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x and y. Specifying to chiral-even DAs, one can decom-
pose the relevant vector and axial-vector matrix-elements

on the light-cone z2 = 0 as [11, 12]

h0j�u(z)
�[z;�z]d(�z)j�
�(P; �)i = f�m�

Z 1

�1

d�

�
p�
e(�) � z

p � z
�̂(2)(�)e0(i��)

+e
(�)
?�

n
�̂(2)(�)e1(i��) + �̂(3)(�)[e0(i��) � e1(i��)]

o
�

1

2
z�
e(�) � z

(p � z)2
m2

�

�
�̂(4)(�)

h
e0(i��) � 3e1(i��) + 2

Z 1

0

dt e1(i��t)
i

��̂(2)(�)
h
e1(i��) � 2

Z 1

0

dt e1(i��t)
i
+ 4�̂(3)

h
e1(i��) �

Z 1

0

dt e1(i��t)
io�

;

h0j�u(z)
�
5[z;�z]d(�z)j�
�(P; �)i =

1

2
f�m��

���
� e

(�)
?�p�z�

Z 1

�1

d� �̂(3)(�)e0(i��);

where �̂(d) and �̂(d) contain only contributions from geometric twist-d and we use the following abbreviations:

e
(�)
?� = e(�)� � p�

e(�) � z

p � z
; � = p � z; e0(i��) = ei�� ; e1(i��) =

Z 1

0

dt ei��t:

The same matrix-elements can also be expressed in terms of contributions of de�nite dynamical twist as [14, 15]

h0j�u(z)
�[z;�z]d(�z)j�
�(P; �)i = f�m�

Z 1

�1

d� ei�p�z
�
p�
e(�) � z

p � z
�̂k(�) + e

(�)
?�ĝ

(v)
? (�) �

1

2
z�
e(�) � z

(p � z)2
m2

� ĝ3(�)

�
; (1)

h0j�u(z)
�
5[z;�z]d(�z)j�
�(P; �)i =

1

2
f�m��

���
� e

(�)
?�p�z�

Z 1

�1

d� ei�p�z ĝ
(a)
? (�); (2)

�̂k has twist-2, ĝ
(v;a)
? (dynamical) twist-3 and ĝ3 has dy-

namical twist-4. The relation between the two sets of
DAs is given by [12]

�̂k(�) � �̂(2)(�);

ĝ
(v)
? (�) = �̂(3)(�) +

sign(�)Z
�

d!

!

�
�̂(2) � �̂(3)

�
(!) ;

ĝ3(�) = �̂(4)(�) �

sign(�)Z
�

d!

!

n�
�̂(2) � 4�̂(3) + 3�̂(4)

�
(!)

+ 2 ln
� �
!

��
�̂(2) � 2�̂(3) + �̂(4)

�
(!)

o
;

ĝ
(a)
? (�) � �̂(3)(�): (3)

Similar relations can be derived for chiral-odd DAs over
the tensor and pseudoscalar currents.
At this point we do observe a one-to-one correspon-

dence between the decomposition in terms of geometric
twist DAs and DAs in dynamical twist: there are four
functions each. A di�erence does occur, however, as soon
as we include information on the dynamics of the theory.
This information is twofold, and is encoded in the dy-
namical symmetries of the theory on the one hand and

the equations of motion (EOM) on the other hand. As for
massless QCD at light-like distances, the relevant sym-
metry is the invariance under collinear conformal trans-
formations, i.e. the group SL(2,R)�=SO(2,1), which is
exact for the free theory and valid to leading order in the
perturbative expansion [16]; for not too small renormal-
ization scales, the corresponding quantum number \con-
formal spin", de�ned as 1/2 (dimension + spin projec-
tion onto the line z�), is thus a good quantum number
and allows a partial-wave expansion of the correspond-
ing amplitudes [15]; in the limit �s ! 0 one obtains the
so-called asymptotic DAs, which are de�ned as the con-
tribution with lowest conformal spin. Theoretical calcu-
lations of the non-asymptotic corrections to the �-meson
DAs show that they are small already at scales � 1 GeV
[14]. The EOM, on the other hand, allow one to establish
relations between e.g. bilinear operators of higher twist
and trilinear operators of leading twist and serve to iden-
tify the dynamically independent degrees of freedom of
a given DA [15]. In particular it turns out that the ba-
sis of higher-twist DAs is overcomplete: the number of
independent degrees of freedom is less than the number
of independent Lorentz-structures. This observation is of
course not new; to the best of our knowledge, the EOM
have �rst been employed by Shuryak and Vainshtein [17]
in relation with the WW-decomposition [7] of the (dy-
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namical twist-3) spin-dependent nucleon DF g2,

g2(xB) = �g1(xB) +

Z 1

xB

dy

y
g1(y) + �g2(xB); (4)

where g1 is the leading-twist longitudinal spin DF and �g2
is the geometric twist-3 part. The original derivation of
Wandzura & Wilczek involved only quark-quark opera-
tors, but Shuryak and Vainshtein noted that, by virtue of
the EOM, the operators relevant for �g2 can be written as
quark-quark-gluon operators whose matrix-elements are
expected to be small and thus can be neglected.
In general, however, the EOM do not only in-

volve quark-quark-gluon operators, but also quark-

quark operators with total derivatives, schematically

O(3) = ~O(3);qqG + @̂�O
(2)
� ; where ~O(3);qqG is an

interaction-dependent operator and O(2;3) are quark-
quark-correlation operators of geometric twist-2 and 3,
respectively. The important point is now that, although
the above relation of course respects the geometric twist,
matrix-elements can blur this decomposition, which hap-
pens whenever the matrix-elements over total derivatives
do not vanish, i.e. for exclusive processes and o�-forward
scattering, where the total derivative turns into a mo-
mentum (transfer). To be speci�c, let us quote the for-
mulas for the geometric twist-3 part of the vector and
axial-vector currents [14, 18]

h
�u(�z)
�(
5)d(z)

i
twist 3

= � gs

Z 1

0

du

Z u

�u

dv �u(�uz)
h
u ~G��(vz)z

� 6z
5(
5) � ivG��(vz)z
� 6z(
5)

i
d(uz)

+ i� ���
�

Z 1

0

udu z�@̂�

h
�u(�uz)
�
5(
5)d(uz)

i
; (5)

where G�� is the gluonic �eld strength, ~G�� =

(1=2)�����G�� its dual, and @̂� is the derivative over the
total translation:

@̂�

h
�u(�z)
�d(z)

i
�

@

@y�

h
�u(�z + y)
�d(z + y)

i����
y!0

:

We would like to stress that, from the group-theoretical
point of view, Eq. (5) is a genuine geometric twist-3 rela-
tion. Taking matrix-elements and neglecting the man-
ifestly interaction-dependent quark-quark-gluon opera-
tors, whose numerical contribution is small [15], one �nds
the \WW-type" relations [14]

ĝ
(v);dWW
? (�) =

�Z
�1

d!
�̂k(!)

1 � !
+

1Z
�

d!
�̂k(!)

1 + !
;

ĝ
(a);dWW
? (�) =

�Z
�1

d!
1� �

1� !
�̂k(!) +

1Z
�

d!
1 + �

1 + !
�̂k(!):

(6)

A comparison with (3) reveals that ĝ(a)? , although mani-
festly of geometric twist-3, has \inherited" twist-2 contri-

butions from the total derivative; also ĝ
(v)
? contains such

terms. The important point to note is that the above
WW-relations are consistent with the conformal expan-
sion in the sense that (a) inserting the asymptotic DA

�̂ask = 3(1� �2)=4 yields the asymptotic DAs

g
(v);as
? =

3

4

�
1 + �2

�
; g

(a);as
? =

3

4
(1� �2); (7)

as required by conformal expansion, cf. Ref. [15], and

that (b) contributions of higher conformal spin to �̂k
translate into contributions of the same conformal spin

to ĝ
(v;a)
? .The interaction-dependent operators only con-

tribute at non-leading conformal spin.
The above relations include the contribution of the

twist-3 total-derivative operator in (5). What happens
if, in the original spirit of WW, one only includes geo-
metric twist-2 operators in the WW-relations? As shown
in [12], one �nds

ĝ
(v);gWW
? (�) =

Z sign(�)

�

d!

!
�̂k(!);

ĝ
(a);gWW
? (�) = 0; (8)

which, inserting �̂ask , yields

ĝ
(v);gWW
? (�) =

3

8

�
�2 � 1� 2 ln

�

sign(�)

�
; (9)

which exhibits a logarithmic singularity at � = 0.
These results are quite di�erent from those obtained

from conformal expansion. The argument of WW for ne-
glecting the twist-3 operators, corroborated by Shuryak
and Vainshtein, was that they are equivalent to quark-
quark-gluon operators whose matrix-elements can be ne-
glected numerically. This argument, however, does no
longer hold in exclusive kinematics, where twist-3 op-
erators with total derivatives induce contributions that
are as large as those from twist-2. Thus, the contribu-

tions ĝ
(v);tw3
? (�) = ĝ

(v)
? (�)�ĝ

(v);gWW
? (�) and ĝ

(a);tw3
? (�) =

ĝ
(a)
? (�) are not small numerically.
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In addition we have demonstrated above that the ge-
ometric WW-relations violate the restrictions imposed
by conformal symmetry and yield (arti�cial) singularities
that are cancelled exactly by total-derivative operators of
geometric twist-3. We conclude that analyses based on
geometric twist-2 are of rather limited use in deriving
WW-relations between DAs of di�erent dynamical twist
and that it is essential to include twist-3 operators con-
taining total derivatives in order to preserve the symme-
tries of the theory. This result is complementary to that
obtained in Ref. [13] that twist-3 total-derivative opera-
tors are needed to restore gauge-invariance of physical
amplitudes in o�-forward kinematics.
Let us �nally also comment on the possible extension

of WW-relations to twist-4. At this order in the twist-
expansion, trace-subtractions of leading twist-2 opera-
tors become relevant and give rise to two di�erent types
of relations: one gives the geometric twist-2 part of the
dynamical twist-4 DA ĝ3 and was obtained in [12]:

ĝtw23 (�) = �

Z sign(�)

�

d!

!

�
1 + 2 ln

�
�

!

��
�̂k(!): (10)

This expression shows again a logarithmic singularity
that is not present in the full expression for ĝ3 obtained
in [19] using the EOM. Trace-subtractions of the twist-2
operator also give rise to so-called \kinematical" target-
mass corrections. For the forward-scattering case, contri-
butions of this type have been considered by Nachtmann.
For the exclusive case, the corresponding operators have
been considered in [20, 21], and for o�-forward scatter-
ing, the resummation has been done in [22]. The rel-
evance of such a procedure remains, however, unclear.

For, in addition to the geometric mass-corrections, one
also has also \dynamic" mass-corrections from operators
� x2n@2nO(2) which are of geometric twist-(2n + 2) and
such that are \hidden" in the twist-4 quark-quark-gluon
operators entering by the EOM. This is the exact ana-
logue of what happens at twist-3: decomposition of the
relevant operators in terms of irreducible representations
of the Lorentz-group gives only part of the information:
the EOM have to be applied in order to obtain gauge-
and conformal-invariant results. Indeed, the authors of
[22] observe that their results for mass-corrections violate
gauge-invariance. Dynamical mass-corrections have so
far only been considered for the exclusive case, Ref. [19].
Again, it was not possible to formulate the twist-4 ana-
logue of Eq. (5), with a clean separation of interaction-
dependent and total-derivative terms; instead, one had to
rely on a cumbersome local expansion that was used to
obtain results for the next-to-leading order in the confor-
mal expansion. Numerically, these corrections turned out
to be relevant. We conclude that, at least for exclusive
vector-meson DAs, a resummation of mass-corrections in-
duced by trace-subtractions in the leading twist matrix
element and the higher-twist operators containing total
derivatives are relevant for a good approximation.
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