open strings stretching between the ath and (a + r)th stack of

D7-branes, is easily obtained following the indications in [18]

A r = c(1− 1)
∫ ∞
0

dt

t4
n2

2

ϑ

[
0

1/2

]2
ϑ

[
r/k

1/2

]
ϑ

[−r/k
1/2

]

η6 ϑ

[−1/2 + r/k
1/2

]
ϑ

[
1/2− r/k
1/2

] , (3.14)

where the theta and eta functions have argument q = e−2πt. The constant c encodes
numerical factors irrelevant to our analysis. Also, for r = 0 one should include

momentum states, and some theta functions actually become eta functions, but we

ignore this point to avoid cluttering.

In [18] the above amplitude was multiplied by a numerical factor corresponding

to the intersection number of the D7 brane stacks. These factors played a crucial

role in satisfying open-closed duality. Here we show that, even though our models

do not contain such factors (there is only one intersection), a consistent amplitude

is obtained in the tree channel.

Going to the tree channel by a modular transformation, t = 1/2l, the resulting

amplitude is

Ã r = c(1− 1)
∫ ∞
0

dl n2
ϑ̃

[
1/2

0

]2
ϑ̃

[
1/2

r/k

]
ϑ̃

[
1/2

−r/k
]

η̃6 ϑ̃

[
1/2

−1/2 + r/k
]
ϑ̃

[
1/2

1/2− r/k
] , (3.15)
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where the modular functions ϑ̃ and η̃ are the usual ϑ and η but with argument

q̃ = e−4πl. This should admit the interpretation of tree-level closed string exchange
between D7 brane boundary states, schematically,

Ãr ∼ 〈D7a|qL0qL0 |D7a+r〉 . (3.16)

Clearly, the result is independent of a since only the relative angle between D7

branes is relevant. Since the rotated state |D7a+r〉 is simply obtained by applying
Θr to |D7a〉, we may write

Ãr ∼ 〈D7|qL0qL0Θr|D7〉 . (3.17)

with bra and ket representing states of parallel D7 branes. The amplitude (3.15) is

easily seen to have the right structure: the numerator (resp. denominator) repre-

sents summing over the fermionic (resp. bosonic) oscillator states excited by the D7

brane boundary state, with the shifted lower characteristics in the theta functions

corresponding to Θr insertions. However, there is an important numerical factor that

should also match. This factor appears because the theta functions of (3.15) have

upper characteristic 1/2, and have a product expansion

ϑ̃

[
1/2

1/2 + φ

]
= 2 sin(πφ)[ η(τ)q̃

1
12

∞∏
n=1

(1 + q̃ne2πiφ)(1 + q̃ne−2πφ) ] . (3.18)

For theta functions in the numerator the factor 2 sin(πφ) is expected, since it is

associated to the trace of Θr over fermion zero modes. For theta functions in the

denominator such a factor does not arise in the trace over bosonic oscillators, and

hence our tree-level result obtained from the loop channel by duality appears with

an additional factor of 1/(4 sin2 πr/k). As mentioned above, in [18] the original

loop amplitude had an additional multiplicity from multiple intersections, which

(along with some numerical factors from the structure of the lattice) canceled the

problematic factor, leading to correct tree channel amplitudes.

Our models are nevertheless consistent, because there is indeed an explanation

for this factor in the tree amplitude. It arises from tracing over the momentum

states excited by the D7 brane boundary state. Their contribution can be evaluated

in analogy with a similar trace computed in [15, section 4.3]. Exchange in the tree

channel involves momentum states, which form a continuum in the non-compact

limit. In [15] the trace of Θr over a continuum of momentum states in the four non-

compact dimensions of C2/Zk yielded 1/(4 sin
2(πr/k))2. In our case, momentum

states excited by the D7 brane boundary state correspond to only two directions,

hence give only ‘half’ of the contribution, 1/(4 sin2(πr/k)), explaining that the factor

implicit in (3.15) is actually correct.

More specifically, the trace of Θr over a continuum of momentum modes is, in

position space ∫
dx6 dx8 〈x6, x8|Θr|x6x8〉 , (3.19)
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which, defining z1 = x6 + ix7, z2 = x8 + ix9, is equal to

∫
d2z1 d

2z2 δ(x7) δ(x9) 〈z1, z2|e2πir/kz1, e−2πir/kz2〉 =

=

∫
d2z1 d

2z2 δ(x7) δ(x9) δ
(2)((1− e2πir/k)z1) δ(2)((1− e−2πir/k)z2)

= 1/(4 sin2(πr/k)) . (3.20)

It is interesting to compare our result with the large volume limit of a compact

example, of the type studied in [18]. In the compact case, there are precisely

4 sin2(πr/k) Θr-fixed points per complex plane, which is integer for crystallographic

Zk (k = 2, 3, 4, 6). Hence there is a cancellation of contributions in the integral from

each fixed point with their total number, whereby giving no net multiplicity. In our

non-compact case of C2/Zk, the unique fixed points gives the factor 1/(4 sin
2(πr/k))

in the tree channel amplitude, consistently with the open string loop result.

3.4 Tadpoles

Consistency of the configuration would require cancellation of RR tadpoles which are

not volume suppressed, i.e. RR charges whose flux cannot escape to infinity. As usual,

untwisted tadpoles are not required to cancel, since they are volume suppressed and

we work on non-compact setups. On the other hand, twisted RR tadpoles arising

from disks associated to D7-branes, or from crosscaps associated to the orientifold

projection would, if non-zero, lead to an inconsistency, since the sources for the cor-

responding charge fill all non-twisted non-compact directions, leading to no volume

suppression.

Fortunately there are no such twisted tadpoles. Following [18] one can see that in

either the Klein bottle, Moebius strip, or cylinder, only untwisted modes propagate

in the tree channel amplitude (as can be seen in (3.15) for the cylinder). By factor-

ization, this means that the branes and the orientifold planes do not carry charges

under twisted modes. Hence the models are consistent without any constraint on

the brane content of the theory.

For future application, it is however interesting to study configurations where

untwisted tadpoles associated to D7 branes do cancel. We emphasize again that

this is not required for consistency. However, it leads to the interesting property

that the closed string fields have flat profiles in the resulting configuration. When

some D brane probe is introduced in the theory, like D3 branes in Section 4, varying

profiles correspond to running coupling constants (see e.g. [5, 31]), and flat profiles

correspond to theories with no running, namely finite theories.

The value of the untwisted tadpoles associated to the D7 branes can be extracted

from the analysis of [18], and gives the expected answer. For either odd or even k,

each of the k O7 planes has charge −8 (counted in D7 brane charge units, in the
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covering space), as usual. Hence cancellation of untwisted tadpoles is achieved for

n = 8, namely eight D7 branes on top of the each O7 plane.

Note that our construction seemingly leads to a puzzle. In the original HW

type I’ picture we have one O8 plane along 012345789 and several NS branes along

012345, with 7 a compact coordinate. T-dualizing along 7 we obtain a Taub-NUT

space, with k coincident centers, so that locally we have C2/Zk. One would expect

that after T duality, the O8 plane would map into two O7 planes sitting at opposites

sides of the S1 fiber in the TN space. Our proposed T-dual is however (centering

on odd k for simplicity) just one O7 plane along z1 = z̄1, z2 = z̄2, and its orbifold

images. Another related puzzle is that in the original type I’ local charge cancellation

is achieved for 16 D8 branes overlapping with the O8 plane, whereas in our type IIB

picture it is achieved by 8 D7 branes overlapping the O7 planes.

These puzzles are solved because the T-dual description we are using is valid only

in the near center region of Taub-NUT space, whereas the intuition about what the

T-dual should be is good far from it, where the geometry splits as a (twisted) product

of R3 and S1. In order to extrapolate our description of the T-dual orientifold planes

to the region far from the TN core, and compare with the intuitive expectations,

the simplest way is to identify the S1 orbit in C2/Zk and count the number of

intersections with the O7 plane. The S1 is the U(1) orbit (eiλU, e−iλV ), for λ from
0 to 2π, in UV = Zk. The O7 plane wraps the curve U = U , V = V , which can

be parametrized by taking real U , V . This 2-cycle intersects the U(1) orbit at two

opposite points. Hence by continuously deforming the S1 fiber to the region far from

the TN core, we learn that our single O7 plane looks like two O7 planes sitting at

opposite points in S1 in the asymptotic geometry. Similarly, the single set of 8 D7

brane in the near center region looks in the asymptotic region like 16 D7 branes, in

two sets at opposite sides of S1. Hence our construction works just as required to

reproduce the intuitive T-dual picture.

4. New brane constructions of 4d N = 1 theories
As a first application of our type IIB orientifold construction, let us study a D3

brane probe on the orientifold geometry. In type I’ this is a D4 brane along 01237,

embedded in the O8 plane and stretched in between the stuck NS5 branes.

4.1 The brane and field theory calculations

As pointed out in [32], in addition to the standard branes for realizing N = 1

theories in 4 dimensions (see [33]), one may introduce one more component, a D8

brane in which the D4 brane is embedded. In our type I’ picture this is realized

when we introduce a D4 brane probe oriented along 01237. In the T-dual picture

this corresponds to introducing a D3 brane probe along 0123. We will analyze the
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Figure 5: The D4 brane probe in type I’.

matter content expected from field theory and HW construction considerations, and

then compare this with the actual calculation on the IIB side.

Let us analyze first the gauge theory on a D4 embedded in a D8 brane. As

a second step we will introduce the O8 plane. Both are well known SUSY gauge

theories with 8 supercharges. The final step is to study the gauge theories of D4

branes ending on NS5 branes, with the whole setup embedded inside the D8/O8

system.

A stack of N D4 branes inside n D8 branes on the compact 7 circle has an N = 2
SUSY SU(N) gauge theory on the 4d non-compact piece of their worldvolume. The

matter content is that of the N = 4 SUSY theory on the D4 brane (a N = 2 vector
and adjoint hypermultiplet) plus n additional hypermultiplets in the fundamental

representation. The two adjoint scalars in the vector multiplet parameterize motion

away from the D8 branes, and the four adjoint scalars in the hypermultiplet corre-

spond to motion within the D8 brane. Turning on vevs for the n extra hypers resolves

the D4 branes into instantons in the D8 brane gauge group. Adding an O8− plane,
one obtains an N = 2 SUSY USp(N) gauge theory with a hypermultiplet in the an-
tisymmetric tensor representation and n/2 additional fundamental hypermultiplets,

with SO(n) global symmetry. Again the two scalars in the adjoint in the vector

multiplet parameterize motion away from the O8 plane, while the four scalars in

the antisymmetric tensor hypermultiplet parameterize motions within the O8 plane,

and the fundamentals resolve the D4 branes into instantons. Similarly, introducing

instead an O8+ plane, we can achieve an SO(N) gauge theory with a symmetric

tensor hypermultiplet and n/2 fundamentals, with USp(n) global symmetry.

Now consider N D4 branes with k NS5 branes embedded in n D8 branes, first in

the absence of orientifold projection. The resulting theory has N = 1 SUSY in 4d.
The gauge group is SU(N)k. Each gauge factor has n fundamental and n antifun-

dametal chiral multiplets Qi, Q̃i (i = 1, . . . , k) from 4-8 strings. In addition we have

the standard bifundamental chiral multiplets Fi,i+1, F̃i,i+1 from strings stretching

across the NS5 branes. The adjoint hypermultiplet which corresponded to motions

in 789 and to the Wilson line along 6 is eliminated by the NS brane boundary condi-

tion. However, there remains the adjoint chiral multiplet Xi from the N = 2 vector
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multiplet, parameterizing the 45 motion. The 1-loop beta function of a given factor

is proportional to

3µadj − µmatter = 3(2N)− 2N − 2 ·N · (1 + 1)− n · (1 + 1) = −2n , (4.1)

leading to an asymptotically non-free theory due to the extra D8 brane matter. The

superpotential is

W =
∑
i

[
Fi,i+1XiF̃i,i+1 + F̃i−1,iXiFi−1,i ++QiF̃i,i+1Q̃i+1 + Q̃iFi,i+1Qi+1

]
. (4.2)

The first two terms are the relics of the N = 2 system formed by the NS and D4
branes. The last two terms are allowed by gauge invariance, and should be included

in order to break the global symmetry from the D8 branes from SU(n)k down to

SU(n).

Including the O8− plane, we obtain a USp(N)k gauge group with an antisym-
metric chiral multiplet Ai, one set of bifundamentals Fi,i+1, and n extra fundamentals

Qi in each group factor. The global symmetry is SO(n), and the superpotential reads

as above:

W =
∑
i

[Fi,i+1AiFi,i+1 + Fi−1,iAiFi−1,i +QiFi,i+1Qi+1] . (4.3)

For n = 8 we should obtain a finite theory. Indeed the 1-loop beta function is

3µadj − µmatter = 3(N + 2)− (N − 2)− 2N − n = 8− n , (4.4)

which vanishes for n = 8. In order to check whether the theory is actually finite

to all orders we perform an analysis following Leigh and Strassler [34]. Namely

we show that the requirement that all (exact) beta functions vanish actually leads

to linearly dependent equations, generically leading to lines of solutions instead of

isolated solutions in coupling space. Since in our scenario all superpotential terms are

cubic and the 1-loop beta vanishes, this line will pass through the origin of coupling

space, i.e. weak coupling. Hence, along the line not only beta functions, but also the

anomalous dimensions, will vanish and the theory is indeed finite.

The beta functions for the gauge coupling and the three terms in the superpo-

tential are proportional to

βgi ∼ NγFi,i+1 +NγFi−1,i + (N − 2)γAi + 8γQi
βW 1i ∼ 2γFi,i+1 + γAi
βW 2i ∼ 2γFi,i−1 + γAi
βW 3i ∼ γFi,i+1 + γQi + γQi+1 .

Defining γF =
∑
i γFi,i+1, γA =

∑
iAi, βg =

∑
i βgi we see that these equations can

be summed to obtain

βg ∼ 2NγF + (N − 2)γA + 8γQ
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βW 1 = βW 2 ∼ 2γF + γA
βW 3 ∼ γF + 2γQ .

Since W 1 and W 2 are derived from the same N = 2 relic we should put the corre-
sponding couplings equal, as reflected in above. The equations above easily lead to

the linear relation

βg = 4βW 3 + (N − 2)βW 1 ,
which shows the existence of the desired line of RG fixed points.

4.2 The spectrum from the orientifold calculation

Let us reproduce the above results by performing the calculation in the T-dual type

IIB orientifold construction. Locating Nk D3 branes at the origin in C2, strings

stretching among D3 branes lead to an N = 1 vector multiplet V with group U(Nk),
and three adjoint chiral multiplets X1, X2, X3, associated e.g. to the positions in

z′1 = z1 + iz2, z
′
2 = z1 + iz2 and z3 = x

4 + ix5, respectively. Strings stretched

between D3 branes and each D7a brane stack lead to chiral multiplets H
1,2 in the

corresponding bifundamental representations.

In order to reproduce a finite theory, there should not exist D3 brane twisted

tadpoles. This requires the action of Zk on D3 branes to be represented by a matrix

γΘ,3 = diag(1N , ω1N , . . . , ω
k−11N) , (4.5)

with ω = e2πi/k. Representations other than the regular are consistent, but lead to

non-finite theories.

The orientifold action maps each eigenspace of γΘ,3 to itself. It is possible to

show, following an analysis similar to [25, section 2.2], that the symmetry of γΩR,3 is

equal in all subspaces. Hence, the projection corresponding to, for example an O8−

plane in the T-dual is

γΩR,3 = diag(MN ,MN , . . . ,MN ), with M =

(
0 1N

2−1N
2
0

)
= −M−1 . (4.6)

The orbifold projection reads

V = γΘ,3 V γ
−1
Θ,3

X1 = ω γΘ,3X
1 γ−1Θ,3 ; H1 = γΘ,3H

1 γ−1Θ,7
X2 = ω−1 γΘ,3X2 γ−1Θ,3 ; H2 = γΘ,7H

2 γ−1Θ,3
X3 = γΘ,3X

3 γ−1Θ,3 . (4.7)

The 3-3 spectrum after the orbifold projection contains N = 1 vector multiplets of
U(N)k (as usual, the U(1) factors are expected to disappear by the T-dual of the

bending mechanism in [35]), chiral multiplets Fi,i+1, F̃i,i+1 in bifundamental repre-

sentations, and Xi in the adjoint.
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In the 37 + 73 sector, for odd k, the orbifold projection simply identifies the

sets of D7a branes and splits the D3 brane group. So after the orbifold projection

we get chiral multiplets Qi, Q̃i in representations (Ni, n). For even k = 2P , the

ZP projection leads to a D3 brane group U(2N)
P , and leads to two sets of chiral

multiplets in the (2Ni;n, 1)+(2Ni; 1, n). The additional Z2 projections breaks the D3

group down to U(N)k, and the D7 group to U(n/2)2×U(n/2)2, and leads to two sets
of chiral multiplets in the (N2i;n/2, 1; 1, 1)+(N2i+1; 1, n/2; 1, 1) +(N2i; 1, 1;n/2, 1)+

(N2i+1; 1, 1; 1, n/2).

The orientifold projection is

V = −γΩR,3 V T γ−1ΩR,3
X1 = γΩR,3 (X

2)T γ−1ΩR,3 ; H1 = γΩR,3 (H
2)T γ−1ΩR,7

X2 = γΩR,3 (X
1)T γ−1ΩR,3 ; H2 = γΩR,7 (H

1)T γ−1ΩR,3
X3 = γΩR,3(X

3)Tγ−1ΩR,3 . (4.8)

The 3-3 spectrum is as follows: there are vector multiplets of USp(n)k, chiral

multiplets Ai in the antisymmetric representation, and one set of chiral multiplets

Fi,i+1 in bifundamentals.

In the mixed sector, the orientifold projection relates the 37 and 73 sectors. For

odd k we obtain one set of chiral multiplets in representations (Ni, n) of the i
th

USp(N) factor in the D3 branes and the D7 brane SO(n) group. The case n = 8

leads to 8 fundamental flavours for each symplectic factor, and corresponds to a finite

theory, as anticipated from the untwisted tadpole computation in section 3.4. For

even k we obtain chiral multiplets in the representations (Ni;n/2; 1) + (Ni; 1, n/2)

of the ith USp(N) D3 brane factor, and the D7 brane U(n/2)2. Again, for n = 8 we

obtain 8 chiral multiplets in the fundamental of USp(Ni), as required for finiteness.

Hence the corresponding spectra agree with those obtained in the HW brane

construction. Superpotential interactions are also easily seen to agree with (4.3).

This provides a check and a nice application of our proposed T duality for stuck NS

branes.

5. The heterotic string on an ADE singularity

5.1 The problem

In the linear sigma model (LSM) approach of [36], instead of directly writing down

the conformally invariant non-linear sigma model describing the propagation of a

string in a given background, one starts with a 2d gauge theory, which in the UV

is just a free theory. Under the renormalization group flow the couplings evolve

and settle to their conformal values. As shown in [36, 37], as long as we ensure the

existence of an anomaly free R-symmetry, we can expect a non-trivial CFT in the

IR. Otherwise the model will just flow to a massive and hence free theory.

18



J
H
E
P
0
6
(
2
0
0
1
)
0
6
5

D1 branes naturally provide us with 2d gauge theories. At strong coupling, that

is in the deep IR, these D-brane gauge theories flow to the non-linear sigma model of

the fundamental string in an S-dual background. In this way the IIB string can be

constructed as the N = (8, 8) SUSY theory of the D1 brane in IIB, the (0,8) theory
of the D1 string in type I gives us the heterotic string [38] and the Coulomb branch of

the D1 D5 system describes fundamental strings propagating in the torsional metric

set up by NS5 branes [39].

In the same spirit we would like to study the LSM living on the worldvolume of a

D1 brane in type I on an ALE space. In the T-dual type I’ picture, the linear sigma

model lives on a D2 brane along 016 stretched on the interval between two O8 planes.

The linear sigma model on the D2 brane has (0,4) supersymmetry. In the phase with

the NS5 branes out in the bulk the worldvolume theory is easily determined by using

the T-duality along 6. The gauge group consists of a (4,4) supersymmetric sector,

which is a quiver like theory with bifundamental matter and gauge group

SO(1)× U(1)×U(1)× · · · × U(1)× SO(1)
for a Z2P singularity and a vector bundle with vector structure, and

U(1)× U(1)×U(1)× · · · × U(1)× U(1)
with extra ‘symmetric tensors’, i.e. singlets, in the two factors at the end of the chain

for a Z2P singularity and a vector bundle with vector structure, and

SO(1)×U(1)× U(1)× · · · ×U(1)× U(1)
with an extra singlet in the last U(1) for Z2P+1. In addition we couple to the (0,8)

matter sector from the D8 branes, breaking the SUSY down to (0,4). These matter

fields encode the gauge bundle.

Heterotic string theory in this phase has marginal operators corresponding to

blowing up P of the 2-spheres, to NS-NS fluxes through these spheres, and to turning

on the vevs for P tensor multiplets (P − 2 for the case with two stuck NS5 branes).
In the linear sigma model these correspond to FI terms, theta angles and ratios of

gauge couplings. While the former two are marginal couplings of the CFT we flow

to in the IR, the role of the latter is not clear. In the analog (4,4) situation, type

IIB D1 string probe on ALE spaces, the ratio of gauge couplings correspond to RR

2-form fluxes through the spheres of the ALE space. It can be shown [40] that the

ratios are actually irrelevant on the Higgs branch theory which flows to the NLSM

describing the IIB string on the ALE space, and that they are only marginal on the

Coulomb branch. This is in agreement with the fact that CFT is mostly insensitive

to RR potential backgrounds, which only modify the one-point function on the disk.

It would be interesting to study if the situation changes in the (0,4) context.3

3We are indebted to Ofer Aharony and Mike Douglas for illuminating discussions on this point.

19



J
H
E
P
0
6
(
2
0
0
1
)
0
6
5

D3

6

8,97’D7

Figure 6: The 2-cycles in the Taub-NUT geometry, for D7/O7 and for D3 branes.

Instead, we would like to understand the LSM on the D2 brane in the other

phase, that is with stuck NS branes leading to hypermultiplet moduli, and no tensor

multiplets. This provides the LSM for heterotic string theory on the ALE space.

Inclusion of D6 branes then yields a LSM model realizing an ADHM construction

for SO instantons on the ALE space.

5.2 Using the new T-duality

As has been discussed above, one can obtain some information of the D1 brane probe

in type I theory on an ALE space by considering a D2 brane probe (along 017) in

the type I’ model with NS branes stuck at one of the O8 planes. We consider the

situation with the dimension 7 compactified on a circle, and study the system after

T-dualizing along that direction. We also momentarily consider the dimension 6 to

be non-compact. As shown in section 3, the set of NS branes transforms into a k-

centered TN space (different from the original one in type I), and the O8 plane maps

into O7 planes corresponding to orientifold actions of type (3.3).

The location of the TN centers in 89 correspond to the original 89 locations of

the NS branes. We are interested in the case of coinciding centers, and the geometry

near the TN core is that of C2/Zk. On the other hand, positions of NS branes in

7 correspond to NS-NS B fluxes on the collapsed two-cycles, hence the perturbative

orbifold description, where all B-fields are equal, forces us to consider the NS branes

equally distributed on the 7 circle. This implies that in the original type I theory

we are studying the theory at B = 0, but with non-zero blow-ups in the direction 7.

Hence, the information we can obtain from the T-dual picture actually is associated

to the LSM for the case of blown-up ALE, as we will see in figure 6.

Let us discuss the T duality on a D2 brane ending on a NS brane. The type I’

D2 brane is not wrapped on the 7 circle, hence we expect it to map to a D3 brane

wrapped on a two-cycle in the TN geometry. The T-duality of this object is very

similar to that of D6 branes ending on NS branes, analyzed in [41], except that we

are using a different preferred complex structure. In our case, the corresponding
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2-cycle is a special lagrangian cycle wrapped along the S1 fiber in TN. In fact, in

the situation with the dimension 6 is non-compact, ‘half’ D2 branes ending on a

NS brane, extending along either positive or negative values of x6, map to different

2-cycles. Moreover, since the orientifold action flips the sign of x6, it exchanges

both kinds of half branes, hence in the T-dual picture ΩR should exchange the two

2-cycles.

This determines that the two 2-cycles are described, in the covering space of the

C2/Zk orbifold, as

z1 = iz2, z1 = −iz2 and z1 = −iz2, z1 = iz2 . (5.1)

Notice that they indeed are wrapped on the U(1) orbit of the background geometry.

Also notice that they are related by an SU(2) rotation to the 2-cycle associated to

D7/O7 (e.g. z1 = z1, z2 = z2) hence they preserve the correct number of supersym-

metries. Finally, since the above curves are invariant under the orbifold, we need not

include Zk image D3 branes. The 2-cycles associated to the D7/O7 system, and to

the D3 branes are depicted in figure 6.

When the direction 6 is considered compact, the T-dual geometry is an ‘ALG

space’, with two asymptotically compact directions, which can be constructed as an

infinite (periodic in 6) array of k-centered TN spaces. In this situations, the two

above 2-cycles are in fact joined smoothly in the x6 region opposite the TN core.

This is in analogy with the way the two half D2 branes are smoothly joined on the

side of the 6 circle opposite to the location of the NS brane in the type I’ picture.

Let us compute the spectrum and low energy effective action on such D3 brane

probe. It is useful to first consider the situation without orientifold projection, and

also with non-compact 6. This exercise is analogous to that performed in [41] for

sets of half D6-branes.

First, notice that D3 branes wrapped on the 2-cycles (5.1), subsequently denoted

D3 and D3’ branes, are fixed by the orbifold action, hence we have the possibility

of specifying a non-trivial action of the Chan-Paton indices. The general choice

would be

γθ,3 = diag(1n0, . . . , ω
k−11nk−1) (5.2)

and a similar expression for D3’ branes. Geometrically, these matrices specify flat

connections on the D brane bundles on the asymptotic region of C2/Zk, or, in the

context of TN (rather than ALE) geometry, asymptotic Wilson lines along the S1

fiber. They hence correspond to different positions in 7 in the type I’ picture. Differ-

ent fractional D3, D3’ branes correspond to half D2 branes ending on the different

NS branes, located at different 7 positions. Our probe is a particular case of one pair

of fractional D3, D3’ branes, with equal eigenvalue, specifying on which NS brane the

T dual half D2 brane is ending. Notice that the Wilson line degree of freedom is to

be considered a dynamical modulus in the final field theory, and in that sense allows

to continuously interpolate between different choices of fractional D3, D3’ branes.
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Centering on this particular case of a single probe, we set without loss of gener-

ality n0 = n
′
0 = 1, and ni = n

′
i = 0 for i 6= 0, and compute the spectrum. The 33

spectrum is obtained by the familiar projection, and leads to a U(1) gauge theory

with 8 supersymmetries. Expressing it in the language of 2d (4,4) susy (namely

working only with zero modes of the 4d fields), we get a (4,4) U(1) vector multiplet.

Its four scalars parameterize the location of the D3 brane (or the T dual D2 brane)

in 2345. The 3’3’ spectrum leads to a similar spectrum. If 6 is non-compact, they

are independent fields, but with compact 6 they correspond to the same degrees of

freedom and we get only one copy of this spectrum. The 33’ spectrum gives rise

to one hypermultiplet in the bifundamental representation. Since the D3 and D3’

branes have equal eigenvalue, it survives the orbifold projection. When the direction

6 is taken compact, the bifundamental collapses to an adjoint representation. The

scalars in this field parameterize the recombination of the two intersecting slags into

a single smooth one, very much like in [10, 42]. Concretely, the deformed curve

reads

(z1 − iz2)(z2 − iz1) = ε (5.3)

and splits into two intersecting 2-cycles for ε = 0. Hence the full 2d spectrum

on our probe is a (4,4) U(1) vector multiplet and one (4,4) adjoint, namely neu-

tral, hypermultiplet. For N overlapping probes, the gauge symmetry is enhanced to

U(N).

The orientifold projection is easily analyzed. It maps D3 to D3’ branes and vice

versa, reducing the spectrum (for compact 6) as follows. The (4,4) U(N) vector

multiplet is projected down to a (0,4) SO(N) vector multiplet, and a (0,4) chiral

multiplet (containing four real scalars and four MW right-handed fermions) in the

symmetric. The (4,4) hypermultiplet is projected down to a (0,4) chiral multiplet

in the two-index symmetric representation, and a (0,4) ‘Fermi’ multiplet (containing

four MW left fermions) in the antisymmetric representation. For N = 1 we just get

two (0,4) chiral multiplets.

Notice that the SO(N) theory we have described would suffer from 2d gauge

anomalies. However, one should recall that the full 2d theory also contains states

from strings stretched between the D2 and the D8 branes in the type I’ picture. They

can be easily read out from this picture to correspond to 32 MW left fermions in the

fundamental of SO(N), and cancel the 2d anomaly. Alternatively, one can do the

equivalent computation in the type IIB orbifold picture, by introducing D7 branes at

angles, like in section 3, and computing the spectrum of strings between the D3 and

D7 branes. The cancellation of anomalies is a non-trivial check that our procedure

or reading the piece of the spectrum associated to the intersection of D2, NS branes

and O8 planes by using a T dual orbifold construction is indeed consistent.

It is time to ask for what physics the 2d LSM is describing. In particular if our

computation has captured the LSM of the type I D1 brane in ALE space, the Higgs
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moduli space of our theory should reproduce the background geometry felt by the

type I D1 brane, a k-center Taub-Nut (or ALE) space (different from the one in the

type IIB orientifold description). Unfortunately this seems not to be the case.

In fact, there are several hints suggesting that our 2d field theory does not really

describe the propagation of a string in ALE space. In fact, since the D3 brane probe

in the type IIB orientifold is fractional, it couples to at most one blow-up parameter,

which can be shown to appear as a FI term in the field theory as usual. This suggests

that the D-brane probe is sensitive to the geometry of just one TN center, not all

k of them. Another piece of evidence comes from the actual 2d spectrum, which is

exactly that of a D1 brane probe in flat space. This suggests that the moduli space

of the theory is smooth, again suggesting the brane is sensitive to just one TN center.

Finally, this can be blamed, using the T-dual type I’ picture, to the fact that the D2

brane probe is sitting at a definite position in 7 and the NS branes are located at

different positions in 7. Hence, the D2 brane can be made to coincide with at most

one NS brane. States that would become massless when the D2 brane approaches

other centers are generically massive. This fact is geometrically manifest in the type

I’ picture, but not in the type IIB orientifold setup, where it is however correctly

recovered when one computes the spectrum on the probe.

This should be understood as follows. By construction, the D1 brane probe in

type I must have full ALE geometry as its target space. Its worldvolume theory has

to contain parameters corresponding to all the blow-up modes. However, since the

D1 string maps into a single D2 brane in type I’ and the single D2 maps only to a

single fractional brane in our T-dual picture, our calculation produces a field theory

that is only sensitive to a single blow-up. The issue is that in our calculation we have

only evaluated the massless sector. In order to probe the presence of the other NS5

branes, we would have to include states whose mass is roughly “twice the distance”

to the other branes. Our perturbative orientifold is only valid if the NS5 branes are

equally spaced, so this distance is just R7/k. While one can in principle calculate

the massive spectrum in the orientifold as well, the problem is that the orientifold

only captures the near-core region of the full T-dual Taub-Nut geometry, so we are

neglecting states of mass R7 anyway (which would come from strings winding around

the circle at infinity). The orientifold hence does not encode the right spectrum at

the massive level. So in order to get the ADHM construction we were looking for,

more refined tools to evaluate the spectrum are necessary. We however hope that

the T-dual picture we have described is useful in further developments on this issue.
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