A Note on Wandzura-Wilczek Relations A Note on Wandzura-Wilczek Relations

Patricia Ball* Patricia Ball

CERN/TH, CH{1211 Geneva 23, Switzerland &CERN/TH, CH-1211 Geneva 23, Switzerland &
Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, UK Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, UK

Markus Lazar[†]

Universität Leipzig, Institut für Theoretische Physik, Augustusplatz 10, D-04109 Leipzig, Germany Universitat Leipzig, Institut fur Theoretische Physik, Augustusplatz 10, D{04109 Leipzig, Germany

leading-twist ones and do not contribute to forward-scattering. We demonstrate that, for exclusive matrix-elements, the inclusion of these operators into WW-relations is essential for fulfilling constraints imposed by the processes gets complicated by the presence of higher-twist operators that are total derivatives of for matrix elements over leading twist operators, their generalization to off-forward and exclusive recently regained interest in connection with off-forward scattering processes. Originally derived Wandzura-Wilczek (WW) relations between matrix-elements of bilocal light-ray operators have constraints imposed by the conformal symmetry of massless QCD.sive matrix-elements, the inclusion of these operators into WW-relations is essential for fulllingleading-twist ones and do not contribute to forward-scattering. We demonstrate that, for exclu processes gets complicated by the presence of higher-twist operators that are total derivatives of for $\frac{1}{\sqrt{2}}$, then $\frac{1}{\sqrt{2}}$, then $\frac{1}{\sqrt{2}}$ and $\frac{1}{\$ recently regained interest in connection with o-forward scattering processes. Originally derivedWandzura-Wilczek (WW) relations between matrix-elements of bilocal light-ray operators have

PACS numbers: 11.30.Cp, 11.80.Et, 12.38.Aw, 13.60.Fz PACS numbers: 11.30.Cp, 11.80.Et, 12.38.Aw, 13.60.Fz

with ψ_+ . group and, as such, is a Lorentz-invariant concept; its the light-cone, which, in the framework of cluded and leads to so-called Wandzura-Wilczek (WW) not agree with the geometric twist. The mismatch be- $1/Q,$ with which the corresponding matrix-elements appear in physical scattering amplitudes; albeit being conpear in physical interpretation of that "dynamical" twist is that, on geometry, i.e. the properties of space-time, and is in-
dependent of the dynamics of any underlying quantum ators up to rank 2. This "geometric" twist relies solely in a mathematical rigorous way, in [3, 4] for tensor opergeneralization to non-local operators has been derived, reducible representations of the orthochronous Lorentzoperators, tions of definite twist. The notion of twist, expansion [1], can be described in terms of contriburelevant amplitudes are dominated by singularities on interactions is intimately tied to its ability to describe cluded and leads to so-called Wandzura-Wilczek (WW)once power-suppressed higher-twist contributions are inonce power-suppressed higher-twist contributions are intween dynamical and geometric twist becomes relevant tween dynamical and geometric twist becomes relevantnot agree with the geometric twist. The mismatch bevenient, it is not a Lorentz-invariant concept and does venient, it is not a Lorentz-invariant concept and doespear in physical scattering amplitudes; albeit being con-1=Q, with which the corresponding matrix-elements apin the infinite momentum frame, it counts the powers of in the innite momentum frame, it counts the powers of physical interpretation of that \dynamical" twist is that,a "bad" component ψ ₋ introduces one unit of twist; the a d'antigat de l'antigat de l'an with $\psi_+ = \frac{1}{2} \hat{p} \hat{z} \psi$ and $\psi_- = \frac{1}{2} \hat{z} \hat{p} \psi$ ($\hat{a} = a^{\mu} \gamma_{\mu}$ for arbitrary 4-vectors a ; p and z are light-like vectors with $p \cdot z = 1$; z defines the light-cone). As discussed in [6], $p \cdot z = 1$; z d p $\ddot{ }$ "good" and "bad" components, so that $\psi = \frac{1}{2}\hat{p}\hat{z}\psi$ and $\psi_{-} = \frac{1}{2}\hat{z}\hat{p}\psi$ ($\hat{a} = \alpha'$) with $\psi_+ = \frac{1}{2} \hat{\rho} \hat{z} \psi$ and $\psi_- = \frac{1}{2} \hat{z} \hat{\rho} \psi$ (a = $a^{\mu} \gamma_{\mu}$ for ar- \Box and \Box tion formalism [5]: quark fields ψ are decomposed into tion formalism [5]: quark elds are decomposed intoin hard reactions is based on the light-cone quantizain hard reactions is based on the light-cone quantizafield theory. An alternative approach to twist-counting eld theory. An alternative approach to twist-countingdependentof [th](#page-3-0)e dynamics of any underlying quantumon geometry, i.e. the properties of space-time, and is in- $\overline{}$ in a mathematical rigorous way, in $[3, 3, 4]$ for tensor operations way, in for the $\frac{1}{2}$ generalization to non-local operators has been derived,group and, its a Lorentz[-inv](#page-3-0)ariant concept; its a Lorentz-invariant concept; its a Lorentz reducible representations of the orthochronous Lorentz-Treiman Treiman [2] as twist = dimensionoperators, has been introduced originally by Gross andexpansion [1], can be described in terms of contributhe light-cone, which, in the framework of a light-cone, relevant amplitudes are dominated by singularities onkinematic regime, i.e. at large space-like virtualities, the kinemati[c r](#page-3-0)egime, i.e. at large space-like virtualities, thetested in numerous experiments. In the corresponding tested in numerous experiments. In the correspondinghard exclusive and inclusive reactions, which has been hard exclusive and inclusive reactions, which has beeninteractions is intimately tied to its ability to describeThe success of QCD as fundamental theory of strong The success of QCD as fundamental theory of strongì |
|
|
|
| $\overline{\mathbf{H}}$ [2] as twist = dimension $-$ spin; it uses the irhas been introduced originally by Gross and $\frac{1}{\sqrt{6}}$ $\overline{}^a$ bue $\overline{}^{a}$ a; p andintroduces one unit of twist; the The notion of twist, for local.
. are light-like vectors withبر
2 יי
12 ^p (^a $\ddot{\zeta}$ spin; it uses the ira light-cone $+\phi$ + for local $+$ + $+$ [+](#page-3-0) ,

*Electronic address: Patricia.Ball@cern.ch
†Electronic address: lazar@itp.uni-leipzig.de yElectronic address: lazar@itp.uni-leipzig.deElectronic address: Patricia.Ball@cern.ch

> gling leading from higher-twist contributions to forwardoff-forward processes [10] and exclusive parton distribumal transformations in the case of massless QCD on the of the theory, i.e. the invariance under collinear conforing the constraints posed by the dynamical symmetry the inclusion of these operators is essential for fulfillin this letter we demonstrate that, for exclusive processes, Compton-scattering has been discussed recently in [13]; evance for preserving gauge-invariance in deeply-virtual tion (EOM) and generate total translations. Their reltum field theory or, more precisely, the equations of moators arise from the dynamics of the underlying quanthe inclusion of operators of higher twist. scattering matrix-elements, the generalization of WW-
relations to the non-forward and exclusive case requires is to argue that, despite its apparent success in disentantially tion amplitudes (DAs)[11, 12]. The purpose of this letter elements has prompted several authors to use it also for reasoning in applications to forward-scattering scattering [8]. corrections to Bjorken-scaling in deep-inelastic forward exploited by Nachtmann to calculate exactly target-mass into operators of definite geometric twist has also been scattering has been done in Ref. [8]. The decomposition for the nucleon distribution functions (DFs) g_1 and g_2 type of which has been derived by Wandzura and Wilczek ent dynamical, but identical geometric twist, the protorelations between matrix-elements of operators of differlight-cone. lighmal transformations in the case of massless QCD on theof the theory, i.e. the invariance under collinear conforing the constraints posed by the dynamical symmetrythe inclusion of the inclusion of these operators is essential for full larger \mathcal{L} in this letter we demonstrate that, for exclusive processes,Compton-scattering has been discussed recently in fact, the contract of the co evtion(EOM) and generate total translations. The translations of the translations of the translations. The interleations of the translations of the translations. The translations of the translations of the translations. The tum eld tum el
Eld tum eld tu ators arise from the dynamics of the underlying quanthe inclusion of operators of higher twist. These operrelations to the non-forward and exclusive case requiresscattering matrix-elements, the generalization of WWgling leading from higher-twist contributions to forwardis to argue that, despite its apparent success in disentantion amplitudes (DAS) $\frac{1}{2}$. The purpose of this letter of the purpose of the purpose of the purpose of the purpose of the purp o-forward processes [10] and exclusive particular processes [10] and exclusive particular elements has prompted several authors to use it also for reasoning in applic[ations t](#page-3-0)o forward-scattering matrixscattering [9]. The successes of the purely geometriccorrections to Bjorken-scaling in deep-inelastic forwardexploited by Nachtmann to calculate exactly target-massintooper[at](#page-3-0)ors of denite geometric twist has also beenscattering has been done in Ref. [8]. The decomposition[7].for the nucleon distributionfu[nc](#page-3-0)tions (DFs)type of which has been derived by Wandzura and Wilczekent dynamical, but identical geometric twist, the protorelations between matrix-elements of operators of dierance for preserving gauge-invariance in deeply-virtual contract in deeply-virtual contract in deeply-virtual contract in deeperving and contract in deeperving and contract in deeperving and contract in deeperving and contr t-cone.A systematic study of WW-relations in forward- $\ddot{ }$ The successes of the purely geometric , the equations of models of models of models of models of models \mathcal{L} These oper-:
|matrix- $\frac{1}{2}$

sandwiched between the vacuum and the meson state,
(0| $\bar{u}(x)\Gamma[x,-x]d(-x)|\rho^-(P)\rangle$, where Γ is a generic Dirac-
matrix structure and $[x,y]$ denotes the path-ordered gauge-factor along the straight line connecting the points matrix-elements of gauge-invariant non-local operators volving vector mesons like e.g. the DIS-exclusive process relevant for describing light-cone dominated processes inlight vector-meson DAs of dynamical twist-3, which are matrix structure and α and α is α and α and α and α h0ju(x)[x;sandwiched between the vacuum and the meson state,matrix-elements of gauge-invariant non-local operators of gauge-in Ŕ $v = v$ relevant for describing light-cone dominated processes inlight vector-meson DAS of dynamical twist-3, which are discussed by twist-3, which are discussed by twist-3, w
Contract twist-3, which are discussed by twist-3, which are discussed by twist-3, which are discussed by twist-We center our discussion around the specific case of We center our discussion around the specic case of + N \rightarrow $V+V$ |
|
| $\frac{d}{dx}$ = $\frac{d}{dx}$ = $\frac{d}{dx}$.
.
. Nand can be expressed in terms of and can be expressed in terms of (P)i;where $\frac{1}{2}$

gauge-factor along the straight line connecting the straight line connection the points of p

x and y. Specifying to chiral-even DAs, one can decompose the relevant vector and axial-vector matrix-elements on the light-cone $z^* = 0$ as [11, 12]

$$
\langle 0|\bar{u}(z)\gamma_{\mu}[z,-z]d(-z)|\rho^{-}(P,\lambda)\rangle = f_{\rho}m_{\rho}\int_{-1}^{1}d\xi\bigg[p_{\mu}\frac{e^{(\lambda)}\cdot z}{p\cdot z}\hat{\Phi}^{(2)}(\xi)e_{0}(i\zeta\xi)\n+ e_{\perp\mu}^{(\lambda)}\bigg\{\hat{\Phi}^{(2)}(\xi)e_{1}(i\zeta\xi) + \hat{\Phi}^{(3)}(\xi)[e_{0}(i\zeta\xi) - e_{1}(i\zeta\xi)]\bigg\} - \frac{1}{2}z_{\mu}\frac{e^{(\lambda)}\cdot z}{(p\cdot z)^{2}}m_{\rho}^{2}\bigg\{\hat{\Phi}^{(4)}(\xi)\bigg[e_{0}(i\zeta\xi) - 3e_{1}(i\zeta\xi) + 2\int_{0}^{1}dt\,e_{1}(i\zeta\xi t)\bigg] - \hat{\Phi}^{(2)}(\xi)\bigg[e_{1}(i\zeta\xi) - 2\int_{0}^{1}dt\,e_{1}(i\zeta\xi t)\bigg] + 4\hat{\Phi}^{(3)}\bigg[e_{1}(i\zeta\xi) - \int_{0}^{1}dt\,e_{1}(i\zeta\xi t)\bigg]\bigg\}\bigg],
$$

$$
\langle 0|\bar{u}(z)\gamma_{\mu}\gamma_{5}[z,-z]d(-z)|\rho^{-}(P,\lambda)\rangle = \frac{1}{2}f_{\rho}m_{\rho}\epsilon_{\mu}{}^{\nu\alpha\beta}e^{(\lambda)}_{\perp\nu}p_{\alpha}z_{\beta}\int_{-1}^{1}d\xi\,\hat{\Xi}^{(3)}(\xi)e_{0}(i\zeta\xi),
$$

where $\hat{\Phi}^{(d)}$ and $\hat{\Xi}^{(d)}$ contain only contributions from geometric twist-d and we use the following abbreviations:

$$
e_{\perp\mu}^{(\lambda)} = e_{\mu}^{(\lambda)} - p_{\mu} \frac{e^{(\lambda)} \cdot z}{p \cdot z}, \qquad \zeta = p \cdot z, \qquad e_0(i\zeta \xi) = e^{i\zeta \xi}, \qquad e_1(i\zeta \xi) = \int_0^1 dt \, e^{i\zeta \xi t}.
$$

The same matrix-elements can also be expressed in terms of contributions of definite dynamical twist as [14, 15]

$$
\langle 0|\bar{u}(z)\gamma_{\mu}[z,-z]d(-z)|\rho^{-}(P,\lambda)\rangle = f_{\rho}m_{\rho}\int_{-1}^{1}d\xi e^{i\xi p\cdot z} \left[p_{\mu}\frac{e^{(\lambda)}\cdot z}{p\cdot z}\hat{\phi}_{\parallel}(\xi) + e^{(\lambda)}_{\perp\mu}\hat{g}^{(v)}_{\perp}(\xi) - \frac{1}{2}z_{\mu}\frac{e^{(\lambda)}\cdot z}{(p\cdot z)^{2}}m_{\rho}^{2}\hat{g}_{3}(\xi)\right], (1)
$$

$$
\langle 0|\bar{u}(z)\gamma_{\mu}\gamma_{5}[z,-z]d(-z)|\rho^{-}(P,\lambda)\rangle = \frac{1}{2}f_{\rho}m_{\rho}\epsilon_{\mu}^{\ \nu\alpha\beta}e_{\perp\nu}^{(\lambda)}p_{\alpha}z_{\beta}\int_{-1}^{1}d\xi e^{i\xi p\cdot z}\hat{g}_{\perp}^{(a)}(\xi); \tag{2}
$$

 $\phi_{||}$ has twist-2, g_\perp^{even} (dynamical) twist-3 and g_3 has dy-DAs is given by [12]

$$
\hat{\phi}_{\parallel}(\xi) \equiv \hat{\Phi}^{(2)}(\xi), \n\hat{g}_{\perp}^{(v)}(\xi) = \hat{\Phi}^{(3)}(\xi) + \int_{\xi}^{\text{sign}(\xi)} \frac{d\omega}{\omega} (\hat{\Phi}^{(2)} - \hat{\Phi}^{(3)}) (\omega), \n\hat{g}_{3}(\xi) = \hat{\Phi}^{(4)}(\xi) - \int_{\xi}^{\text{sign}(\xi)} \frac{d\omega}{\omega} \left\{ (\hat{\Phi}^{(2)} - 4\hat{\Phi}^{(3)} + 3\hat{\Phi}^{(4)}) (\omega) \n+ 2 \ln \left(\frac{\xi}{\omega} \right) (\hat{\Phi}^{(2)} - 2\hat{\Phi}^{(3)} + \hat{\Phi}^{(4)}) (\omega) \right\}, \n\hat{g}_{\perp}^{(a)}(\xi) \equiv \hat{\Xi}^{(3)}(\xi).
$$
\n(3)

Similar relations can be derived for chiral-odd DAs over the tensor and pseudoscalar currents.

At this point we do observe a one-to-one correspondence between the decomposition in terms of geometric twist DAs and DAs in dynamical twist: there are four functions each. A difference does occur, however, as soon as we include information on the dynamics of the theory. This information is twofold, and is encoded in the dynamical symmetries of the theory on the one hand and

the equations of motion (EOM) on the other hand. As for massless QCD at light-like distances, the relevant symmetry is the invariance under collinear conformal transformations, i.e. the group $SL(2,R) \cong SO(2,1)$, which is exact for the free theory and valid to leading order in the perturbative expansion [16]; for not too small renormalization scales, the corresponding quantum number "conformal spin", defined [as](#page-3-0) $1/2$ (dimension + spin projection onto the line z_{μ} , is thus a good quantum number and allows a partial-wave expansion of the corresponding amplitudes [15]; in the limit $\alpha_s \to 0$ one obtains the so-called asymptotic DAs, which are defined as the contributionwith [lo](#page-3-0)west conformal spin. Theoretical calculations of the non-asymptotic corrections to the ρ -meson DAs show that they are small already at scales $\sim 1 \text{ GeV}$ [14]. The EOM, on the other hand, allow one to establish relations between e.g. bilinear operators of higher twist [a](#page-3-0)nd trilinear operators of leading twist and serve to identify the dynamically independent degrees of freedom of a given DA [15]. In particular it turns out that the basis of higher-twist DAs is overcomplete: the number of independe[nt d](#page-3-0)egrees of freedom is less than the number of independent Lorentz-structures. This observation is of course not new; to the best of our knowledge, the EOM have first been employed by Shuryak and Vainshtein [17] in relation with the WW-decomposition [7] of the (dynamical twist-3) spin-dependent nucleon DF g_2 ,

$$
g_2(x_B) = -g_1(x_B) + \int_{x_B}^1 \frac{dy}{y} g_1(y) + \bar{g}_2(x_B), \quad (4)
$$

where g1 is the leading-twist longitudinal spin DF and g2 is the geometric twist-3 part. The original derivation of Wandzura & Wilczek involved only quark-quark operators, but Shuryak and Vainshtein noted that, by virtue of the EOM, the operators relevant for g2 can be written as quark-quark-gluon operators whose matrix-elements are expected to be small and thus can be neglected.

In general, however, the EOM do not only involve quark-quark-gluon operators, but also quark-

quark operators with total derivatives, schematically $O^{(3)}$ = $O^{(3)}$, $q\overline{q}$ + $\partial^{\mu}O_{\mu}^{(2)}$, where $O^{(3)}$, $q\overline{q}$ is an interaction-dependent operator and $O^{(2,3)}$ are quarkquark-correlation operators of geometric twist-2 and 3, respectively. The important point is now that, although the above relation of course respects the geometric twist, matrix-elements can blur this decomposition, which happens whenever the matrix-elements over total derivatives do not vanish, i.e. for exclusive processes and off-forward scattering, where the total derivative turns into a mo mentum (transfer). To be specific, let us quote the formulas for the geometric twist-3 part of the vector and axial-vector currents [14, 18]

$$
\left[\bar{u}(-z)\gamma_{\mu}(\gamma_{5})d(z)\right]_{\text{twist 3}} = -g_{s}\int_{0}^{1}du\int_{-u}^{u}dv\,\bar{u}(-uz)\left[u\tilde{G}_{\mu\nu}(vz)z^{\nu}\,\not\gamma_{5}(\gamma_{5}) - ivG_{\mu\nu}(vz)z^{\nu}\,\not\gamma(\gamma_{5})\right]d(uz) \n+ i\epsilon_{\mu}{}^{\nu\alpha\beta}\int_{0}^{1}udu\,z_{\nu}\hat{\partial}_{\alpha}\left[\bar{u}(-uz)\gamma_{\beta}\gamma_{5}(\gamma_{5})d(uz)\right],
$$
\n(5)

where $G_{\mu\nu}$ is the gluonic nera strength, $G_{\mu\nu} = \alpha_i$ $(1/2)\epsilon_{\mu\nu\alpha\beta}G^{\alpha\beta}$ its dual, and ∂_{α} is the derivative over the total translation:

$$
\hat{\partial}_{\alpha}\left[\bar{u}(-z)\gamma_{\beta}d(z)\right] \equiv \left.\frac{\partial}{\partial y_{\alpha}}\left[\bar{u}(-z+y)\gamma_{\beta}d(z+y)\right]\right|_{y\to 0}.
$$

We would like to stress that, from the group-theoretical point of view, Eq. (5) is a genuine geometric twist-3 relation. Taking matrix-elements and neglecting the manifestly interaction-dependent quark-quark-gluon operators, whose numerical contribution is small $[15]$, one finds the "WW-type" relations $[14]$

$$
\hat{g}_{\perp}^{(v),\text{dWW}}(\xi) = \int_{-1}^{\xi} d\omega \, \frac{\hat{\phi}_{\parallel}(\omega)}{1-\omega} + \int_{\xi}^{1} d\omega \, \frac{\hat{\phi}_{\parallel}(\omega)}{1+\omega},
$$
\n
$$
\hat{g}_{\perp}^{(a),\text{dWW}}(\xi) = \int_{-1}^{\xi} d\omega \, \frac{1-\xi}{1-\omega} \, \hat{\phi}_{\parallel}(\omega) + \int_{\xi}^{1} d\omega \, \frac{1+\xi}{1+\omega} \, \hat{\phi}_{\parallel}(\omega).
$$
\n(6)

A comparison with (3) reveals that $\hat{g}_{\perp}^{(\infty)}$, although manifestive geometric twist-3, has \cdot the \cdot contribution that \cdot butionsfrom the t[ot](#page-1-0)al derivative; also $\tilde{g}_{\perp}^{\scriptscriptstyle(\vee)}$ contains such terms. The important point to note is that the above WW-relations are consistent with the conformal expansion in the sense that (a) inserting the asymptotic DA $\varphi_{\parallel}^{\perp\perp} = 3(1-\xi^2)/4$ yields the asymptotic DAs

$$
g_{\perp}^{(v),\text{as}} = \frac{3}{4} (1 + \xi^2), \quad g_{\perp}^{(a),\text{as}} = \frac{3}{4} (1 - \xi^2), \quad (7)
$$

as required by conformal expansion, cf. Ref. [15], and that (b) contributions of higher conformal spin to ϕ_{\parallel} ka kacamatan ing Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Ka translate into contributions of the sameconf[orm](#page-3-0)al spin to $\hat{g}_{\perp}^{\text{even}}$.The interaction-dependent operators only contribute at non-leading conformal spin.

The above relations include the contribution of the twist-3 total-derivative operator in (5). What happens if, in the original spirit of WW, one only includes geometric twist-2 operators in the WW-relations? As shown in $[12]$, one finds

$$
\hat{g}_{\perp}^{(v),\text{gWW}}(\xi) = \int_{\xi}^{\text{sign}(\xi)} \frac{d\omega}{\omega} \hat{\phi}_{\parallel}(\omega),
$$

$$
\hat{g}_{\perp}^{(a),\text{gWW}}(\xi) = 0,
$$
 (8)

which, inserting $\varphi_{||}^{\textrm{w}}$, yields

$$
\hat{g}_{\perp}^{(v),\text{gWW}}(\xi) = \frac{3}{8} \left(\xi^2 - 1 - 2 \ln \frac{\xi}{\text{sign}(\xi)} \right), \quad (9)
$$

which exhibits a logarithmic singularity at $\xi = 0$.

These results are quite different from those obtained from conformal expansion. The argument of WW for neglecting the twist-3 operators, corroborated by Shuryak and Vainshtein, was that they are equivalent to quarkquark-gluon operators whose matrix-elements can be neglected numerically. This argument, however, does no longer hold in exclusive kinematics, where twist-3 operators with total derivatives induce contributions that are as large as large as those from twist-2. Thus, the contribution of the contribution of the contribu-twisttions $g_{\perp}^{(s)/\text{even}}(\xi) = g_{\perp}^{(s)}/(\xi) - g_{\perp}^{(s)/\text{odd}}(\xi)$ and $g_{\perp}^{(s)/\text{even}}(\xi) =$ $\hat{g}_{\perp}^{\infty\prime}(\xi)$ are not small numerically.

In addition we have demonstrated above that the geometric WW-relations violate the restrictions imposed by conformal symmetry and yield (artificial) singularities that are cancelled exactly by total-derivative operators of geometric twist-3. We conclude that analyses based on geometric twist-2 are of rather limited use in deriving WW-relations between DAs of different dynamical twist and that it is essential to include twist-3 operators containing total derivatives in order to preserve the symmetries of the theory. This result is complementary to that obtained in Ref. [13] that twist-3 total-derivative operators are needed to restore gauge-invariance of physical amplitudes in off-forward kinematics.

Let us finally also comment on the possible extension of WW-relations to twist-4. At this order in the twistexpansion, trace-subtractions of leading twist-2 operators become relevant and give rise to two different types of relations: one gives the geometric twist-2 part of the d 3 d 3 d 3 d 3 d 3 and was obtained in [12]:

$$
\hat{g}_3^{\text{tw2}}(\xi) = -\int_{\xi}^{\text{sign}(\xi)} \frac{d\omega}{\omega} \left\{ 1 + 2 \ln \left(\frac{\xi}{\omega} \right) \right\} \hat{\phi}_{\parallel}(\omega). \quad (10)
$$

This expression shows again a logarithmic singularity that is not present in the full expression for ^g3 obtained in [19] using the EOM. Trace-subtractions of the twist-2 operator also give rise to so-called \kinematical" targetmass corrections. For the forward-scattering case, contributions of this type have been considered by Nachtmann. For the exclusive case, the corresponding operators have been considered in $[20, 21]$, and for off-forward scattering, the resummation has been done in [22]. The relevance of such a procedure remains, however, unclear.

For, in addition to the geometric mass-corrections, one also has also "dynamic" mass-corrections from operators $\sim x^{2n}\partial^{2n}O^{(2)}$ which are of geometric twist- $(2n+2)$ and such that are "hidden" in the twist-4 quark-quark-gluon operators entering by the EOM. This is the exact analogue of what happens at twist-3: decomposition of the relevant operators in terms of irreducible representations of the Lorentz-group gives only part of the information: the EOM have to be applied in order to obtain gaugeand conformal-invariant results. Indeed, the authors of [22] observe that their results for mass-corrections violate gauge-invariance. Dynamical mass-corrections have so far only been considered for the exclusive case, Ref. [19]. Again, it was not possible to formulate the twist-4 analogue of Eq. (5), with a clean separation of interactiondependent and total-derivative terms; instead, one had to rely onac[um](#page-2-0)bersome local expansion that was used to obtain results for the next-to-leading order in the conformal expansion. Numerically, these corrections turned out to be relevant. We conclude that, at least for exclusive vector-meson DAs, a resummation of mass-corrections induced by trace-subtractions in the leading twist matrix element and the higher-twist operators containing total derivatives are relevant for a good approximation.

Acknowledgments

P.B. is supported by DFG through a Heisenberg fellowship. M.L. acknowledges the Graduate College "Quantum field theory" of Leipzig University for financial support and the CERN/TH-division for support during his stay in Geneva.

- [1] K.G. Wilson, Phys. Rev. 179 (1969) 1499;
- S.A. Anikin and O.I. Zavialov, Annals Phys. 116 (1978) 135.
- [2] D. Gross and S. Treiman, Phys. Rev. D 4 (1971) 1059.
- [3] B. Geyer, M. Lazar and D. Robaschik, Nucl. Phys. B559 (1999) 339.
- [4] B. Geyer and M. Lazar, Nucl. Phys. B581 (2000) 341,
- [5] J.B. Kogut and D.E. Soper, Phys. Rev. D 1 (1970) 2901.
- [6] S.J. Brodsky and G.P. Lepage, in Perturbative Quantum [Chromodynamics, ed. A.H. Mueller, \(World Scientic,](http://xxx.sissa.it/abs/hep-ph/0102209) Singapore, 1989) p. 93;
- R.L. Jaffe and X. Ji, Nucl. Phys. **B375** (1992) 527.
- [7] S. Wandzura and F. Wilczek, Phys. Lett. B 72 (1977) 195.
- [8] B. Geyer and M. Lazar, Phys. Rev. D 63 (2001) 0740XX, in print $[hep-ph/0009309]$.
- [9] O. Nachtmann, Nucl. Phys. B63 (1973) 237;
- H. Georgi and H.D. Politzer, Phys. Rev. D 14 (1976) 1829.
- [10] J. Blumlein and D. Robaschik, Nucl. Phys. **B581** (2000) 449; J. Blumlein et al., Nucl. Phys. Proc. Suppl. 89 (2000) 155.
- [11] M. Lazar, Phys. Lett. B 497 (2001) 62, and Erratum.
- [12] M. Lazar, hep- $ph/0102273$.
- [13] I.V. Anikin, B. Pire and O.V. Teryaev, Phys. Rev. D 62 (2000) 071501; A.V. Belitsky and D. Muller, Nucl. Phys. B589 (2000) 611; N. Kivel et al., Phys. Lett. B 497 (2001) 73; A.V. Radyushkin and C.Weiss, hep-ph/0010296; I.V. Anikin and O.V. Teryaev, hepph/0102209.
- [14] P. Ball and V. Braun, Phys. Rev. D 54 (1996) 21[82.](http://xxx.sissa.it/abs/hep-ph/0102209)
- [15] P. Ball et al., Nucl. Phys. B529 (1998) 323.
- [16] Y.M. Makeenko, Sov. J. Nucl. Phys. 33 (1981) 440; N.S. Craigie, V.K. Dobrev and I.T. Todorov, Annals Phys. 159 (1985) 411.
- [17] E.V. Shuryak and A.I. Vainshtein, Nucl. Phys. B199 (1982) 451; ibd. B201 (1982) 141.
- [18] I.I. Balitsky and V. Braun, Nucl. Phys. B311 (1989) 541.
- [19] P. Ball and V. Braun, Nucl. Phys. **B543** (1999) 201.
- [20] P. Ball, JHEP 9901 (1999) 010.
- [21] M. Lazar, preprint in preparation.
- [22] A.V. Belitsky and D. Muller, hep-ph/0102224.