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Wandzura-Wilczek (WW) relations between matrix-elements of bilocal light-ray operators have
recently regained interest in connection with off-forward scattering processes. Originally derived
for matrix elements over leading-twist operators, their generalization to off-forward and exclusive
processes gets complicated by the presence of higher-twist operators that are total derivatives of
leading-twist ones and do not contribute to forward-scattering. We demonstrate that, for exclu-
sive matrix-elements, the inclusion of these operators into WW-relations is essential for fulfilling
constraints imposed by the conformal symmetry of massless QCD.
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The success of QCD as fundamental theory of strong
interactions is intimately tied to its ability to describe
hard exclusive and inclusive reactions, which has been
tested in numerous experiments. In the corresponding
kinematic regime, i.e. at large space-like virtualities, the
relevant amplitudes are dominated by singularities on
the light-cone, which, in the framework of a light-cone
expansion [1], can be described in terms of contribu-
tions of definite twist. The notion of twist, for local
operators, has been introduced originally by Gross and
Treiman [2] as twist = dimension− spin; it uses the ir-
reducible representations of the orthochronous Lorentz-
group and, as such, is a Lorentz-invariant concept; its
generalization to non-local operators has been derived,
in a mathematical rigorous way, in [3, 4] for tensor oper-
ators up to rank 2. This “geometric” twist relies solely
on geometry, i.e. the properties of space-time, and is in-
dependent of the dynamics of any underlying quantum
field theory. An alternative approach to twist-counting
in hard reactions is based on the light-cone quantiza-
tion formalism [5]: quark fields ψ are decomposed into
“good” and “bad” components, so that ψ = ψ+ + ψ−,
with ψ+ = 1

2 p̂ẑψ and ψ− = 1
2 ẑp̂ψ (â = aµγµ for ar-

bitrary 4-vectors a; p and z are light-like vectors with
p · z = 1; z defines the light-cone). As discussed in [6],
a “bad” component ψ− introduces one unit of twist; the
physical interpretation of that “dynamical” twist is that,
in the infinite momentum frame, it counts the powers of
1/Q, with which the corresponding matrix-elements ap-
pear in physical scattering amplitudes; albeit being con-
venient, it is not a Lorentz-invariant concept and does
not agree with the geometric twist. The mismatch be-
tween dynamical and geometric twist becomes relevant
once power-suppressed higher-twist contributions are in-
cluded and leads to so-called Wandzura-Wilczek (WW)
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relations between matrix-elements of operators of differ-
ent dynamical, but identical geometric twist, the proto-
type of which has been derived by Wandzura and Wilczek
for the nucleon distribution functions (DFs) g1 and g2
[7]. A systematic study of WW-relations in forward-
scattering has been done in Ref. [8]. The decomposition
into operators of definite geometric twist has also been
exploited by Nachtmann to calculate exactly target-mass
corrections to Bjorken-scaling in deep-inelastic forward-
scattering [9]. The successes of the purely geometric
reasoning in applications to forward-scattering matrix-
elements has prompted several authors to use it also for
off-forward processes [10] and exclusive parton distribu-
tion amplitudes (DAs)[11, 12]. The purpose of this letter
is to argue that, despite its apparent success in disentan-
gling leading from higher-twist contributions to forward-
scattering matrix-elements, the generalization of WW-
relations to the non-forward and exclusive case requires
the inclusion of operators of higher twist. These oper-
ators arise from the dynamics of the underlying quan-
tum field theory or, more precisely, the equations of mo-
tion (EOM) and generate total translations. Their rel-
evance for preserving gauge-invariance in deeply-virtual
Compton-scattering has been discussed recently in [13];
in this letter we demonstrate that, for exclusive processes,
the inclusion of these operators is essential for fulfill-
ing the constraints posed by the dynamical symmetry
of the theory, i.e. the invariance under collinear confor-
mal transformations in the case of massless QCD on the
light-cone.

We center our discussion around the specific case of
light vector-meson DAs of dynamical twist-3, which are
relevant for describing light-cone dominated processes in-
volving vector mesons like e.g. the DIS-exclusive process
γ∗ + N → V + N and can be expressed in terms of
matrix-elements of gauge-invariant non-local operators
sandwiched between the vacuum and the meson state,
〈0|ū(x)Γ[x,−x]d(−x)|ρ−(P )〉, where Γ is a generic Dirac-
matrix structure and [x, y] denotes the path-ordered
gauge-factor along the straight line connecting the points
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x and y. Specifying to chiral-even DAs, one can decom-
pose the relevant vector and axial-vector matrix-elements

on the light-cone z2 = 0 as [11, 12]

〈0|ū(z)γµ[z,−z]d(−z)|ρ−(P, λ)〉 = fρmρ

∫ 1

−1

dξ

[

pµ

e(λ) · z

p · z
Φ̂(2)(ξ)e0(iζξ)

+e
(λ)
⊥µ

{

Φ̂(2)(ξ)e1(iζξ) + Φ̂(3)(ξ)[e0(iζξ) − e1(iζξ)]
}

−
1

2
zµ

e(λ) · z

(p · z)2
m2

ρ

{

Φ̂(4)(ξ)
[

e0(iζξ) − 3e1(iζξ) + 2

∫ 1

0

dt e1(iζξt)
]

−Φ̂(2)(ξ)
[

e1(iζξ) − 2

∫ 1

0

dt e1(iζξt)
]

+ 4Φ̂(3)
[

e1(iζξ) −

∫ 1

0

dt e1(iζξt)
]}

]

,

〈0|ū(z)γµγ5[z,−z]d(−z)|ρ
−(P, λ)〉 =

1

2
fρmρǫ

ναβ
µ e

(λ)
⊥νpαzβ

∫ 1

−1

dξ Ξ̂(3)(ξ)e0(iζξ),

where Φ̂(d) and Ξ̂(d) contain only contributions from geometric twist-d and we use the following abbreviations:

e
(λ)
⊥µ = e(λ)

µ − pµ

e(λ) · z

p · z
, ζ = p · z, e0(iζξ) = eiζξ, e1(iζξ) =

∫ 1

0

dt eiζξt.

The same matrix-elements can also be expressed in terms of contributions of definite dynamical twist as [14, 15]

〈0|ū(z)γµ[z,−z]d(−z)|ρ−(P, λ)〉 = fρmρ

∫ 1

−1

dξ eiξp·z

[

pµ

e(λ) · z

p · z
φ̂‖(ξ) + e

(λ)
⊥µĝ

(v)
⊥ (ξ) −

1

2
zµ

e(λ) · z

(p · z)2
m2

ρ ĝ3(ξ)

]

, (1)

〈0|ū(z)γµγ5[z,−z]d(−z)|ρ
−(P, λ)〉 =

1

2
fρmρǫ

ναβ
µ e

(λ)
⊥νpαzβ

∫ 1

−1

dξ eiξp·z ĝ
(a)
⊥ (ξ); (2)

φ̂‖ has twist-2, ĝ
(v,a)
⊥ (dynamical) twist-3 and ĝ3 has dy-

namical twist-4. The relation between the two sets of
DAs is given by [12]

φ̂‖(ξ) ≡ Φ̂(2)(ξ),

ĝ
(v)
⊥ (ξ) = Φ̂(3)(ξ) +

sign(ξ)
∫

ξ

dω

ω

(

Φ̂(2) − Φ̂(3)
)

(ω) ,

ĝ3(ξ) = Φ̂(4)(ξ) −

sign(ξ)
∫

ξ

dω

ω

{(

Φ̂(2) − 4Φ̂(3) + 3Φ̂(4)
)

(ω)

+ 2 ln
( ξ

ω

)(

Φ̂(2) − 2Φ̂(3) + Φ̂(4)
)

(ω)
}

,

ĝ
(a)
⊥ (ξ) ≡ Ξ̂(3)(ξ). (3)

Similar relations can be derived for chiral-odd DAs over
the tensor and pseudoscalar currents.

At this point we do observe a one-to-one correspon-
dence between the decomposition in terms of geometric
twist DAs and DAs in dynamical twist: there are four
functions each. A difference does occur, however, as soon
as we include information on the dynamics of the theory.
This information is twofold, and is encoded in the dy-
namical symmetries of the theory on the one hand and

the equations of motion (EOM) on the other hand. As for
massless QCD at light-like distances, the relevant sym-
metry is the invariance under collinear conformal trans-
formations, i.e. the group SL(2,R)∼=SO(2,1), which is
exact for the free theory and valid to leading order in the
perturbative expansion [16]; for not too small renormal-
ization scales, the corresponding quantum number “con-
formal spin”, defined as 1/2 (dimension + spin projec-
tion onto the line zµ), is thus a good quantum number
and allows a partial-wave expansion of the correspond-
ing amplitudes [15]; in the limit αs → 0 one obtains the
so-called asymptotic DAs, which are defined as the con-
tribution with lowest conformal spin. Theoretical calcu-
lations of the non-asymptotic corrections to the ρ-meson
DAs show that they are small already at scales ∼ 1 GeV
[14]. The EOM, on the other hand, allow one to establish
relations between e.g. bilinear operators of higher twist
and trilinear operators of leading twist and serve to iden-
tify the dynamically independent degrees of freedom of
a given DA [15]. In particular it turns out that the ba-
sis of higher-twist DAs is overcomplete: the number of
independent degrees of freedom is less than the number
of independent Lorentz-structures. This observation is of
course not new; to the best of our knowledge, the EOM
have first been employed by Shuryak and Vainshtein [17]
in relation with the WW-decomposition [7] of the (dy-
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namical twist-3) spin-dependent nucleon DF g2,

g2(xB) = −g1(xB) +

∫ 1

xB

dy

y
g1(y) + ḡ2(xB), (4)

where g1 is the leading-twist longitudinal spin DF and ḡ2
is the geometric twist-3 part. The original derivation of
Wandzura & Wilczek involved only quark-quark opera-
tors, but Shuryak and Vainshtein noted that, by virtue of
the EOM, the operators relevant for ḡ2 can be written as
quark-quark-gluon operators whose matrix-elements are
expected to be small and thus can be neglected.

In general, however, the EOM do not only in-
volve quark-quark-gluon operators, but also quark-

quark operators with total derivatives, schematically

O(3) = Õ(3),qqG + ∂̂µO
(2)
µ , where Õ(3),qqG is an

interaction-dependent operator and O(2,3) are quark-
quark-correlation operators of geometric twist-2 and 3,
respectively. The important point is now that, although
the above relation of course respects the geometric twist,
matrix-elements can blur this decomposition, which hap-
pens whenever the matrix-elements over total derivatives
do not vanish, i.e. for exclusive processes and off-forward
scattering, where the total derivative turns into a mo-
mentum (transfer). To be specific, let us quote the for-
mulas for the geometric twist-3 part of the vector and
axial-vector currents [14, 18]

[

ū(−z)γµ(γ5)d(z)
]

twist 3
= − gs

∫ 1

0

du

∫ u

−u

dv ū(−uz)
[

uG̃µν(vz)zν 6zγ5(γ5) − ivGµν(vz)zν 6z(γ5)
]

d(uz)

+ iǫ ναβ
µ

∫ 1

0

udu zν ∂̂α

[

ū(−uz)γβγ5(γ5)d(uz)
]

, (5)

where Gµν is the gluonic field strength, G̃µν =

(1/2)ǫµναβG
αβ its dual, and ∂̂α is the derivative over the

total translation:

∂̂α

[

ū(−z)γβd(z)
]

≡
∂

∂yα

[

ū(−z + y)γβd(z + y)
]

∣

∣

∣

∣

y→0

.

We would like to stress that, from the group-theoretical
point of view, Eq. (5) is a genuine geometric twist-3 rela-
tion. Taking matrix-elements and neglecting the man-
ifestly interaction-dependent quark-quark-gluon opera-
tors, whose numerical contribution is small [15], one finds
the “WW-type” relations [14]

ĝ
(v),dWW
⊥ (ξ) =

ξ
∫

−1

dω
φ̂‖(ω)

1 − ω
+

1
∫

ξ

dω
φ̂‖(ω)

1 + ω
,

ĝ
(a),dWW
⊥ (ξ) =

ξ
∫

−1

dω
1 − ξ

1 − ω
φ̂‖(ω) +

1
∫

ξ

dω
1 + ξ

1 + ω
φ̂‖(ω).

(6)

A comparison with (3) reveals that ĝ
(a)
⊥ , although mani-

festly of geometric twist-3, has “inherited” twist-2 contri-

butions from the total derivative; also ĝ
(v)
⊥ contains such

terms. The important point to note is that the above
WW-relations are consistent with the conformal expan-
sion in the sense that (a) inserting the asymptotic DA

φ̂as
‖ = 3(1 − ξ2)/4 yields the asymptotic DAs

g
(v),as
⊥ =

3

4

(

1 + ξ2
)

, g
(a),as
⊥ =

3

4
(1 − ξ2), (7)

as required by conformal expansion, cf. Ref. [15], and

that (b) contributions of higher conformal spin to φ̂‖
translate into contributions of the same conformal spin

to ĝ
(v,a)
⊥ .The interaction-dependent operators only con-

tribute at non-leading conformal spin.
The above relations include the contribution of the

twist-3 total-derivative operator in (5). What happens
if, in the original spirit of WW, one only includes geo-
metric twist-2 operators in the WW-relations? As shown
in [12], one finds

ĝ
(v),gWW
⊥ (ξ) =

∫ sign(ξ)

ξ

dω

ω
φ̂‖(ω),

ĝ
(a),gWW
⊥ (ξ) = 0, (8)

which, inserting φ̂as
‖ , yields

ĝ
(v),gWW
⊥ (ξ) =

3

8

(

ξ2 − 1 − 2 ln
ξ

sign(ξ)

)

, (9)

which exhibits a logarithmic singularity at ξ = 0.
These results are quite different from those obtained

from conformal expansion. The argument of WW for ne-
glecting the twist-3 operators, corroborated by Shuryak
and Vainshtein, was that they are equivalent to quark-
quark-gluon operators whose matrix-elements can be ne-
glected numerically. This argument, however, does no
longer hold in exclusive kinematics, where twist-3 op-
erators with total derivatives induce contributions that
are as large as those from twist-2. Thus, the contribu-

tions ĝ
(v),tw3
⊥ (ξ) = ĝ

(v)
⊥ (ξ)− ĝ

(v),gWW
⊥ (ξ) and ĝ

(a),tw3
⊥ (ξ) =

ĝ
(a)
⊥ (ξ) are not small numerically.
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In addition we have demonstrated above that the ge-
ometric WW-relations violate the restrictions imposed
by conformal symmetry and yield (artificial) singularities
that are cancelled exactly by total-derivative operators of
geometric twist-3. We conclude that analyses based on
geometric twist-2 are of rather limited use in deriving
WW-relations between DAs of different dynamical twist
and that it is essential to include twist-3 operators con-
taining total derivatives in order to preserve the symme-
tries of the theory. This result is complementary to that
obtained in Ref. [13] that twist-3 total-derivative opera-
tors are needed to restore gauge-invariance of physical
amplitudes in off-forward kinematics.

Let us finally also comment on the possible extension
of WW-relations to twist-4. At this order in the twist-
expansion, trace-subtractions of leading twist-2 opera-
tors become relevant and give rise to two different types
of relations: one gives the geometric twist-2 part of the
dynamical twist-4 DA ĝ3 and was obtained in [12]:

ĝtw2
3 (ξ) = −

∫ sign(ξ)

ξ

dω

ω

{

1 + 2 ln

(

ξ

ω

)}

φ̂‖(ω). (10)

This expression shows again a logarithmic singularity
that is not present in the full expression for ĝ3 obtained
in [19] using the EOM. Trace-subtractions of the twist-2
operator also give rise to so-called “kinematical” target-
mass corrections. For the forward-scattering case, contri-
butions of this type have been considered by Nachtmann.
For the exclusive case, the corresponding operators have
been considered in [20, 21], and for off-forward scatter-
ing, the resummation has been done in [22]. The rel-
evance of such a procedure remains, however, unclear.

For, in addition to the geometric mass-corrections, one
also has also “dynamic” mass-corrections from operators
∼ x2n∂2nO(2) which are of geometric twist-(2n+ 2) and
such that are “hidden” in the twist-4 quark-quark-gluon
operators entering by the EOM. This is the exact ana-
logue of what happens at twist-3: decomposition of the
relevant operators in terms of irreducible representations
of the Lorentz-group gives only part of the information:
the EOM have to be applied in order to obtain gauge-
and conformal-invariant results. Indeed, the authors of
[22] observe that their results for mass-corrections violate
gauge-invariance. Dynamical mass-corrections have so
far only been considered for the exclusive case, Ref. [19].
Again, it was not possible to formulate the twist-4 ana-
logue of Eq. (5), with a clean separation of interaction-
dependent and total-derivative terms; instead, one had to
rely on a cumbersome local expansion that was used to
obtain results for the next-to-leading order in the confor-
mal expansion. Numerically, these corrections turned out
to be relevant. We conclude that, at least for exclusive
vector-meson DAs, a resummation of mass-corrections in-
duced by trace-subtractions in the leading twist matrix
element and the higher-twist operators containing total
derivatives are relevant for a good approximation.

Acknowledgments

P.B. is supported by DFG through a Heisenberg fellow-
ship. M.L. acknowledges the Graduate College “Quan-
tum field theory” of Leipzig University for financial sup-
port and the CERN/TH-division for support during his
stay in Geneva.

[1] K.G. Wilson, Phys. Rev. 179 (1969) 1499;
S.A. Anikin and O.I. Zavialov, Annals Phys. 116 (1978)
135.

[2] D.Gross and S.Treiman, Phys. Rev. D 4 (1971) 1059.
[3] B. Geyer, M. Lazar and D. Robaschik, Nucl. Phys. B559

(1999) 339.
[4] B. Geyer and M. Lazar, Nucl. Phys. B581 (2000) 341,
[5] J.B. Kogut and D.E. Soper, Phys. Rev. D 1 (1970) 2901.
[6] S.J. Brodsky and G.P. Lepage, in Perturbative Quantum

Chromodynamics, ed. A.H. Mueller, (World Scientific,
Singapore, 1989) p. 93;
R.L. Jaffe and X. Ji, Nucl. Phys. B375 (1992) 527.

[7] S. Wandzura and F. Wilczek, Phys. Lett. B 72 (1977)
195.

[8] B. Geyer and M. Lazar, Phys. Rev. D 63 (2001) 0740XX,
in print [hep–ph/0009309].

[9] O. Nachtmann, Nucl. Phys. B63 (1973) 237;
H. Georgi and H.D. Politzer, Phys. Rev. D 14 (1976)
1829.
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