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At variance with fully inclusive quantities, which have been computed
already at the two- or three-loop level, most exclusive observables are still
known only at one loop, as further progress was hampered up to very
recently by the greater computational problems encountered in the study
of multi-leg amplitudes beyond one loop. We discuss the progress made
lately in the evaluation of two-loop multi-leg integrals, with particular
emphasis on two-loop four-point functions.
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1 Introduction

Precision applications of particle physics phenomenology often demand theoretical
predictions at the next-to-next-to-leading order in perturbation theory. Corrections
at this order are known for many inclusive observables, such as total cross sections
or sum rules, which correspond from a technical point of view to propagator-type
Feynman amplitudes. For 2 → 2 scattering and 1 → 3 decay processes, the cal-
culation of next-to-next-to-leading order corrections is a yet outstanding task. One
of the major ingredients for these calculations are the two-loop virtual corrections
to the corresponding four-point Feynman amplitudes. Depending on the process
under consideration, these calculations require two-loop four-point functions with
massless internal propagators and all legs on-shell (high energy limit of Bhabha scat-
tering, hadronic two-jet production) or one leg off-shell (three-jet production and
event shapes in electron–positron annihilation, two-plus-one-jet production in deep
inelastic scattering, hadronic vector-boson-plus-jet production).

During the past two years, many new results on two-loop four-point functions
became available, thus enabling the first calculations of two-loop virtual corrections
to 2 → 2 scattering processes. A variety of newly developed techniques made this
progress possible. In this talk, we describe these new techniques and their applica-
tions, and we summarise recent results. In an outlook, we discuss the remaining steps
to be taken towards the completion of next-to-next-to-leading order calculations of
2→ 2 scattering and 1→ 3 decay processes.

2 New technical developments

Using dimensional regularization [1,2] with d = 4 − 2ε dimensions as regulator
for ultraviolet and infrared divergences, the integrals appearing in the calculation of
two-loop corrections take the generic form

I(p1, . . . , pn) =
∫

ddk

(2π)d

ddl

(2π)d

1

Dm1
1 . . .Dmt

t

Sn1
1 . . . Snq

q , (1)

where the Di are massless scalar propagators, depending on k, l and the external mo-
menta p1, . . . , pn while Si are scalar products of a loop momentum with an external
momentum or of the two loop momenta. The topology (interconnection of propa-
gators and external momenta) of the integral is uniquely determined by specifying
the set (D1, . . . , Dt) of t different propagators in the graph. The integral itself is
then specified by the powers mi of all propagators and by the selection (S1, . . . , Sq) of
scalar products and their powers (n1, . . . , nq) (all the mi are positive integers greater
or equal to 1, while the ni are greater or equal to 0). Integrals of the same topol-
ogy with the same dimension r =

∑
i mi of the denominator and same total number
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s =
∑

i ni of scalar products are denoted as a class of integrals It,r,s. The integra-
tion measure and scalar products appearing the above expression are in Minkowskian
space, with the usual causal prescription for all propagators. The loop integrations
are carried out for arbitrary space-time dimension d, which acts as a regulator for
divergences appearing due to the ultraviolet or infrared behaviour of the integrand.
For each topology appearing in the calculation, a sizable number of different scalar
integrals has to be computed.

Recent progress in the computation of two-loop corrections to four-point ampli-
tudes was based on three technical developments: an efficient procedure to reduce
the large number of different scalar integrals to a very limited number of so-called
master integrals, new techniques for the computation of these master integrals, and a
new class of functions (harmonic polylogarithms), which can be extended to suit the
needs of a particular calculation. We discuss these developments in the following.

2.1 Reduction to master integrals

The number N(It,r,s) of the integrals grows quickly as r, s increase, but the in-
tegrals are related among each other by various identities. One class of identities
follows from the fact that the integral over the total derivative with respect to any
loop momentum vanishes in dimensional regularization

∫
ddk

(2π)d

∂

∂kµ
J(k, . . .) = 0, (2)

where J is any combination of propagators, scalar products and loop momentum
vectors. J can be a vector or tensor of any rank. The resulting identities [2,3] are
called integration-by-parts (IBP) identities.

In addition to the IBP identities, one can also exploit the fact that all integrals
under consideration are Lorentz scalars (or, perhaps more precisely, “d-rotational”
scalars) , which are invariant under a Lorentz (or d-rotational) transformation of the
external momenta [4]. These Lorentz invariance (LI) identities are obtained from:

(
pν

1

∂

∂p1µ
− pµ

1

∂

∂p1ν
+ . . . + pν

n

∂

∂pnµ
− pµ

n

∂

∂pnν

)
I(p1, . . . , pn) = 0 . (3)

In the case of two-loop four-point functions, one has a total of 13 equations (10 IBP
+ 3 LI) for each integrand corresponding to an integral of class It,r,s, relating integrals
of the same topology with up to s + 1 scalar products and r + 1 denominators, plus
integrals of simpler topologies (i.e. with a smaller number of different denominators).
The 13 identities obtained starting from an integral It,r,s do contain integrals of the
following types:

• It,r,s: the integral itself.
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• It−1,r,s: simpler topology.

• It,r+1,s, It,r+1,s+1 : same topology, more complicated than It,r,s.

• It,r−1,s, It,r−1,s−1: same topology, simpler than It,r,s.

Quite in general, single identities of the above kind can be used to obtain the reduction
of It,r+1,s+1 or It,r+1,s integrals in terms of It,r,s and simpler integrals - rather than to
get information on the It,r,s themselves.

If one considers the set of all the identities obtained starting from the integrand
of all the N(It,r,s) integrals of class It,r,s, one obtains (NIBP + NLI)N(It,r,s) identities
which contain N(It,r+1,s+1) + N(It,r+1,s) integrals of more complicated structure. It
was first noticed by S. Laporta [5] that with increasing r and s the number of identities
grows faster than the number of new unknown integrals. As a consequence, if for
a given t-topology one considers the set of all the possible equations obtained by
considering all the integrands up to certain values r∗, s∗ of r, s, for large enough
r∗, s∗ the resulting system of equations, apparently overconstrained, can be used
for expressing the more complicated integrals, with greater values of r, s in terms
of simpler ones, with smaller values of r, s. An automatic procedure to perform this
reduction by means of computer algebra using FORM [6] and MAPLE [7] is discussed
in more detail in [4].

For any given four-point two-loop topology, this procedure can result either in a
reduction towards a small number (typically one or two) of integrals of the topology
under consideration and integrals of simpler topology (less different denominators),
or even in a complete reduction of all integrals of the topology under consideration
towards integrals with simpler topology. Left-over integrals of the topology under
consideration are called irreducible master integrals or just master integrals.

2.2 Computation of master integrals

The IBP and LI identities allow to express integrals of the form (1) as a linear
combination of a few master integrals, i.e. integrals which are not further reducible,
but have to be computed by some different method.

For the case of massless two-loop four-point functions, several techniques have
been proposed in the literature, such as for example the application of a Mellin–Barnes
transformation to all propagators [8] or the negative dimension approach [9]. Both
techniques rely on an explicit integration over the loop momenta, with differences
mainly in the representation used for the propagators.

A method for the analytic computation of master integrals avoiding the explicit
integration over the loop momenta is to derive differential equations in internal prop-
agator masses or in external momenta for the master integral, and to solve these
with appropriate boundary conditions. This method has first been suggested by
Kotikov [10] to relate loop integrals with internal masses to massless loop integrals.
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It has been elaborated in detail and generalized to differential equations in exter-
nal momenta in [11]; first applications were presented in [12]. In the case of four-point
functions with one external off-shell leg and no internal masses, one has three inde-
pendent invariants, resulting in three differential equations.

The derivatives in the invariants sij = (pi + pj)
2 can be expressed by derivatives

in the external momenta:

s12
∂

∂s12
=

1

2

(
+pµ

1

∂

∂pµ
1

+ pµ
2

∂

∂pµ
2

− pµ
3

∂

∂pµ
3

)
,

s13
∂

∂s13

=
1

2

(
+pµ

1

∂

∂pµ
1

− pµ
2

∂

∂pµ
2

+ pµ
3

∂

∂pµ
3

)
,

s23
∂

∂s23
=

1

2

(
−pµ

1

∂

∂pµ
1

+ pµ
2

∂

∂pµ
2

+ pµ
3

∂

∂pµ
3

)
. (4)

It is evident that acting with the right hand sides of (4) on a master integral It,t,0

will, after interchange of derivative and integration, yield a combination of integrals of
the same type as appearing in the IBP and LI identities for It,t,0, including integrals of
type It,t+1,1 and It,t+1,0. Consequently, the scalar derivatives (on left hand side of (4))
of It,t,0 can be expressed by a linear combination of integrals up to It,t+1,1 and It,t+1,0.
These can all be reduced (for topologies containing only one master integral) to It,t,0

and to integrals of simpler topology by applying the IBP and LI identities. As a result,
we obtain for the master integral It,t,0 an inhomogeneous linear first order differential
equation in each invariant. For topologies with more than one master integral, one
finds a coupled system of first order differential equations. The inhomogeneous term
in these differential equations contains only topologies simpler than It,t,0, which are
considered to be known if working in a bottom-up approach.

The master integral It,t,0 is obtained by matching the general solution of its dif-
ferential equation to an appropriate boundary condition. Quite in general, finding a
boundary condition is a simpler problem than evaluating the whole integral, since it
depends on a smaller number of kinematical variables. In some cases, the boundary
condition can even be determined from the differential equation itself.

To solve the differential equations for two-loop four-point functions with one off-
shell leg [4,13], we express the system of differential equations for any master integral
in the variables s123 = s12 + s13 + s23, y = s13/s123 and z = s23/s123. We obtain a
homogeneous equation in s123, and inhomogeneous equations in y and z. Since s123 is
the only quantity carrying a mass dimension, the corresponding differential equation
is nothing but the rescaling relation obtained by investigating the behaviour of the
master integral under a rescaling of all external momenta by a constant factor. The
master integral can be determined by solving one of the inhomogeneous equations,
the second equation can then serve as a check on the result.

In the y differential equation for the master integral under consideration, the co-
efficient of the homogeneous term as well as the full inhomogeneous term (coefficients

4



and subtopologies) are then expanded as a series in ε. From the leading coefficient
of the homogeneous term, one can determine a rational prefactor R for the master
integral. Rescaling the master integral by this prefactor, one obtains a differential
equation in which the coefficient of the homogeneous term is of O(ε). This equation
can then be solved order by order in ε by direct integration. The remaining con-
stants of integration, which correspond to the boundary condition of the equation,
are subsequently determined by using the fact that the master integral is regular in
the whole kinematic plane with the exception of a few (at most three) branch cuts.

For each master integral, we obtain a result of the form∑
i

Ri(y, z; s123, ε)Hi(y, z; ε) , (5)

where the prefactorRi(y, z; s123, ε) is a rational function of y and z, which is multiplied
with an overall normalization factor to account for the correct dimension in s123, while
Hi(y, z; ε) is a Laurent series in ε. The coefficients of its ε-expansion are then written
as the sum of two-dimensional harmonic polylogarithms up to a weight determined
by the order of the series:

Hi(y, z; ε) =
εp

ε4

4∑
n=0

εn


Tn(z) +

n∑
j=1

∑
~mj∈Vj(z)

Tn,~mj
(z)H(~mj ; y)


 , (6)

where the H(~mj; y) are two-dimensional harmonic polylogarithms (2dHPL), which
were introduced in [13] and Tn(z), Tn,~mj

(z) are z-dependent coefficients.

2.3 Harmonic polylogarithms

Harmonic polylogarithms (HPL) were introduced in [14] as an extension of the
generalized polylogarithms of Nielsen [15,16]. They are constructed in such a way
that they form a closed, linearly independent set under a certain class of integrations.
We observe that the class of allowed integrations on this set can be extended à la
carte by enlarging the definition of harmonic polylogarithms in order to suit the
needs of a particular calculation. We made use of this feature by generalizing the
one-dimensional HPL of [14] to two-dimensional harmonic polylogarithms (2dHPL),
which appear in the solution of the differential equations for the three-scale master
integrals discussed in[13]. We briefly recall the HPL formalism [14]:

1. The one-dimensional HPL H(~mw; x) is described by a w-dimensional vector ~mw

of parameters and by its argument x. w is called the weight of H .

2. The HPL of parameters (+1, 0,−1) form a closed set under the class of integra-
tions ∫ x

0
dx′

(
1

x′
,

1

1− x′
,

1

1 + x′

)
H(~b; x′) . (7)
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3. The HPL fulfil an algebra, such that a product of two HPL (with weights w1

and w2) of the same argument x is a combination of HPL of argument x with
weight w = w1 + w2.

4. The HPL fulfil integration-by-parts identities.

5. The HPL are linearly independent.

The generalization from one-dimensional to two-dimensional HPL starts from (7),
which defines the class of integrations under which the HPL form a closed set. By
inspection of the various inhomogeneous terms of the y differential equations for
the three-scale master integrals discussed in this paper, we find that, besides the
denominators 1/y and 1/(1 − y), also 1/(1 − y − z) and 1/(y + z) appear. It is
therefore appropriate to introduce an extension of the HPL, which forms a closed set
under the class of integrations

∫ y

0
dy′

(
1

y′
,

1

1− y′
,

1

1− y′ − z
,

1

y′ + z

)
H(~b; y′) . (8)

Allowing (z, 1 − z) as components of the vector ~mw of parameters does then define
the extended set of HPL, which we call two-dimensional harmonic polylogarithms
(2dHPL). They retain all properties of the HPL, in particular the algebra and the
linear independence.

Two-dimensional harmonic polylogarithms can be expressed in terms of Nielsen’s
generalized polylogarithms up to weight 3, which is the maximum weight appearing in
the divergent terms of two-loop four-point functions with one leg off-shell. These rela-
tions are tabulated in [13]. At weight 4, only some special cases relate to generalized
polylogarithms.

3 Summary of recent results

For two-loop four-point functions with massless internal propagators and all legs
on-shell, which are relevant for example in the next-to-next-to-leading order calcula-
tion of two-jet production at hadron colliders, all master integrals have been calculated
over the past two years. The calculations were performed using the Mellin–Barnes
method [8] and the differential equation technique [17]. The resulting master integrals
can be expressed in terms of Nielsen’s generalized polylogarithms. Very recently, these
master integrals were already applied in the calculation of two-loop virtual corrections
to Bhabha scattering [18] in the limit of vanishing electron mass and to quark–quark
scattering [19].

In [13], we have used the differential equation approach to compute all master in-
tegrals for two-loop four-point functions with one off-shell leg. Earlier partial results
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on these functions were obtained in [9,20], and a purely numerical approach to these
functions was presented in [21]. Our results [13] for these master integrals are in terms
of two-dimensional harmonic polylogarithms. All 2dHPL appearing in the divergent
parts of the master integrals can be expressed in terms of Nielsen’s generalized poly-
logarithms of suitable non-simple arguments, while the 2dHPL appearing in the finite
parts are one-dimensional integrals over generalized polylogarithms. An efficient nu-
merical implementation of these functions is currently being worked out. Our results
correspond to the kinematical situation of a 1→ 3 decay, their analytic continuation
into the region of 2→ 2 scattering processes requires the analytic continuation of the
2dHPL, which is outlined in [13].

These four-point two-loop master integrals with one leg off-shell are a crucial
ingredient to the virtual next-to-next-to-leading order corrections to processes such
as three-jet production in electron–positron annihilation, two-plus-one-jet production
in deep inelastic scattering and vector-boson-plus-jet production at hadron colliders.

4 Outlook

Owing to numerous technical developments in the past two years, virtual two-loop
corrections to four-point amplitudes are now becoming available for a variety of phe-
nomenologically relevant processes. One must however keep in mind that these cor-
rections form only one part of a full next-to-next-to-leading order calculation, which
also has to include the one-loop corrections to processes with one soft or collinear real
parton [22] as well as tree-level processes with two soft or collinear partons [23]. Only
after summing all these contributions (and including terms from the renormalization
of parton distributions for processes with partons in the initial state), the divergent
terms cancel among one another. The remaining finite terms have to be combined
into a numerical programme implementing the experimental definition of jet observ-
ables and event-shape variables. A first calculation involving the above features was
presented for case of photon-plus-one-jet final states in electron–positron annihilation
in [23], thus demonstrating the feasibility of this type of calculations.
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